MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icopnfcnv Structured version   Visualization version   GIF version

Theorem icopnfcnv 23648
Description: Define a bijection from [0, 1) to [0, +∞). (Contributed by Mario Carneiro, 9-Sep-2015.)
Hypothesis
Ref Expression
icopnfhmeo.f 𝐹 = (𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))
Assertion
Ref Expression
icopnfcnv (𝐹:(0[,)1)–1-1-onto→(0[,)+∞) ∧ 𝐹 = (𝑦 ∈ (0[,)+∞) ↦ (𝑦 / (1 + 𝑦))))
Distinct variable groups:   𝑥,𝑦   𝑦,𝐹
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem icopnfcnv
StepHypRef Expression
1 icopnfhmeo.f . . 3 𝐹 = (𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))
2 0re 10686 . . . . . . . 8 0 ∈ ℝ
3 1xr 10743 . . . . . . . 8 1 ∈ ℝ*
4 elico2 12848 . . . . . . . 8 ((0 ∈ ℝ ∧ 1 ∈ ℝ*) → (𝑥 ∈ (0[,)1) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 < 1)))
52, 3, 4mp2an 691 . . . . . . 7 (𝑥 ∈ (0[,)1) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 < 1))
65simp1bi 1142 . . . . . 6 (𝑥 ∈ (0[,)1) → 𝑥 ∈ ℝ)
75simp3bi 1144 . . . . . . 7 (𝑥 ∈ (0[,)1) → 𝑥 < 1)
8 1re 10684 . . . . . . . 8 1 ∈ ℝ
9 difrp 12473 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 1 ∈ ℝ) → (𝑥 < 1 ↔ (1 − 𝑥) ∈ ℝ+))
106, 8, 9sylancl 589 . . . . . . 7 (𝑥 ∈ (0[,)1) → (𝑥 < 1 ↔ (1 − 𝑥) ∈ ℝ+))
117, 10mpbid 235 . . . . . 6 (𝑥 ∈ (0[,)1) → (1 − 𝑥) ∈ ℝ+)
126, 11rerpdivcld 12508 . . . . 5 (𝑥 ∈ (0[,)1) → (𝑥 / (1 − 𝑥)) ∈ ℝ)
135simp2bi 1143 . . . . . 6 (𝑥 ∈ (0[,)1) → 0 ≤ 𝑥)
146, 11, 13divge0d 12517 . . . . 5 (𝑥 ∈ (0[,)1) → 0 ≤ (𝑥 / (1 − 𝑥)))
15 elrege0 12891 . . . . 5 ((𝑥 / (1 − 𝑥)) ∈ (0[,)+∞) ↔ ((𝑥 / (1 − 𝑥)) ∈ ℝ ∧ 0 ≤ (𝑥 / (1 − 𝑥))))
1612, 14, 15sylanbrc 586 . . . 4 (𝑥 ∈ (0[,)1) → (𝑥 / (1 − 𝑥)) ∈ (0[,)+∞))
1716adantl 485 . . 3 ((⊤ ∧ 𝑥 ∈ (0[,)1)) → (𝑥 / (1 − 𝑥)) ∈ (0[,)+∞))
18 elrege0 12891 . . . . . . 7 (𝑦 ∈ (0[,)+∞) ↔ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦))
1918simplbi 501 . . . . . 6 (𝑦 ∈ (0[,)+∞) → 𝑦 ∈ ℝ)
20 readdcl 10663 . . . . . . . 8 ((1 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (1 + 𝑦) ∈ ℝ)
218, 19, 20sylancr 590 . . . . . . 7 (𝑦 ∈ (0[,)+∞) → (1 + 𝑦) ∈ ℝ)
222a1i 11 . . . . . . . 8 (𝑦 ∈ (0[,)+∞) → 0 ∈ ℝ)
2318simprbi 500 . . . . . . . 8 (𝑦 ∈ (0[,)+∞) → 0 ≤ 𝑦)
2419ltp1d 11613 . . . . . . . . 9 (𝑦 ∈ (0[,)+∞) → 𝑦 < (𝑦 + 1))
25 ax-1cn 10638 . . . . . . . . . 10 1 ∈ ℂ
2619recnd 10712 . . . . . . . . . 10 (𝑦 ∈ (0[,)+∞) → 𝑦 ∈ ℂ)
27 addcom 10869 . . . . . . . . . 10 ((1 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (1 + 𝑦) = (𝑦 + 1))
2825, 26, 27sylancr 590 . . . . . . . . 9 (𝑦 ∈ (0[,)+∞) → (1 + 𝑦) = (𝑦 + 1))
2924, 28breqtrrd 5063 . . . . . . . 8 (𝑦 ∈ (0[,)+∞) → 𝑦 < (1 + 𝑦))
3022, 19, 21, 23, 29lelttrd 10841 . . . . . . 7 (𝑦 ∈ (0[,)+∞) → 0 < (1 + 𝑦))
3121, 30elrpd 12474 . . . . . 6 (𝑦 ∈ (0[,)+∞) → (1 + 𝑦) ∈ ℝ+)
3219, 31rerpdivcld 12508 . . . . 5 (𝑦 ∈ (0[,)+∞) → (𝑦 / (1 + 𝑦)) ∈ ℝ)
33 divge0 11552 . . . . . 6 (((𝑦 ∈ ℝ ∧ 0 ≤ 𝑦) ∧ ((1 + 𝑦) ∈ ℝ ∧ 0 < (1 + 𝑦))) → 0 ≤ (𝑦 / (1 + 𝑦)))
3419, 23, 21, 30, 33syl22anc 837 . . . . 5 (𝑦 ∈ (0[,)+∞) → 0 ≤ (𝑦 / (1 + 𝑦)))
3521recnd 10712 . . . . . . . 8 (𝑦 ∈ (0[,)+∞) → (1 + 𝑦) ∈ ℂ)
3635mulid1d 10701 . . . . . . 7 (𝑦 ∈ (0[,)+∞) → ((1 + 𝑦) · 1) = (1 + 𝑦))
3729, 36breqtrrd 5063 . . . . . 6 (𝑦 ∈ (0[,)+∞) → 𝑦 < ((1 + 𝑦) · 1))
388a1i 11 . . . . . . 7 (𝑦 ∈ (0[,)+∞) → 1 ∈ ℝ)
39 ltdivmul 11558 . . . . . . 7 ((𝑦 ∈ ℝ ∧ 1 ∈ ℝ ∧ ((1 + 𝑦) ∈ ℝ ∧ 0 < (1 + 𝑦))) → ((𝑦 / (1 + 𝑦)) < 1 ↔ 𝑦 < ((1 + 𝑦) · 1)))
4019, 38, 21, 30, 39syl112anc 1371 . . . . . 6 (𝑦 ∈ (0[,)+∞) → ((𝑦 / (1 + 𝑦)) < 1 ↔ 𝑦 < ((1 + 𝑦) · 1)))
4137, 40mpbird 260 . . . . 5 (𝑦 ∈ (0[,)+∞) → (𝑦 / (1 + 𝑦)) < 1)
42 elico2 12848 . . . . . 6 ((0 ∈ ℝ ∧ 1 ∈ ℝ*) → ((𝑦 / (1 + 𝑦)) ∈ (0[,)1) ↔ ((𝑦 / (1 + 𝑦)) ∈ ℝ ∧ 0 ≤ (𝑦 / (1 + 𝑦)) ∧ (𝑦 / (1 + 𝑦)) < 1)))
432, 3, 42mp2an 691 . . . . 5 ((𝑦 / (1 + 𝑦)) ∈ (0[,)1) ↔ ((𝑦 / (1 + 𝑦)) ∈ ℝ ∧ 0 ≤ (𝑦 / (1 + 𝑦)) ∧ (𝑦 / (1 + 𝑦)) < 1))
4432, 34, 41, 43syl3anbrc 1340 . . . 4 (𝑦 ∈ (0[,)+∞) → (𝑦 / (1 + 𝑦)) ∈ (0[,)1))
4544adantl 485 . . 3 ((⊤ ∧ 𝑦 ∈ (0[,)+∞)) → (𝑦 / (1 + 𝑦)) ∈ (0[,)1))
4626adantl 485 . . . . . . . . 9 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → 𝑦 ∈ ℂ)
476adantr 484 . . . . . . . . . . 11 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → 𝑥 ∈ ℝ)
4847recnd 10712 . . . . . . . . . 10 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → 𝑥 ∈ ℂ)
4948, 46mulcld 10704 . . . . . . . . 9 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 · 𝑦) ∈ ℂ)
5046, 49, 48subadd2d 11059 . . . . . . . 8 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → ((𝑦 − (𝑥 · 𝑦)) = 𝑥 ↔ (𝑥 + (𝑥 · 𝑦)) = 𝑦))
51 1cnd 10679 . . . . . . . . . . 11 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → 1 ∈ ℂ)
5251, 48, 46subdird 11140 . . . . . . . . . 10 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → ((1 − 𝑥) · 𝑦) = ((1 · 𝑦) − (𝑥 · 𝑦)))
5346mulid2d 10702 . . . . . . . . . . 11 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → (1 · 𝑦) = 𝑦)
5453oveq1d 7170 . . . . . . . . . 10 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → ((1 · 𝑦) − (𝑥 · 𝑦)) = (𝑦 − (𝑥 · 𝑦)))
5552, 54eqtrd 2793 . . . . . . . . 9 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → ((1 − 𝑥) · 𝑦) = (𝑦 − (𝑥 · 𝑦)))
5655eqeq1d 2760 . . . . . . . 8 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → (((1 − 𝑥) · 𝑦) = 𝑥 ↔ (𝑦 − (𝑥 · 𝑦)) = 𝑥))
5748, 51, 46adddid 10708 . . . . . . . . . 10 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 · (1 + 𝑦)) = ((𝑥 · 1) + (𝑥 · 𝑦)))
5848mulid1d 10701 . . . . . . . . . . 11 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 · 1) = 𝑥)
5958oveq1d 7170 . . . . . . . . . 10 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → ((𝑥 · 1) + (𝑥 · 𝑦)) = (𝑥 + (𝑥 · 𝑦)))
6057, 59eqtrd 2793 . . . . . . . . 9 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 · (1 + 𝑦)) = (𝑥 + (𝑥 · 𝑦)))
6160eqeq1d 2760 . . . . . . . 8 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → ((𝑥 · (1 + 𝑦)) = 𝑦 ↔ (𝑥 + (𝑥 · 𝑦)) = 𝑦))
6250, 56, 613bitr4rd 315 . . . . . . 7 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → ((𝑥 · (1 + 𝑦)) = 𝑦 ↔ ((1 − 𝑥) · 𝑦) = 𝑥))
63 eqcom 2765 . . . . . . 7 (𝑦 = (𝑥 · (1 + 𝑦)) ↔ (𝑥 · (1 + 𝑦)) = 𝑦)
64 eqcom 2765 . . . . . . 7 (𝑥 = ((1 − 𝑥) · 𝑦) ↔ ((1 − 𝑥) · 𝑦) = 𝑥)
6562, 63, 643bitr4g 317 . . . . . 6 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑦 = (𝑥 · (1 + 𝑦)) ↔ 𝑥 = ((1 − 𝑥) · 𝑦)))
6635adantl 485 . . . . . . 7 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → (1 + 𝑦) ∈ ℂ)
6731adantl 485 . . . . . . . 8 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → (1 + 𝑦) ∈ ℝ+)
6867rpne0d 12482 . . . . . . 7 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → (1 + 𝑦) ≠ 0)
6946, 48, 66, 68divmul3d 11493 . . . . . 6 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → ((𝑦 / (1 + 𝑦)) = 𝑥𝑦 = (𝑥 · (1 + 𝑦))))
7011adantr 484 . . . . . . . 8 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → (1 − 𝑥) ∈ ℝ+)
7170rpcnd 12479 . . . . . . 7 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → (1 − 𝑥) ∈ ℂ)
7270rpne0d 12482 . . . . . . 7 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → (1 − 𝑥) ≠ 0)
7348, 46, 71, 72divmul2d 11492 . . . . . 6 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → ((𝑥 / (1 − 𝑥)) = 𝑦𝑥 = ((1 − 𝑥) · 𝑦)))
7465, 69, 733bitr4d 314 . . . . 5 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → ((𝑦 / (1 + 𝑦)) = 𝑥 ↔ (𝑥 / (1 − 𝑥)) = 𝑦))
75 eqcom 2765 . . . . 5 (𝑥 = (𝑦 / (1 + 𝑦)) ↔ (𝑦 / (1 + 𝑦)) = 𝑥)
76 eqcom 2765 . . . . 5 (𝑦 = (𝑥 / (1 − 𝑥)) ↔ (𝑥 / (1 − 𝑥)) = 𝑦)
7774, 75, 763bitr4g 317 . . . 4 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 = (𝑦 / (1 + 𝑦)) ↔ 𝑦 = (𝑥 / (1 − 𝑥))))
7877adantl 485 . . 3 ((⊤ ∧ (𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞))) → (𝑥 = (𝑦 / (1 + 𝑦)) ↔ 𝑦 = (𝑥 / (1 − 𝑥))))
791, 17, 45, 78f1ocnv2d 7399 . 2 (⊤ → (𝐹:(0[,)1)–1-1-onto→(0[,)+∞) ∧ 𝐹 = (𝑦 ∈ (0[,)+∞) ↦ (𝑦 / (1 + 𝑦)))))
8079mptru 1545 1 (𝐹:(0[,)1)–1-1-onto→(0[,)+∞) ∧ 𝐹 = (𝑦 ∈ (0[,)+∞) ↦ (𝑦 / (1 + 𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399  w3a 1084   = wceq 1538  wtru 1539  wcel 2111   class class class wbr 5035  cmpt 5115  ccnv 5526  1-1-ontowf1o 6338  (class class class)co 7155  cc 10578  cr 10579  0cc0 10580  1c1 10581   + caddc 10583   · cmul 10585  +∞cpnf 10715  *cxr 10717   < clt 10718  cle 10719  cmin 10913   / cdiv 11340  +crp 12435  [,)cico 12786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5172  ax-nul 5179  ax-pow 5237  ax-pr 5301  ax-un 7464  ax-cnex 10636  ax-resscn 10637  ax-1cn 10638  ax-icn 10639  ax-addcl 10640  ax-addrcl 10641  ax-mulcl 10642  ax-mulrcl 10643  ax-mulcom 10644  ax-addass 10645  ax-mulass 10646  ax-distr 10647  ax-i2m1 10648  ax-1ne0 10649  ax-1rid 10650  ax-rnegex 10651  ax-rrecex 10652  ax-cnre 10653  ax-pre-lttri 10654  ax-pre-lttrn 10655  ax-pre-ltadd 10656  ax-pre-mulgt0 10657
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-br 5036  df-opab 5098  df-mpt 5116  df-id 5433  df-po 5446  df-so 5447  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-er 8304  df-en 8533  df-dom 8534  df-sdom 8535  df-pnf 10720  df-mnf 10721  df-xr 10722  df-ltxr 10723  df-le 10724  df-sub 10915  df-neg 10916  df-div 11341  df-rp 12436  df-ico 12790
This theorem is referenced by:  icopnfhmeo  23649  iccpnfcnv  23650
  Copyright terms: Public domain W3C validator