Proof of Theorem icopnfcnv
Step | Hyp | Ref
| Expression |
1 | | icopnfhmeo.f |
. . 3
⊢ 𝐹 = (𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥))) |
2 | | 0re 10908 |
. . . . . . . 8
⊢ 0 ∈
ℝ |
3 | | 1xr 10965 |
. . . . . . . 8
⊢ 1 ∈
ℝ* |
4 | | elico2 13072 |
. . . . . . . 8
⊢ ((0
∈ ℝ ∧ 1 ∈ ℝ*) → (𝑥 ∈ (0[,)1) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ∧ 𝑥 < 1))) |
5 | 2, 3, 4 | mp2an 688 |
. . . . . . 7
⊢ (𝑥 ∈ (0[,)1) ↔ (𝑥 ∈ ℝ ∧ 0 ≤
𝑥 ∧ 𝑥 < 1)) |
6 | 5 | simp1bi 1143 |
. . . . . 6
⊢ (𝑥 ∈ (0[,)1) → 𝑥 ∈
ℝ) |
7 | 5 | simp3bi 1145 |
. . . . . . 7
⊢ (𝑥 ∈ (0[,)1) → 𝑥 < 1) |
8 | | 1re 10906 |
. . . . . . . 8
⊢ 1 ∈
ℝ |
9 | | difrp 12697 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℝ ∧ 1 ∈
ℝ) → (𝑥 < 1
↔ (1 − 𝑥) ∈
ℝ+)) |
10 | 6, 8, 9 | sylancl 585 |
. . . . . . 7
⊢ (𝑥 ∈ (0[,)1) → (𝑥 < 1 ↔ (1 − 𝑥) ∈
ℝ+)) |
11 | 7, 10 | mpbid 231 |
. . . . . 6
⊢ (𝑥 ∈ (0[,)1) → (1
− 𝑥) ∈
ℝ+) |
12 | 6, 11 | rerpdivcld 12732 |
. . . . 5
⊢ (𝑥 ∈ (0[,)1) → (𝑥 / (1 − 𝑥)) ∈ ℝ) |
13 | 5 | simp2bi 1144 |
. . . . . 6
⊢ (𝑥 ∈ (0[,)1) → 0 ≤
𝑥) |
14 | 6, 11, 13 | divge0d 12741 |
. . . . 5
⊢ (𝑥 ∈ (0[,)1) → 0 ≤
(𝑥 / (1 − 𝑥))) |
15 | | elrege0 13115 |
. . . . 5
⊢ ((𝑥 / (1 − 𝑥)) ∈ (0[,)+∞) ↔ ((𝑥 / (1 − 𝑥)) ∈ ℝ ∧ 0 ≤ (𝑥 / (1 − 𝑥)))) |
16 | 12, 14, 15 | sylanbrc 582 |
. . . 4
⊢ (𝑥 ∈ (0[,)1) → (𝑥 / (1 − 𝑥)) ∈ (0[,)+∞)) |
17 | 16 | adantl 481 |
. . 3
⊢
((⊤ ∧ 𝑥
∈ (0[,)1)) → (𝑥 /
(1 − 𝑥)) ∈
(0[,)+∞)) |
18 | | elrege0 13115 |
. . . . . . 7
⊢ (𝑦 ∈ (0[,)+∞) ↔
(𝑦 ∈ ℝ ∧ 0
≤ 𝑦)) |
19 | 18 | simplbi 497 |
. . . . . 6
⊢ (𝑦 ∈ (0[,)+∞) →
𝑦 ∈
ℝ) |
20 | | readdcl 10885 |
. . . . . . . 8
⊢ ((1
∈ ℝ ∧ 𝑦
∈ ℝ) → (1 + 𝑦) ∈ ℝ) |
21 | 8, 19, 20 | sylancr 586 |
. . . . . . 7
⊢ (𝑦 ∈ (0[,)+∞) → (1
+ 𝑦) ∈
ℝ) |
22 | 2 | a1i 11 |
. . . . . . . 8
⊢ (𝑦 ∈ (0[,)+∞) → 0
∈ ℝ) |
23 | 18 | simprbi 496 |
. . . . . . . 8
⊢ (𝑦 ∈ (0[,)+∞) → 0
≤ 𝑦) |
24 | 19 | ltp1d 11835 |
. . . . . . . . 9
⊢ (𝑦 ∈ (0[,)+∞) →
𝑦 < (𝑦 + 1)) |
25 | | ax-1cn 10860 |
. . . . . . . . . 10
⊢ 1 ∈
ℂ |
26 | 19 | recnd 10934 |
. . . . . . . . . 10
⊢ (𝑦 ∈ (0[,)+∞) →
𝑦 ∈
ℂ) |
27 | | addcom 11091 |
. . . . . . . . . 10
⊢ ((1
∈ ℂ ∧ 𝑦
∈ ℂ) → (1 + 𝑦) = (𝑦 + 1)) |
28 | 25, 26, 27 | sylancr 586 |
. . . . . . . . 9
⊢ (𝑦 ∈ (0[,)+∞) → (1
+ 𝑦) = (𝑦 + 1)) |
29 | 24, 28 | breqtrrd 5098 |
. . . . . . . 8
⊢ (𝑦 ∈ (0[,)+∞) →
𝑦 < (1 + 𝑦)) |
30 | 22, 19, 21, 23, 29 | lelttrd 11063 |
. . . . . . 7
⊢ (𝑦 ∈ (0[,)+∞) → 0
< (1 + 𝑦)) |
31 | 21, 30 | elrpd 12698 |
. . . . . 6
⊢ (𝑦 ∈ (0[,)+∞) → (1
+ 𝑦) ∈
ℝ+) |
32 | 19, 31 | rerpdivcld 12732 |
. . . . 5
⊢ (𝑦 ∈ (0[,)+∞) →
(𝑦 / (1 + 𝑦)) ∈
ℝ) |
33 | | divge0 11774 |
. . . . . 6
⊢ (((𝑦 ∈ ℝ ∧ 0 ≤
𝑦) ∧ ((1 + 𝑦) ∈ ℝ ∧ 0 < (1
+ 𝑦))) → 0 ≤ (𝑦 / (1 + 𝑦))) |
34 | 19, 23, 21, 30, 33 | syl22anc 835 |
. . . . 5
⊢ (𝑦 ∈ (0[,)+∞) → 0
≤ (𝑦 / (1 + 𝑦))) |
35 | 21 | recnd 10934 |
. . . . . . . 8
⊢ (𝑦 ∈ (0[,)+∞) → (1
+ 𝑦) ∈
ℂ) |
36 | 35 | mulid1d 10923 |
. . . . . . 7
⊢ (𝑦 ∈ (0[,)+∞) →
((1 + 𝑦) · 1) = (1 +
𝑦)) |
37 | 29, 36 | breqtrrd 5098 |
. . . . . 6
⊢ (𝑦 ∈ (0[,)+∞) →
𝑦 < ((1 + 𝑦) · 1)) |
38 | 8 | a1i 11 |
. . . . . . 7
⊢ (𝑦 ∈ (0[,)+∞) → 1
∈ ℝ) |
39 | | ltdivmul 11780 |
. . . . . . 7
⊢ ((𝑦 ∈ ℝ ∧ 1 ∈
ℝ ∧ ((1 + 𝑦)
∈ ℝ ∧ 0 < (1 + 𝑦))) → ((𝑦 / (1 + 𝑦)) < 1 ↔ 𝑦 < ((1 + 𝑦) · 1))) |
40 | 19, 38, 21, 30, 39 | syl112anc 1372 |
. . . . . 6
⊢ (𝑦 ∈ (0[,)+∞) →
((𝑦 / (1 + 𝑦)) < 1 ↔ 𝑦 < ((1 + 𝑦) · 1))) |
41 | 37, 40 | mpbird 256 |
. . . . 5
⊢ (𝑦 ∈ (0[,)+∞) →
(𝑦 / (1 + 𝑦)) < 1) |
42 | | elico2 13072 |
. . . . . 6
⊢ ((0
∈ ℝ ∧ 1 ∈ ℝ*) → ((𝑦 / (1 + 𝑦)) ∈ (0[,)1) ↔ ((𝑦 / (1 + 𝑦)) ∈ ℝ ∧ 0 ≤ (𝑦 / (1 + 𝑦)) ∧ (𝑦 / (1 + 𝑦)) < 1))) |
43 | 2, 3, 42 | mp2an 688 |
. . . . 5
⊢ ((𝑦 / (1 + 𝑦)) ∈ (0[,)1) ↔ ((𝑦 / (1 + 𝑦)) ∈ ℝ ∧ 0 ≤ (𝑦 / (1 + 𝑦)) ∧ (𝑦 / (1 + 𝑦)) < 1)) |
44 | 32, 34, 41, 43 | syl3anbrc 1341 |
. . . 4
⊢ (𝑦 ∈ (0[,)+∞) →
(𝑦 / (1 + 𝑦)) ∈
(0[,)1)) |
45 | 44 | adantl 481 |
. . 3
⊢
((⊤ ∧ 𝑦
∈ (0[,)+∞)) → (𝑦 / (1 + 𝑦)) ∈ (0[,)1)) |
46 | 26 | adantl 481 |
. . . . . . . . 9
⊢ ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) →
𝑦 ∈
ℂ) |
47 | 6 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) →
𝑥 ∈
ℝ) |
48 | 47 | recnd 10934 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) →
𝑥 ∈
ℂ) |
49 | 48, 46 | mulcld 10926 |
. . . . . . . . 9
⊢ ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) →
(𝑥 · 𝑦) ∈
ℂ) |
50 | 46, 49, 48 | subadd2d 11281 |
. . . . . . . 8
⊢ ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) →
((𝑦 − (𝑥 · 𝑦)) = 𝑥 ↔ (𝑥 + (𝑥 · 𝑦)) = 𝑦)) |
51 | | 1cnd 10901 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → 1
∈ ℂ) |
52 | 51, 48, 46 | subdird 11362 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) →
((1 − 𝑥) ·
𝑦) = ((1 · 𝑦) − (𝑥 · 𝑦))) |
53 | 46 | mulid2d 10924 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) →
(1 · 𝑦) = 𝑦) |
54 | 53 | oveq1d 7270 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) →
((1 · 𝑦) −
(𝑥 · 𝑦)) = (𝑦 − (𝑥 · 𝑦))) |
55 | 52, 54 | eqtrd 2778 |
. . . . . . . . 9
⊢ ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) →
((1 − 𝑥) ·
𝑦) = (𝑦 − (𝑥 · 𝑦))) |
56 | 55 | eqeq1d 2740 |
. . . . . . . 8
⊢ ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) →
(((1 − 𝑥) ·
𝑦) = 𝑥 ↔ (𝑦 − (𝑥 · 𝑦)) = 𝑥)) |
57 | 48, 51, 46 | adddid 10930 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) →
(𝑥 · (1 + 𝑦)) = ((𝑥 · 1) + (𝑥 · 𝑦))) |
58 | 48 | mulid1d 10923 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) →
(𝑥 · 1) = 𝑥) |
59 | 58 | oveq1d 7270 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) →
((𝑥 · 1) + (𝑥 · 𝑦)) = (𝑥 + (𝑥 · 𝑦))) |
60 | 57, 59 | eqtrd 2778 |
. . . . . . . . 9
⊢ ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) →
(𝑥 · (1 + 𝑦)) = (𝑥 + (𝑥 · 𝑦))) |
61 | 60 | eqeq1d 2740 |
. . . . . . . 8
⊢ ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) →
((𝑥 · (1 + 𝑦)) = 𝑦 ↔ (𝑥 + (𝑥 · 𝑦)) = 𝑦)) |
62 | 50, 56, 61 | 3bitr4rd 311 |
. . . . . . 7
⊢ ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) →
((𝑥 · (1 + 𝑦)) = 𝑦 ↔ ((1 − 𝑥) · 𝑦) = 𝑥)) |
63 | | eqcom 2745 |
. . . . . . 7
⊢ (𝑦 = (𝑥 · (1 + 𝑦)) ↔ (𝑥 · (1 + 𝑦)) = 𝑦) |
64 | | eqcom 2745 |
. . . . . . 7
⊢ (𝑥 = ((1 − 𝑥) · 𝑦) ↔ ((1 − 𝑥) · 𝑦) = 𝑥) |
65 | 62, 63, 64 | 3bitr4g 313 |
. . . . . 6
⊢ ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) →
(𝑦 = (𝑥 · (1 + 𝑦)) ↔ 𝑥 = ((1 − 𝑥) · 𝑦))) |
66 | 35 | adantl 481 |
. . . . . . 7
⊢ ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) →
(1 + 𝑦) ∈
ℂ) |
67 | 31 | adantl 481 |
. . . . . . . 8
⊢ ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) →
(1 + 𝑦) ∈
ℝ+) |
68 | 67 | rpne0d 12706 |
. . . . . . 7
⊢ ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) →
(1 + 𝑦) ≠
0) |
69 | 46, 48, 66, 68 | divmul3d 11715 |
. . . . . 6
⊢ ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) →
((𝑦 / (1 + 𝑦)) = 𝑥 ↔ 𝑦 = (𝑥 · (1 + 𝑦)))) |
70 | 11 | adantr 480 |
. . . . . . . 8
⊢ ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) →
(1 − 𝑥) ∈
ℝ+) |
71 | 70 | rpcnd 12703 |
. . . . . . 7
⊢ ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) →
(1 − 𝑥) ∈
ℂ) |
72 | 70 | rpne0d 12706 |
. . . . . . 7
⊢ ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) →
(1 − 𝑥) ≠
0) |
73 | 48, 46, 71, 72 | divmul2d 11714 |
. . . . . 6
⊢ ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) →
((𝑥 / (1 − 𝑥)) = 𝑦 ↔ 𝑥 = ((1 − 𝑥) · 𝑦))) |
74 | 65, 69, 73 | 3bitr4d 310 |
. . . . 5
⊢ ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) →
((𝑦 / (1 + 𝑦)) = 𝑥 ↔ (𝑥 / (1 − 𝑥)) = 𝑦)) |
75 | | eqcom 2745 |
. . . . 5
⊢ (𝑥 = (𝑦 / (1 + 𝑦)) ↔ (𝑦 / (1 + 𝑦)) = 𝑥) |
76 | | eqcom 2745 |
. . . . 5
⊢ (𝑦 = (𝑥 / (1 − 𝑥)) ↔ (𝑥 / (1 − 𝑥)) = 𝑦) |
77 | 74, 75, 76 | 3bitr4g 313 |
. . . 4
⊢ ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) →
(𝑥 = (𝑦 / (1 + 𝑦)) ↔ 𝑦 = (𝑥 / (1 − 𝑥)))) |
78 | 77 | adantl 481 |
. . 3
⊢
((⊤ ∧ (𝑥
∈ (0[,)1) ∧ 𝑦
∈ (0[,)+∞))) → (𝑥 = (𝑦 / (1 + 𝑦)) ↔ 𝑦 = (𝑥 / (1 − 𝑥)))) |
79 | 1, 17, 45, 78 | f1ocnv2d 7500 |
. 2
⊢ (⊤
→ (𝐹:(0[,)1)–1-1-onto→(0[,)+∞) ∧ ◡𝐹 = (𝑦 ∈ (0[,)+∞) ↦ (𝑦 / (1 + 𝑦))))) |
80 | 79 | mptru 1546 |
1
⊢ (𝐹:(0[,)1)–1-1-onto→(0[,)+∞) ∧ ◡𝐹 = (𝑦 ∈ (0[,)+∞) ↦ (𝑦 / (1 + 𝑦)))) |