MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpinvcnv Structured version   Visualization version   GIF version

Theorem grpinvcnv 18820
Description: The group inverse is its own inverse function. (Contributed by Mario Carneiro, 14-Aug-2015.)
Hypotheses
Ref Expression
grpinvinv.b 𝐵 = (Base‘𝐺)
grpinvinv.n 𝑁 = (invg𝐺)
Assertion
Ref Expression
grpinvcnv (𝐺 ∈ Grp → 𝑁 = 𝑁)

Proof of Theorem grpinvcnv
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . . . 4 (𝑥𝐵 ↦ (𝑁𝑥)) = (𝑥𝐵 ↦ (𝑁𝑥))
2 grpinvinv.b . . . . 5 𝐵 = (Base‘𝐺)
3 grpinvinv.n . . . . 5 𝑁 = (invg𝐺)
42, 3grpinvcl 18803 . . . 4 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → (𝑁𝑥) ∈ 𝐵)
52, 3grpinvcl 18803 . . . 4 ((𝐺 ∈ Grp ∧ 𝑦𝐵) → (𝑁𝑦) ∈ 𝐵)
6 eqid 2733 . . . . . . . . 9 (+g𝐺) = (+g𝐺)
7 eqid 2733 . . . . . . . . 9 (0g𝐺) = (0g𝐺)
82, 6, 7, 3grpinvid1 18807 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑦𝐵𝑥𝐵) → ((𝑁𝑦) = 𝑥 ↔ (𝑦(+g𝐺)𝑥) = (0g𝐺)))
983com23 1127 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑥𝐵𝑦𝐵) → ((𝑁𝑦) = 𝑥 ↔ (𝑦(+g𝐺)𝑥) = (0g𝐺)))
102, 6, 7, 3grpinvid2 18808 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑥𝐵𝑦𝐵) → ((𝑁𝑥) = 𝑦 ↔ (𝑦(+g𝐺)𝑥) = (0g𝐺)))
119, 10bitr4d 282 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑥𝐵𝑦𝐵) → ((𝑁𝑦) = 𝑥 ↔ (𝑁𝑥) = 𝑦))
12113expb 1121 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → ((𝑁𝑦) = 𝑥 ↔ (𝑁𝑥) = 𝑦))
13 eqcom 2740 . . . . 5 (𝑥 = (𝑁𝑦) ↔ (𝑁𝑦) = 𝑥)
14 eqcom 2740 . . . . 5 (𝑦 = (𝑁𝑥) ↔ (𝑁𝑥) = 𝑦)
1512, 13, 143bitr4g 314 . . . 4 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 = (𝑁𝑦) ↔ 𝑦 = (𝑁𝑥)))
161, 4, 5, 15f1ocnv2d 7607 . . 3 (𝐺 ∈ Grp → ((𝑥𝐵 ↦ (𝑁𝑥)):𝐵1-1-onto𝐵(𝑥𝐵 ↦ (𝑁𝑥)) = (𝑦𝐵 ↦ (𝑁𝑦))))
1716simprd 497 . 2 (𝐺 ∈ Grp → (𝑥𝐵 ↦ (𝑁𝑥)) = (𝑦𝐵 ↦ (𝑁𝑦)))
182, 3grpinvf 18802 . . . 4 (𝐺 ∈ Grp → 𝑁:𝐵𝐵)
1918feqmptd 6911 . . 3 (𝐺 ∈ Grp → 𝑁 = (𝑥𝐵 ↦ (𝑁𝑥)))
2019cnveqd 5832 . 2 (𝐺 ∈ Grp → 𝑁 = (𝑥𝐵 ↦ (𝑁𝑥)))
2118feqmptd 6911 . 2 (𝐺 ∈ Grp → 𝑁 = (𝑦𝐵 ↦ (𝑁𝑦)))
2217, 20, 213eqtr4d 2783 1 (𝐺 ∈ Grp → 𝑁 = 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  cmpt 5189  ccnv 5633  1-1-ontowf1o 6496  cfv 6497  (class class class)co 7358  Basecbs 17088  +gcplusg 17138  0gc0g 17326  Grpcgrp 18753  invgcminusg 18754
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-0g 17328  df-mgm 18502  df-sgrp 18551  df-mnd 18562  df-grp 18756  df-minusg 18757
This theorem is referenced by:  grpinvf1o  18822  grpinvhmeo  23453
  Copyright terms: Public domain W3C validator