MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitsf1ocnv Structured version   Visualization version   GIF version

Theorem bitsf1ocnv 16490
Description: The bits function restricted to nonnegative integers is a bijection from the integers to the finite sets of integers. It is in fact the inverse of the Ackermann bijection ackbijnn 15876. (Contributed by Mario Carneiro, 8-Sep-2016.)
Assertion
Ref Expression
bitsf1ocnv ((bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin) ∧ (bits ↾ ℕ0) = (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ Σ𝑛𝑥 (2↑𝑛)))
Distinct variable group:   𝑥,𝑛

Proof of Theorem bitsf1ocnv
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . . . . . 6 (𝑘 ∈ ℕ0 ↦ (bits‘𝑘)) = (𝑘 ∈ ℕ0 ↦ (bits‘𝑘))
2 bitsss 16472 . . . . . . . . 9 (bits‘𝑘) ⊆ ℕ0
32a1i 11 . . . . . . . 8 (𝑘 ∈ ℕ0 → (bits‘𝑘) ⊆ ℕ0)
4 bitsfi 16483 . . . . . . . 8 (𝑘 ∈ ℕ0 → (bits‘𝑘) ∈ Fin)
5 elfpw 9424 . . . . . . . 8 ((bits‘𝑘) ∈ (𝒫 ℕ0 ∩ Fin) ↔ ((bits‘𝑘) ⊆ ℕ0 ∧ (bits‘𝑘) ∈ Fin))
63, 4, 5sylanbrc 582 . . . . . . 7 (𝑘 ∈ ℕ0 → (bits‘𝑘) ∈ (𝒫 ℕ0 ∩ Fin))
76adantl 481 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ0) → (bits‘𝑘) ∈ (𝒫 ℕ0 ∩ Fin))
8 elinel2 4225 . . . . . . . 8 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → 𝑥 ∈ Fin)
9 2nn0 12570 . . . . . . . . . 10 2 ∈ ℕ0
109a1i 11 . . . . . . . . 9 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑛𝑥) → 2 ∈ ℕ0)
11 elfpw 9424 . . . . . . . . . . 11 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↔ (𝑥 ⊆ ℕ0𝑥 ∈ Fin))
1211simplbi 497 . . . . . . . . . 10 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → 𝑥 ⊆ ℕ0)
1312sselda 4008 . . . . . . . . 9 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑛𝑥) → 𝑛 ∈ ℕ0)
1410, 13nn0expcld 14295 . . . . . . . 8 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑛𝑥) → (2↑𝑛) ∈ ℕ0)
158, 14fsumnn0cl 15784 . . . . . . 7 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → Σ𝑛𝑥 (2↑𝑛) ∈ ℕ0)
1615adantl 481 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (𝒫 ℕ0 ∩ Fin)) → Σ𝑛𝑥 (2↑𝑛) ∈ ℕ0)
17 bitsinv2 16489 . . . . . . . . . 10 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → (bits‘Σ𝑛𝑥 (2↑𝑛)) = 𝑥)
1817eqcomd 2746 . . . . . . . . 9 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → 𝑥 = (bits‘Σ𝑛𝑥 (2↑𝑛)))
1918ad2antll 728 . . . . . . . 8 ((⊤ ∧ (𝑘 ∈ ℕ0𝑥 ∈ (𝒫 ℕ0 ∩ Fin))) → 𝑥 = (bits‘Σ𝑛𝑥 (2↑𝑛)))
20 fveq2 6920 . . . . . . . . 9 (𝑘 = Σ𝑛𝑥 (2↑𝑛) → (bits‘𝑘) = (bits‘Σ𝑛𝑥 (2↑𝑛)))
2120eqeq2d 2751 . . . . . . . 8 (𝑘 = Σ𝑛𝑥 (2↑𝑛) → (𝑥 = (bits‘𝑘) ↔ 𝑥 = (bits‘Σ𝑛𝑥 (2↑𝑛))))
2219, 21syl5ibrcom 247 . . . . . . 7 ((⊤ ∧ (𝑘 ∈ ℕ0𝑥 ∈ (𝒫 ℕ0 ∩ Fin))) → (𝑘 = Σ𝑛𝑥 (2↑𝑛) → 𝑥 = (bits‘𝑘)))
23 bitsinv1 16488 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → Σ𝑛 ∈ (bits‘𝑘)(2↑𝑛) = 𝑘)
2423eqcomd 2746 . . . . . . . . 9 (𝑘 ∈ ℕ0𝑘 = Σ𝑛 ∈ (bits‘𝑘)(2↑𝑛))
2524ad2antrl 727 . . . . . . . 8 ((⊤ ∧ (𝑘 ∈ ℕ0𝑥 ∈ (𝒫 ℕ0 ∩ Fin))) → 𝑘 = Σ𝑛 ∈ (bits‘𝑘)(2↑𝑛))
26 sumeq1 15737 . . . . . . . . 9 (𝑥 = (bits‘𝑘) → Σ𝑛𝑥 (2↑𝑛) = Σ𝑛 ∈ (bits‘𝑘)(2↑𝑛))
2726eqeq2d 2751 . . . . . . . 8 (𝑥 = (bits‘𝑘) → (𝑘 = Σ𝑛𝑥 (2↑𝑛) ↔ 𝑘 = Σ𝑛 ∈ (bits‘𝑘)(2↑𝑛)))
2825, 27syl5ibrcom 247 . . . . . . 7 ((⊤ ∧ (𝑘 ∈ ℕ0𝑥 ∈ (𝒫 ℕ0 ∩ Fin))) → (𝑥 = (bits‘𝑘) → 𝑘 = Σ𝑛𝑥 (2↑𝑛)))
2922, 28impbid 212 . . . . . 6 ((⊤ ∧ (𝑘 ∈ ℕ0𝑥 ∈ (𝒫 ℕ0 ∩ Fin))) → (𝑘 = Σ𝑛𝑥 (2↑𝑛) ↔ 𝑥 = (bits‘𝑘)))
301, 7, 16, 29f1ocnv2d 7703 . . . . 5 (⊤ → ((𝑘 ∈ ℕ0 ↦ (bits‘𝑘)):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin) ∧ (𝑘 ∈ ℕ0 ↦ (bits‘𝑘)) = (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ Σ𝑛𝑥 (2↑𝑛))))
3130simpld 494 . . . 4 (⊤ → (𝑘 ∈ ℕ0 ↦ (bits‘𝑘)):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin))
32 bitsf 16473 . . . . . . . . 9 bits:ℤ⟶𝒫 ℕ0
3332a1i 11 . . . . . . . 8 (⊤ → bits:ℤ⟶𝒫 ℕ0)
3433feqmptd 6990 . . . . . . 7 (⊤ → bits = (𝑘 ∈ ℤ ↦ (bits‘𝑘)))
3534reseq1d 6008 . . . . . 6 (⊤ → (bits ↾ ℕ0) = ((𝑘 ∈ ℤ ↦ (bits‘𝑘)) ↾ ℕ0))
36 nn0ssz 12662 . . . . . . 7 0 ⊆ ℤ
37 resmpt 6066 . . . . . . 7 (ℕ0 ⊆ ℤ → ((𝑘 ∈ ℤ ↦ (bits‘𝑘)) ↾ ℕ0) = (𝑘 ∈ ℕ0 ↦ (bits‘𝑘)))
3836, 37ax-mp 5 . . . . . 6 ((𝑘 ∈ ℤ ↦ (bits‘𝑘)) ↾ ℕ0) = (𝑘 ∈ ℕ0 ↦ (bits‘𝑘))
3935, 38eqtrdi 2796 . . . . 5 (⊤ → (bits ↾ ℕ0) = (𝑘 ∈ ℕ0 ↦ (bits‘𝑘)))
4039f1oeq1d 6857 . . . 4 (⊤ → ((bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin) ↔ (𝑘 ∈ ℕ0 ↦ (bits‘𝑘)):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin)))
4131, 40mpbird 257 . . 3 (⊤ → (bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin))
4239cnveqd 5900 . . . 4 (⊤ → (bits ↾ ℕ0) = (𝑘 ∈ ℕ0 ↦ (bits‘𝑘)))
4330simprd 495 . . . 4 (⊤ → (𝑘 ∈ ℕ0 ↦ (bits‘𝑘)) = (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ Σ𝑛𝑥 (2↑𝑛)))
4442, 43eqtrd 2780 . . 3 (⊤ → (bits ↾ ℕ0) = (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ Σ𝑛𝑥 (2↑𝑛)))
4541, 44jca 511 . 2 (⊤ → ((bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin) ∧ (bits ↾ ℕ0) = (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ Σ𝑛𝑥 (2↑𝑛))))
4645mptru 1544 1 ((bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin) ∧ (bits ↾ ℕ0) = (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ Σ𝑛𝑥 (2↑𝑛)))
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1537  wtru 1538  wcel 2108  cin 3975  wss 3976  𝒫 cpw 4622  cmpt 5249  ccnv 5699  cres 5702  wf 6569  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  Fincfn 9003  2c2 12348  0cn0 12553  cz 12639  cexp 14112  Σcsu 15734  bitscbits 16465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-disj 5134  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735  df-dvds 16303  df-bits 16468
This theorem is referenced by:  bitsf1o  16491  bitsinv  16494
  Copyright terms: Public domain W3C validator