|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > grpinvcnv | Structured version Visualization version GIF version | ||
| Description: The group inverse is its own inverse function. (Contributed by Mario Carneiro, 14-Aug-2015.) | 
| Ref | Expression | 
|---|---|
| grpinvinv.b | ⊢ 𝐵 = (Base‘𝐺) | 
| grpinvinv.n | ⊢ 𝑁 = (invg‘𝐺) | 
| Ref | Expression | 
|---|---|
| grpinvcnv | ⊢ (𝐺 ∈ Grp → ◡𝑁 = 𝑁) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqid 2737 | . . . 4 ⊢ (𝑥 ∈ 𝐵 ↦ (𝑁‘𝑥)) = (𝑥 ∈ 𝐵 ↦ (𝑁‘𝑥)) | |
| 2 | grpinvinv.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | grpinvinv.n | . . . . 5 ⊢ 𝑁 = (invg‘𝐺) | |
| 4 | 2, 3 | grpinvcl 19005 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → (𝑁‘𝑥) ∈ 𝐵) | 
| 5 | 2, 3 | grpinvcl 19005 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ 𝐵) → (𝑁‘𝑦) ∈ 𝐵) | 
| 6 | eqid 2737 | . . . . . . . . 9 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 7 | eqid 2737 | . . . . . . . . 9 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 8 | 2, 6, 7, 3 | grpinvid1 19009 | . . . . . . . 8 ⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → ((𝑁‘𝑦) = 𝑥 ↔ (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺))) | 
| 9 | 8 | 3com23 1127 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝑁‘𝑦) = 𝑥 ↔ (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺))) | 
| 10 | 2, 6, 7, 3 | grpinvid2 19010 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝑁‘𝑥) = 𝑦 ↔ (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺))) | 
| 11 | 9, 10 | bitr4d 282 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝑁‘𝑦) = 𝑥 ↔ (𝑁‘𝑥) = 𝑦)) | 
| 12 | 11 | 3expb 1121 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑁‘𝑦) = 𝑥 ↔ (𝑁‘𝑥) = 𝑦)) | 
| 13 | eqcom 2744 | . . . . 5 ⊢ (𝑥 = (𝑁‘𝑦) ↔ (𝑁‘𝑦) = 𝑥) | |
| 14 | eqcom 2744 | . . . . 5 ⊢ (𝑦 = (𝑁‘𝑥) ↔ (𝑁‘𝑥) = 𝑦) | |
| 15 | 12, 13, 14 | 3bitr4g 314 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥 = (𝑁‘𝑦) ↔ 𝑦 = (𝑁‘𝑥))) | 
| 16 | 1, 4, 5, 15 | f1ocnv2d 7686 | . . 3 ⊢ (𝐺 ∈ Grp → ((𝑥 ∈ 𝐵 ↦ (𝑁‘𝑥)):𝐵–1-1-onto→𝐵 ∧ ◡(𝑥 ∈ 𝐵 ↦ (𝑁‘𝑥)) = (𝑦 ∈ 𝐵 ↦ (𝑁‘𝑦)))) | 
| 17 | 16 | simprd 495 | . 2 ⊢ (𝐺 ∈ Grp → ◡(𝑥 ∈ 𝐵 ↦ (𝑁‘𝑥)) = (𝑦 ∈ 𝐵 ↦ (𝑁‘𝑦))) | 
| 18 | 2, 3 | grpinvf 19004 | . . . 4 ⊢ (𝐺 ∈ Grp → 𝑁:𝐵⟶𝐵) | 
| 19 | 18 | feqmptd 6977 | . . 3 ⊢ (𝐺 ∈ Grp → 𝑁 = (𝑥 ∈ 𝐵 ↦ (𝑁‘𝑥))) | 
| 20 | 19 | cnveqd 5886 | . 2 ⊢ (𝐺 ∈ Grp → ◡𝑁 = ◡(𝑥 ∈ 𝐵 ↦ (𝑁‘𝑥))) | 
| 21 | 18 | feqmptd 6977 | . 2 ⊢ (𝐺 ∈ Grp → 𝑁 = (𝑦 ∈ 𝐵 ↦ (𝑁‘𝑦))) | 
| 22 | 17, 20, 21 | 3eqtr4d 2787 | 1 ⊢ (𝐺 ∈ Grp → ◡𝑁 = 𝑁) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ↦ cmpt 5225 ◡ccnv 5684 –1-1-onto→wf1o 6560 ‘cfv 6561 (class class class)co 7431 Basecbs 17247 +gcplusg 17297 0gc0g 17484 Grpcgrp 18951 invgcminusg 18952 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-0g 17486 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-grp 18954 df-minusg 18955 | 
| This theorem is referenced by: grpinvf1o 19027 grpinvhmeo 24094 | 
| Copyright terms: Public domain | W3C validator |