| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpinvcnv | Structured version Visualization version GIF version | ||
| Description: The group inverse is its own inverse function. (Contributed by Mario Carneiro, 14-Aug-2015.) |
| Ref | Expression |
|---|---|
| grpinvinv.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpinvinv.n | ⊢ 𝑁 = (invg‘𝐺) |
| Ref | Expression |
|---|---|
| grpinvcnv | ⊢ (𝐺 ∈ Grp → ◡𝑁 = 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . 4 ⊢ (𝑥 ∈ 𝐵 ↦ (𝑁‘𝑥)) = (𝑥 ∈ 𝐵 ↦ (𝑁‘𝑥)) | |
| 2 | grpinvinv.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | grpinvinv.n | . . . . 5 ⊢ 𝑁 = (invg‘𝐺) | |
| 4 | 2, 3 | grpinvcl 18866 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → (𝑁‘𝑥) ∈ 𝐵) |
| 5 | 2, 3 | grpinvcl 18866 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ 𝐵) → (𝑁‘𝑦) ∈ 𝐵) |
| 6 | eqid 2729 | . . . . . . . . 9 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 7 | eqid 2729 | . . . . . . . . 9 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 8 | 2, 6, 7, 3 | grpinvid1 18870 | . . . . . . . 8 ⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → ((𝑁‘𝑦) = 𝑥 ↔ (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺))) |
| 9 | 8 | 3com23 1126 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝑁‘𝑦) = 𝑥 ↔ (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺))) |
| 10 | 2, 6, 7, 3 | grpinvid2 18871 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝑁‘𝑥) = 𝑦 ↔ (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺))) |
| 11 | 9, 10 | bitr4d 282 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝑁‘𝑦) = 𝑥 ↔ (𝑁‘𝑥) = 𝑦)) |
| 12 | 11 | 3expb 1120 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑁‘𝑦) = 𝑥 ↔ (𝑁‘𝑥) = 𝑦)) |
| 13 | eqcom 2736 | . . . . 5 ⊢ (𝑥 = (𝑁‘𝑦) ↔ (𝑁‘𝑦) = 𝑥) | |
| 14 | eqcom 2736 | . . . . 5 ⊢ (𝑦 = (𝑁‘𝑥) ↔ (𝑁‘𝑥) = 𝑦) | |
| 15 | 12, 13, 14 | 3bitr4g 314 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥 = (𝑁‘𝑦) ↔ 𝑦 = (𝑁‘𝑥))) |
| 16 | 1, 4, 5, 15 | f1ocnv2d 7602 | . . 3 ⊢ (𝐺 ∈ Grp → ((𝑥 ∈ 𝐵 ↦ (𝑁‘𝑥)):𝐵–1-1-onto→𝐵 ∧ ◡(𝑥 ∈ 𝐵 ↦ (𝑁‘𝑥)) = (𝑦 ∈ 𝐵 ↦ (𝑁‘𝑦)))) |
| 17 | 16 | simprd 495 | . 2 ⊢ (𝐺 ∈ Grp → ◡(𝑥 ∈ 𝐵 ↦ (𝑁‘𝑥)) = (𝑦 ∈ 𝐵 ↦ (𝑁‘𝑦))) |
| 18 | 2, 3 | grpinvf 18865 | . . . 4 ⊢ (𝐺 ∈ Grp → 𝑁:𝐵⟶𝐵) |
| 19 | 18 | feqmptd 6891 | . . 3 ⊢ (𝐺 ∈ Grp → 𝑁 = (𝑥 ∈ 𝐵 ↦ (𝑁‘𝑥))) |
| 20 | 19 | cnveqd 5818 | . 2 ⊢ (𝐺 ∈ Grp → ◡𝑁 = ◡(𝑥 ∈ 𝐵 ↦ (𝑁‘𝑥))) |
| 21 | 18 | feqmptd 6891 | . 2 ⊢ (𝐺 ∈ Grp → 𝑁 = (𝑦 ∈ 𝐵 ↦ (𝑁‘𝑦))) |
| 22 | 17, 20, 21 | 3eqtr4d 2774 | 1 ⊢ (𝐺 ∈ Grp → ◡𝑁 = 𝑁) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ↦ cmpt 5173 ◡ccnv 5618 –1-1-onto→wf1o 6481 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 +gcplusg 17161 0gc0g 17343 Grpcgrp 18812 invgcminusg 18813 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-0g 17345 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-grp 18815 df-minusg 18816 |
| This theorem is referenced by: grpinvf1o 18888 grpinvhmeo 23971 |
| Copyright terms: Public domain | W3C validator |