MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpinvcnv Structured version   Visualization version   GIF version

Theorem grpinvcnv 18919
Description: The group inverse is its own inverse function. (Contributed by Mario Carneiro, 14-Aug-2015.)
Hypotheses
Ref Expression
grpinvinv.b 𝐵 = (Base‘𝐺)
grpinvinv.n 𝑁 = (invg𝐺)
Assertion
Ref Expression
grpinvcnv (𝐺 ∈ Grp → 𝑁 = 𝑁)

Proof of Theorem grpinvcnv
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . . 4 (𝑥𝐵 ↦ (𝑁𝑥)) = (𝑥𝐵 ↦ (𝑁𝑥))
2 grpinvinv.b . . . . 5 𝐵 = (Base‘𝐺)
3 grpinvinv.n . . . . 5 𝑁 = (invg𝐺)
42, 3grpinvcl 18900 . . . 4 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → (𝑁𝑥) ∈ 𝐵)
52, 3grpinvcl 18900 . . . 4 ((𝐺 ∈ Grp ∧ 𝑦𝐵) → (𝑁𝑦) ∈ 𝐵)
6 eqid 2731 . . . . . . . . 9 (+g𝐺) = (+g𝐺)
7 eqid 2731 . . . . . . . . 9 (0g𝐺) = (0g𝐺)
82, 6, 7, 3grpinvid1 18904 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑦𝐵𝑥𝐵) → ((𝑁𝑦) = 𝑥 ↔ (𝑦(+g𝐺)𝑥) = (0g𝐺)))
983com23 1126 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑥𝐵𝑦𝐵) → ((𝑁𝑦) = 𝑥 ↔ (𝑦(+g𝐺)𝑥) = (0g𝐺)))
102, 6, 7, 3grpinvid2 18905 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑥𝐵𝑦𝐵) → ((𝑁𝑥) = 𝑦 ↔ (𝑦(+g𝐺)𝑥) = (0g𝐺)))
119, 10bitr4d 282 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑥𝐵𝑦𝐵) → ((𝑁𝑦) = 𝑥 ↔ (𝑁𝑥) = 𝑦))
12113expb 1120 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → ((𝑁𝑦) = 𝑥 ↔ (𝑁𝑥) = 𝑦))
13 eqcom 2738 . . . . 5 (𝑥 = (𝑁𝑦) ↔ (𝑁𝑦) = 𝑥)
14 eqcom 2738 . . . . 5 (𝑦 = (𝑁𝑥) ↔ (𝑁𝑥) = 𝑦)
1512, 13, 143bitr4g 314 . . . 4 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 = (𝑁𝑦) ↔ 𝑦 = (𝑁𝑥)))
161, 4, 5, 15f1ocnv2d 7599 . . 3 (𝐺 ∈ Grp → ((𝑥𝐵 ↦ (𝑁𝑥)):𝐵1-1-onto𝐵(𝑥𝐵 ↦ (𝑁𝑥)) = (𝑦𝐵 ↦ (𝑁𝑦))))
1716simprd 495 . 2 (𝐺 ∈ Grp → (𝑥𝐵 ↦ (𝑁𝑥)) = (𝑦𝐵 ↦ (𝑁𝑦)))
182, 3grpinvf 18899 . . . 4 (𝐺 ∈ Grp → 𝑁:𝐵𝐵)
1918feqmptd 6890 . . 3 (𝐺 ∈ Grp → 𝑁 = (𝑥𝐵 ↦ (𝑁𝑥)))
2019cnveqd 5814 . 2 (𝐺 ∈ Grp → 𝑁 = (𝑥𝐵 ↦ (𝑁𝑥)))
2118feqmptd 6890 . 2 (𝐺 ∈ Grp → 𝑁 = (𝑦𝐵 ↦ (𝑁𝑦)))
2217, 20, 213eqtr4d 2776 1 (𝐺 ∈ Grp → 𝑁 = 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  cmpt 5170  ccnv 5613  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  Basecbs 17120  +gcplusg 17161  0gc0g 17343  Grpcgrp 18846  invgcminusg 18847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-grp 18849  df-minusg 18850
This theorem is referenced by:  grpinvf1o  18922  grpinvhmeo  24001
  Copyright terms: Public domain W3C validator