MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitsf1ocnv Structured version   Visualization version   GIF version

Theorem bitsf1ocnv 16132
Description: The bits function restricted to nonnegative integers is a bijection from the integers to the finite sets of integers. It is in fact the inverse of the Ackermann bijection ackbijnn 15521. (Contributed by Mario Carneiro, 8-Sep-2016.)
Assertion
Ref Expression
bitsf1ocnv ((bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin) ∧ (bits ↾ ℕ0) = (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ Σ𝑛𝑥 (2↑𝑛)))
Distinct variable group:   𝑥,𝑛

Proof of Theorem bitsf1ocnv
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 eqid 2739 . . . . . 6 (𝑘 ∈ ℕ0 ↦ (bits‘𝑘)) = (𝑘 ∈ ℕ0 ↦ (bits‘𝑘))
2 bitsss 16114 . . . . . . . . 9 (bits‘𝑘) ⊆ ℕ0
32a1i 11 . . . . . . . 8 (𝑘 ∈ ℕ0 → (bits‘𝑘) ⊆ ℕ0)
4 bitsfi 16125 . . . . . . . 8 (𝑘 ∈ ℕ0 → (bits‘𝑘) ∈ Fin)
5 elfpw 9082 . . . . . . . 8 ((bits‘𝑘) ∈ (𝒫 ℕ0 ∩ Fin) ↔ ((bits‘𝑘) ⊆ ℕ0 ∧ (bits‘𝑘) ∈ Fin))
63, 4, 5sylanbrc 582 . . . . . . 7 (𝑘 ∈ ℕ0 → (bits‘𝑘) ∈ (𝒫 ℕ0 ∩ Fin))
76adantl 481 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ0) → (bits‘𝑘) ∈ (𝒫 ℕ0 ∩ Fin))
8 elinel2 4134 . . . . . . . 8 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → 𝑥 ∈ Fin)
9 2nn0 12233 . . . . . . . . . 10 2 ∈ ℕ0
109a1i 11 . . . . . . . . 9 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑛𝑥) → 2 ∈ ℕ0)
11 elfpw 9082 . . . . . . . . . . 11 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↔ (𝑥 ⊆ ℕ0𝑥 ∈ Fin))
1211simplbi 497 . . . . . . . . . 10 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → 𝑥 ⊆ ℕ0)
1312sselda 3925 . . . . . . . . 9 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑛𝑥) → 𝑛 ∈ ℕ0)
1410, 13nn0expcld 13942 . . . . . . . 8 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑛𝑥) → (2↑𝑛) ∈ ℕ0)
158, 14fsumnn0cl 15429 . . . . . . 7 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → Σ𝑛𝑥 (2↑𝑛) ∈ ℕ0)
1615adantl 481 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (𝒫 ℕ0 ∩ Fin)) → Σ𝑛𝑥 (2↑𝑛) ∈ ℕ0)
17 bitsinv2 16131 . . . . . . . . . 10 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → (bits‘Σ𝑛𝑥 (2↑𝑛)) = 𝑥)
1817eqcomd 2745 . . . . . . . . 9 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → 𝑥 = (bits‘Σ𝑛𝑥 (2↑𝑛)))
1918ad2antll 725 . . . . . . . 8 ((⊤ ∧ (𝑘 ∈ ℕ0𝑥 ∈ (𝒫 ℕ0 ∩ Fin))) → 𝑥 = (bits‘Σ𝑛𝑥 (2↑𝑛)))
20 fveq2 6768 . . . . . . . . 9 (𝑘 = Σ𝑛𝑥 (2↑𝑛) → (bits‘𝑘) = (bits‘Σ𝑛𝑥 (2↑𝑛)))
2120eqeq2d 2750 . . . . . . . 8 (𝑘 = Σ𝑛𝑥 (2↑𝑛) → (𝑥 = (bits‘𝑘) ↔ 𝑥 = (bits‘Σ𝑛𝑥 (2↑𝑛))))
2219, 21syl5ibrcom 246 . . . . . . 7 ((⊤ ∧ (𝑘 ∈ ℕ0𝑥 ∈ (𝒫 ℕ0 ∩ Fin))) → (𝑘 = Σ𝑛𝑥 (2↑𝑛) → 𝑥 = (bits‘𝑘)))
23 bitsinv1 16130 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → Σ𝑛 ∈ (bits‘𝑘)(2↑𝑛) = 𝑘)
2423eqcomd 2745 . . . . . . . . 9 (𝑘 ∈ ℕ0𝑘 = Σ𝑛 ∈ (bits‘𝑘)(2↑𝑛))
2524ad2antrl 724 . . . . . . . 8 ((⊤ ∧ (𝑘 ∈ ℕ0𝑥 ∈ (𝒫 ℕ0 ∩ Fin))) → 𝑘 = Σ𝑛 ∈ (bits‘𝑘)(2↑𝑛))
26 sumeq1 15381 . . . . . . . . 9 (𝑥 = (bits‘𝑘) → Σ𝑛𝑥 (2↑𝑛) = Σ𝑛 ∈ (bits‘𝑘)(2↑𝑛))
2726eqeq2d 2750 . . . . . . . 8 (𝑥 = (bits‘𝑘) → (𝑘 = Σ𝑛𝑥 (2↑𝑛) ↔ 𝑘 = Σ𝑛 ∈ (bits‘𝑘)(2↑𝑛)))
2825, 27syl5ibrcom 246 . . . . . . 7 ((⊤ ∧ (𝑘 ∈ ℕ0𝑥 ∈ (𝒫 ℕ0 ∩ Fin))) → (𝑥 = (bits‘𝑘) → 𝑘 = Σ𝑛𝑥 (2↑𝑛)))
2922, 28impbid 211 . . . . . 6 ((⊤ ∧ (𝑘 ∈ ℕ0𝑥 ∈ (𝒫 ℕ0 ∩ Fin))) → (𝑘 = Σ𝑛𝑥 (2↑𝑛) ↔ 𝑥 = (bits‘𝑘)))
301, 7, 16, 29f1ocnv2d 7513 . . . . 5 (⊤ → ((𝑘 ∈ ℕ0 ↦ (bits‘𝑘)):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin) ∧ (𝑘 ∈ ℕ0 ↦ (bits‘𝑘)) = (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ Σ𝑛𝑥 (2↑𝑛))))
3130simpld 494 . . . 4 (⊤ → (𝑘 ∈ ℕ0 ↦ (bits‘𝑘)):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin))
32 bitsf 16115 . . . . . . . . 9 bits:ℤ⟶𝒫 ℕ0
3332a1i 11 . . . . . . . 8 (⊤ → bits:ℤ⟶𝒫 ℕ0)
3433feqmptd 6831 . . . . . . 7 (⊤ → bits = (𝑘 ∈ ℤ ↦ (bits‘𝑘)))
3534reseq1d 5887 . . . . . 6 (⊤ → (bits ↾ ℕ0) = ((𝑘 ∈ ℤ ↦ (bits‘𝑘)) ↾ ℕ0))
36 nn0ssz 12324 . . . . . . 7 0 ⊆ ℤ
37 resmpt 5942 . . . . . . 7 (ℕ0 ⊆ ℤ → ((𝑘 ∈ ℤ ↦ (bits‘𝑘)) ↾ ℕ0) = (𝑘 ∈ ℕ0 ↦ (bits‘𝑘)))
3836, 37ax-mp 5 . . . . . 6 ((𝑘 ∈ ℤ ↦ (bits‘𝑘)) ↾ ℕ0) = (𝑘 ∈ ℕ0 ↦ (bits‘𝑘))
3935, 38eqtrdi 2795 . . . . 5 (⊤ → (bits ↾ ℕ0) = (𝑘 ∈ ℕ0 ↦ (bits‘𝑘)))
4039f1oeq1d 6707 . . . 4 (⊤ → ((bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin) ↔ (𝑘 ∈ ℕ0 ↦ (bits‘𝑘)):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin)))
4131, 40mpbird 256 . . 3 (⊤ → (bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin))
4239cnveqd 5781 . . . 4 (⊤ → (bits ↾ ℕ0) = (𝑘 ∈ ℕ0 ↦ (bits‘𝑘)))
4330simprd 495 . . . 4 (⊤ → (𝑘 ∈ ℕ0 ↦ (bits‘𝑘)) = (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ Σ𝑛𝑥 (2↑𝑛)))
4442, 43eqtrd 2779 . . 3 (⊤ → (bits ↾ ℕ0) = (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ Σ𝑛𝑥 (2↑𝑛)))
4541, 44jca 511 . 2 (⊤ → ((bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin) ∧ (bits ↾ ℕ0) = (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ Σ𝑛𝑥 (2↑𝑛))))
4645mptru 1548 1 ((bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin) ∧ (bits ↾ ℕ0) = (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ Σ𝑛𝑥 (2↑𝑛)))
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wtru 1542  wcel 2109  cin 3890  wss 3891  𝒫 cpw 4538  cmpt 5161  ccnv 5587  cres 5590  wf 6426  1-1-ontowf1o 6429  cfv 6430  (class class class)co 7268  Fincfn 8707  2c2 12011  0cn0 12216  cz 12302  cexp 13763  Σcsu 15378  bitscbits 16107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-inf2 9360  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932  ax-pre-sup 10933
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-int 4885  df-iun 4931  df-disj 5044  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-se 5544  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-isom 6439  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-1st 7817  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-1o 8281  df-2o 8282  df-oadd 8285  df-er 8472  df-map 8591  df-pm 8592  df-en 8708  df-dom 8709  df-sdom 8710  df-fin 8711  df-sup 9162  df-inf 9163  df-oi 9230  df-dju 9643  df-card 9681  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-div 11616  df-nn 11957  df-2 12019  df-3 12020  df-n0 12217  df-xnn0 12289  df-z 12303  df-uz 12565  df-rp 12713  df-fz 13222  df-fzo 13365  df-fl 13493  df-mod 13571  df-seq 13703  df-exp 13764  df-hash 14026  df-cj 14791  df-re 14792  df-im 14793  df-sqrt 14927  df-abs 14928  df-clim 15178  df-sum 15379  df-dvds 15945  df-bits 16110
This theorem is referenced by:  bitsf1o  16133  bitsinv  16136
  Copyright terms: Public domain W3C validator