MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitsf1ocnv Structured version   Visualization version   GIF version

Theorem bitsf1ocnv 16463
Description: The bits function restricted to nonnegative integers is a bijection from the integers to the finite sets of integers. It is in fact the inverse of the Ackermann bijection ackbijnn 15844. (Contributed by Mario Carneiro, 8-Sep-2016.)
Assertion
Ref Expression
bitsf1ocnv ((bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin) ∧ (bits ↾ ℕ0) = (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ Σ𝑛𝑥 (2↑𝑛)))
Distinct variable group:   𝑥,𝑛

Proof of Theorem bitsf1ocnv
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . . . . . 6 (𝑘 ∈ ℕ0 ↦ (bits‘𝑘)) = (𝑘 ∈ ℕ0 ↦ (bits‘𝑘))
2 bitsss 16445 . . . . . . . . 9 (bits‘𝑘) ⊆ ℕ0
32a1i 11 . . . . . . . 8 (𝑘 ∈ ℕ0 → (bits‘𝑘) ⊆ ℕ0)
4 bitsfi 16456 . . . . . . . 8 (𝑘 ∈ ℕ0 → (bits‘𝑘) ∈ Fin)
5 elfpw 9366 . . . . . . . 8 ((bits‘𝑘) ∈ (𝒫 ℕ0 ∩ Fin) ↔ ((bits‘𝑘) ⊆ ℕ0 ∧ (bits‘𝑘) ∈ Fin))
63, 4, 5sylanbrc 583 . . . . . . 7 (𝑘 ∈ ℕ0 → (bits‘𝑘) ∈ (𝒫 ℕ0 ∩ Fin))
76adantl 481 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ0) → (bits‘𝑘) ∈ (𝒫 ℕ0 ∩ Fin))
8 elinel2 4177 . . . . . . . 8 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → 𝑥 ∈ Fin)
9 2nn0 12518 . . . . . . . . . 10 2 ∈ ℕ0
109a1i 11 . . . . . . . . 9 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑛𝑥) → 2 ∈ ℕ0)
11 elfpw 9366 . . . . . . . . . . 11 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↔ (𝑥 ⊆ ℕ0𝑥 ∈ Fin))
1211simplbi 497 . . . . . . . . . 10 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → 𝑥 ⊆ ℕ0)
1312sselda 3958 . . . . . . . . 9 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑛𝑥) → 𝑛 ∈ ℕ0)
1410, 13nn0expcld 14264 . . . . . . . 8 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑛𝑥) → (2↑𝑛) ∈ ℕ0)
158, 14fsumnn0cl 15752 . . . . . . 7 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → Σ𝑛𝑥 (2↑𝑛) ∈ ℕ0)
1615adantl 481 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (𝒫 ℕ0 ∩ Fin)) → Σ𝑛𝑥 (2↑𝑛) ∈ ℕ0)
17 bitsinv2 16462 . . . . . . . . . 10 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → (bits‘Σ𝑛𝑥 (2↑𝑛)) = 𝑥)
1817eqcomd 2741 . . . . . . . . 9 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → 𝑥 = (bits‘Σ𝑛𝑥 (2↑𝑛)))
1918ad2antll 729 . . . . . . . 8 ((⊤ ∧ (𝑘 ∈ ℕ0𝑥 ∈ (𝒫 ℕ0 ∩ Fin))) → 𝑥 = (bits‘Σ𝑛𝑥 (2↑𝑛)))
20 fveq2 6876 . . . . . . . . 9 (𝑘 = Σ𝑛𝑥 (2↑𝑛) → (bits‘𝑘) = (bits‘Σ𝑛𝑥 (2↑𝑛)))
2120eqeq2d 2746 . . . . . . . 8 (𝑘 = Σ𝑛𝑥 (2↑𝑛) → (𝑥 = (bits‘𝑘) ↔ 𝑥 = (bits‘Σ𝑛𝑥 (2↑𝑛))))
2219, 21syl5ibrcom 247 . . . . . . 7 ((⊤ ∧ (𝑘 ∈ ℕ0𝑥 ∈ (𝒫 ℕ0 ∩ Fin))) → (𝑘 = Σ𝑛𝑥 (2↑𝑛) → 𝑥 = (bits‘𝑘)))
23 bitsinv1 16461 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → Σ𝑛 ∈ (bits‘𝑘)(2↑𝑛) = 𝑘)
2423eqcomd 2741 . . . . . . . . 9 (𝑘 ∈ ℕ0𝑘 = Σ𝑛 ∈ (bits‘𝑘)(2↑𝑛))
2524ad2antrl 728 . . . . . . . 8 ((⊤ ∧ (𝑘 ∈ ℕ0𝑥 ∈ (𝒫 ℕ0 ∩ Fin))) → 𝑘 = Σ𝑛 ∈ (bits‘𝑘)(2↑𝑛))
26 sumeq1 15705 . . . . . . . . 9 (𝑥 = (bits‘𝑘) → Σ𝑛𝑥 (2↑𝑛) = Σ𝑛 ∈ (bits‘𝑘)(2↑𝑛))
2726eqeq2d 2746 . . . . . . . 8 (𝑥 = (bits‘𝑘) → (𝑘 = Σ𝑛𝑥 (2↑𝑛) ↔ 𝑘 = Σ𝑛 ∈ (bits‘𝑘)(2↑𝑛)))
2825, 27syl5ibrcom 247 . . . . . . 7 ((⊤ ∧ (𝑘 ∈ ℕ0𝑥 ∈ (𝒫 ℕ0 ∩ Fin))) → (𝑥 = (bits‘𝑘) → 𝑘 = Σ𝑛𝑥 (2↑𝑛)))
2922, 28impbid 212 . . . . . 6 ((⊤ ∧ (𝑘 ∈ ℕ0𝑥 ∈ (𝒫 ℕ0 ∩ Fin))) → (𝑘 = Σ𝑛𝑥 (2↑𝑛) ↔ 𝑥 = (bits‘𝑘)))
301, 7, 16, 29f1ocnv2d 7660 . . . . 5 (⊤ → ((𝑘 ∈ ℕ0 ↦ (bits‘𝑘)):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin) ∧ (𝑘 ∈ ℕ0 ↦ (bits‘𝑘)) = (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ Σ𝑛𝑥 (2↑𝑛))))
3130simpld 494 . . . 4 (⊤ → (𝑘 ∈ ℕ0 ↦ (bits‘𝑘)):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin))
32 bitsf 16446 . . . . . . . . 9 bits:ℤ⟶𝒫 ℕ0
3332a1i 11 . . . . . . . 8 (⊤ → bits:ℤ⟶𝒫 ℕ0)
3433feqmptd 6947 . . . . . . 7 (⊤ → bits = (𝑘 ∈ ℤ ↦ (bits‘𝑘)))
3534reseq1d 5965 . . . . . 6 (⊤ → (bits ↾ ℕ0) = ((𝑘 ∈ ℤ ↦ (bits‘𝑘)) ↾ ℕ0))
36 nn0ssz 12611 . . . . . . 7 0 ⊆ ℤ
37 resmpt 6024 . . . . . . 7 (ℕ0 ⊆ ℤ → ((𝑘 ∈ ℤ ↦ (bits‘𝑘)) ↾ ℕ0) = (𝑘 ∈ ℕ0 ↦ (bits‘𝑘)))
3836, 37ax-mp 5 . . . . . 6 ((𝑘 ∈ ℤ ↦ (bits‘𝑘)) ↾ ℕ0) = (𝑘 ∈ ℕ0 ↦ (bits‘𝑘))
3935, 38eqtrdi 2786 . . . . 5 (⊤ → (bits ↾ ℕ0) = (𝑘 ∈ ℕ0 ↦ (bits‘𝑘)))
4039f1oeq1d 6813 . . . 4 (⊤ → ((bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin) ↔ (𝑘 ∈ ℕ0 ↦ (bits‘𝑘)):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin)))
4131, 40mpbird 257 . . 3 (⊤ → (bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin))
4239cnveqd 5855 . . . 4 (⊤ → (bits ↾ ℕ0) = (𝑘 ∈ ℕ0 ↦ (bits‘𝑘)))
4330simprd 495 . . . 4 (⊤ → (𝑘 ∈ ℕ0 ↦ (bits‘𝑘)) = (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ Σ𝑛𝑥 (2↑𝑛)))
4442, 43eqtrd 2770 . . 3 (⊤ → (bits ↾ ℕ0) = (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ Σ𝑛𝑥 (2↑𝑛)))
4541, 44jca 511 . 2 (⊤ → ((bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin) ∧ (bits ↾ ℕ0) = (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ Σ𝑛𝑥 (2↑𝑛))))
4645mptru 1547 1 ((bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin) ∧ (bits ↾ ℕ0) = (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ Σ𝑛𝑥 (2↑𝑛)))
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wtru 1541  wcel 2108  cin 3925  wss 3926  𝒫 cpw 4575  cmpt 5201  ccnv 5653  cres 5656  wf 6527  1-1-ontowf1o 6530  cfv 6531  (class class class)co 7405  Fincfn 8959  2c2 12295  0cn0 12501  cz 12588  cexp 14079  Σcsu 15702  bitscbits 16438
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-disj 5087  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-er 8719  df-map 8842  df-pm 8843  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-inf 9455  df-oi 9524  df-dju 9915  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-xnn0 12575  df-z 12589  df-uz 12853  df-rp 13009  df-fz 13525  df-fzo 13672  df-fl 13809  df-mod 13887  df-seq 14020  df-exp 14080  df-hash 14349  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-clim 15504  df-sum 15703  df-dvds 16273  df-bits 16441
This theorem is referenced by:  bitsf1o  16464  bitsinv  16467
  Copyright terms: Public domain W3C validator