![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ply1divalg3 | Structured version Visualization version GIF version |
Description: Uniqueness of polynomial remainder: convert the subtraction in ply1divalg2 26163 to addition. (Contributed by SN, 20-Jun-2025.) |
Ref | Expression |
---|---|
ply1divalg3.p | ⊢ 𝑃 = (Poly1‘𝑅) |
ply1divalg3.d | ⊢ 𝐷 = (deg1‘𝑅) |
ply1divalg3.b | ⊢ 𝐵 = (Base‘𝑃) |
ply1divalg3.m | ⊢ + = (+g‘𝑃) |
ply1divalg3.t | ⊢ ∙ = (.r‘𝑃) |
ply1divalg3.c | ⊢ 𝐶 = (Unic1p‘𝑅) |
ply1divalg3.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
ply1divalg3.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
ply1divalg3.g | ⊢ (𝜑 → 𝐺 ∈ 𝐶) |
Ref | Expression |
---|---|
ply1divalg3 | ⊢ (𝜑 → ∃!𝑞 ∈ 𝐵 (𝐷‘(𝐹 + (𝑞 ∙ 𝐺))) < (𝐷‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ply1divalg3.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
2 | ply1divalg3.d | . . . 4 ⊢ 𝐷 = (deg1‘𝑅) | |
3 | ply1divalg3.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
4 | eqid 2726 | . . . 4 ⊢ (-g‘𝑃) = (-g‘𝑃) | |
5 | eqid 2726 | . . . 4 ⊢ (0g‘𝑃) = (0g‘𝑃) | |
6 | ply1divalg3.t | . . . 4 ⊢ ∙ = (.r‘𝑃) | |
7 | ply1divalg3.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
8 | ply1divalg3.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
9 | ply1divalg3.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ 𝐶) | |
10 | ply1divalg3.c | . . . . . 6 ⊢ 𝐶 = (Unic1p‘𝑅) | |
11 | 1, 3, 10 | uc1pcl 26168 | . . . . 5 ⊢ (𝐺 ∈ 𝐶 → 𝐺 ∈ 𝐵) |
12 | 9, 11 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝐵) |
13 | 1, 5, 10 | uc1pn0 26170 | . . . . 5 ⊢ (𝐺 ∈ 𝐶 → 𝐺 ≠ (0g‘𝑃)) |
14 | 9, 13 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐺 ≠ (0g‘𝑃)) |
15 | eqid 2726 | . . . . . 6 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
16 | 2, 15, 10 | uc1pldg 26173 | . . . . 5 ⊢ (𝐺 ∈ 𝐶 → ((coe1‘𝐺)‘(𝐷‘𝐺)) ∈ (Unit‘𝑅)) |
17 | 9, 16 | syl 17 | . . . 4 ⊢ (𝜑 → ((coe1‘𝐺)‘(𝐷‘𝐺)) ∈ (Unit‘𝑅)) |
18 | 1, 2, 3, 4, 5, 6, 7, 8, 12, 14, 17, 15 | ply1divalg2 26163 | . . 3 ⊢ (𝜑 → ∃!𝑝 ∈ 𝐵 (𝐷‘(𝐹(-g‘𝑃)(𝑝 ∙ 𝐺))) < (𝐷‘𝐺)) |
19 | eqid 2726 | . . . . 5 ⊢ (invg‘𝑃) = (invg‘𝑃) | |
20 | 1 | ply1ring 22233 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
21 | 7, 20 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑃 ∈ Ring) |
22 | 21 | ringgrpd 20221 | . . . . . 6 ⊢ (𝜑 → 𝑃 ∈ Grp) |
23 | 22 | adantr 479 | . . . . 5 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐵) → 𝑃 ∈ Grp) |
24 | simpr 483 | . . . . 5 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐵) → 𝑞 ∈ 𝐵) | |
25 | 3, 19, 23, 24 | grpinvcld 18978 | . . . 4 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐵) → ((invg‘𝑃)‘𝑞) ∈ 𝐵) |
26 | 3, 19, 22 | grpinvf1o 18999 | . . . . . 6 ⊢ (𝜑 → (invg‘𝑃):𝐵–1-1-onto→𝐵) |
27 | f1ofveu 7410 | . . . . . 6 ⊢ (((invg‘𝑃):𝐵–1-1-onto→𝐵 ∧ 𝑝 ∈ 𝐵) → ∃!𝑞 ∈ 𝐵 ((invg‘𝑃)‘𝑞) = 𝑝) | |
28 | 26, 27 | sylan 578 | . . . . 5 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝐵) → ∃!𝑞 ∈ 𝐵 ((invg‘𝑃)‘𝑞) = 𝑝) |
29 | eqcom 2733 | . . . . . 6 ⊢ (𝑝 = ((invg‘𝑃)‘𝑞) ↔ ((invg‘𝑃)‘𝑞) = 𝑝) | |
30 | 29 | reubii 3373 | . . . . 5 ⊢ (∃!𝑞 ∈ 𝐵 𝑝 = ((invg‘𝑃)‘𝑞) ↔ ∃!𝑞 ∈ 𝐵 ((invg‘𝑃)‘𝑞) = 𝑝) |
31 | 28, 30 | sylibr 233 | . . . 4 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝐵) → ∃!𝑞 ∈ 𝐵 𝑝 = ((invg‘𝑃)‘𝑞)) |
32 | oveq1 7423 | . . . . . . 7 ⊢ (𝑝 = ((invg‘𝑃)‘𝑞) → (𝑝 ∙ 𝐺) = (((invg‘𝑃)‘𝑞) ∙ 𝐺)) | |
33 | 32 | oveq2d 7432 | . . . . . 6 ⊢ (𝑝 = ((invg‘𝑃)‘𝑞) → (𝐹(-g‘𝑃)(𝑝 ∙ 𝐺)) = (𝐹(-g‘𝑃)(((invg‘𝑃)‘𝑞) ∙ 𝐺))) |
34 | 33 | fveq2d 6897 | . . . . 5 ⊢ (𝑝 = ((invg‘𝑃)‘𝑞) → (𝐷‘(𝐹(-g‘𝑃)(𝑝 ∙ 𝐺))) = (𝐷‘(𝐹(-g‘𝑃)(((invg‘𝑃)‘𝑞) ∙ 𝐺)))) |
35 | 34 | breq1d 5155 | . . . 4 ⊢ (𝑝 = ((invg‘𝑃)‘𝑞) → ((𝐷‘(𝐹(-g‘𝑃)(𝑝 ∙ 𝐺))) < (𝐷‘𝐺) ↔ (𝐷‘(𝐹(-g‘𝑃)(((invg‘𝑃)‘𝑞) ∙ 𝐺))) < (𝐷‘𝐺))) |
36 | 25, 31, 35 | reuxfr1ds 3744 | . . 3 ⊢ (𝜑 → (∃!𝑝 ∈ 𝐵 (𝐷‘(𝐹(-g‘𝑃)(𝑝 ∙ 𝐺))) < (𝐷‘𝐺) ↔ ∃!𝑞 ∈ 𝐵 (𝐷‘(𝐹(-g‘𝑃)(((invg‘𝑃)‘𝑞) ∙ 𝐺))) < (𝐷‘𝐺))) |
37 | 18, 36 | mpbid 231 | . 2 ⊢ (𝜑 → ∃!𝑞 ∈ 𝐵 (𝐷‘(𝐹(-g‘𝑃)(((invg‘𝑃)‘𝑞) ∙ 𝐺))) < (𝐷‘𝐺)) |
38 | 21 | adantr 479 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐵) → 𝑃 ∈ Ring) |
39 | 12 | adantr 479 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐵) → 𝐺 ∈ 𝐵) |
40 | 3, 6, 38, 25, 39 | ringcld 20238 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐵) → (((invg‘𝑃)‘𝑞) ∙ 𝐺) ∈ 𝐵) |
41 | ply1divalg3.m | . . . . . . . 8 ⊢ + = (+g‘𝑃) | |
42 | 3, 41, 19, 4 | grpsubval 18975 | . . . . . . 7 ⊢ ((𝐹 ∈ 𝐵 ∧ (((invg‘𝑃)‘𝑞) ∙ 𝐺) ∈ 𝐵) → (𝐹(-g‘𝑃)(((invg‘𝑃)‘𝑞) ∙ 𝐺)) = (𝐹 + ((invg‘𝑃)‘(((invg‘𝑃)‘𝑞) ∙ 𝐺)))) |
43 | 8, 40, 42 | syl2an2r 683 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐵) → (𝐹(-g‘𝑃)(((invg‘𝑃)‘𝑞) ∙ 𝐺)) = (𝐹 + ((invg‘𝑃)‘(((invg‘𝑃)‘𝑞) ∙ 𝐺)))) |
44 | 3, 6, 19, 38, 24, 39 | ringmneg1 20279 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐵) → (((invg‘𝑃)‘𝑞) ∙ 𝐺) = ((invg‘𝑃)‘(𝑞 ∙ 𝐺))) |
45 | 44 | fveq2d 6897 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐵) → ((invg‘𝑃)‘(((invg‘𝑃)‘𝑞) ∙ 𝐺)) = ((invg‘𝑃)‘((invg‘𝑃)‘(𝑞 ∙ 𝐺)))) |
46 | 3, 6, 38, 24, 39 | ringcld 20238 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐵) → (𝑞 ∙ 𝐺) ∈ 𝐵) |
47 | 3, 19 | grpinvinv 18995 | . . . . . . . . 9 ⊢ ((𝑃 ∈ Grp ∧ (𝑞 ∙ 𝐺) ∈ 𝐵) → ((invg‘𝑃)‘((invg‘𝑃)‘(𝑞 ∙ 𝐺))) = (𝑞 ∙ 𝐺)) |
48 | 22, 46, 47 | syl2an2r 683 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐵) → ((invg‘𝑃)‘((invg‘𝑃)‘(𝑞 ∙ 𝐺))) = (𝑞 ∙ 𝐺)) |
49 | 45, 48 | eqtrd 2766 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐵) → ((invg‘𝑃)‘(((invg‘𝑃)‘𝑞) ∙ 𝐺)) = (𝑞 ∙ 𝐺)) |
50 | 49 | oveq2d 7432 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐵) → (𝐹 + ((invg‘𝑃)‘(((invg‘𝑃)‘𝑞) ∙ 𝐺))) = (𝐹 + (𝑞 ∙ 𝐺))) |
51 | 43, 50 | eqtrd 2766 | . . . . 5 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐵) → (𝐹(-g‘𝑃)(((invg‘𝑃)‘𝑞) ∙ 𝐺)) = (𝐹 + (𝑞 ∙ 𝐺))) |
52 | 51 | fveq2d 6897 | . . . 4 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐵) → (𝐷‘(𝐹(-g‘𝑃)(((invg‘𝑃)‘𝑞) ∙ 𝐺))) = (𝐷‘(𝐹 + (𝑞 ∙ 𝐺)))) |
53 | 52 | breq1d 5155 | . . 3 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐵) → ((𝐷‘(𝐹(-g‘𝑃)(((invg‘𝑃)‘𝑞) ∙ 𝐺))) < (𝐷‘𝐺) ↔ (𝐷‘(𝐹 + (𝑞 ∙ 𝐺))) < (𝐷‘𝐺))) |
54 | 53 | reubidva 3380 | . 2 ⊢ (𝜑 → (∃!𝑞 ∈ 𝐵 (𝐷‘(𝐹(-g‘𝑃)(((invg‘𝑃)‘𝑞) ∙ 𝐺))) < (𝐷‘𝐺) ↔ ∃!𝑞 ∈ 𝐵 (𝐷‘(𝐹 + (𝑞 ∙ 𝐺))) < (𝐷‘𝐺))) |
55 | 37, 54 | mpbid 231 | 1 ⊢ (𝜑 → ∃!𝑞 ∈ 𝐵 (𝐷‘(𝐹 + (𝑞 ∙ 𝐺))) < (𝐷‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ≠ wne 2930 ∃!wreu 3362 class class class wbr 5145 –1-1-onto→wf1o 6545 ‘cfv 6546 (class class class)co 7416 < clt 11289 Basecbs 17208 +gcplusg 17261 .rcmulr 17262 0gc0g 17449 Grpcgrp 18923 invgcminusg 18924 -gcsg 18925 Ringcrg 20212 Unitcui 20333 Poly1cpl1 22162 coe1cco1 22163 deg1cdg1 26075 Unic1pcuc1p 26151 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5282 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 ax-cnex 11205 ax-resscn 11206 ax-1cn 11207 ax-icn 11208 ax-addcl 11209 ax-addrcl 11210 ax-mulcl 11211 ax-mulrcl 11212 ax-mulcom 11213 ax-addass 11214 ax-mulass 11215 ax-distr 11216 ax-i2m1 11217 ax-1ne0 11218 ax-1rid 11219 ax-rnegex 11220 ax-rrecex 11221 ax-cnre 11222 ax-pre-lttri 11223 ax-pre-lttrn 11224 ax-pre-ltadd 11225 ax-pre-mulgt0 11226 ax-pre-sup 11227 ax-addf 11228 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4906 df-int 4947 df-iun 4995 df-iin 4996 df-br 5146 df-opab 5208 df-mpt 5229 df-tr 5263 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-se 5630 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6304 df-ord 6371 df-on 6372 df-lim 6373 df-suc 6374 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-isom 6555 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-of 7682 df-ofr 7683 df-om 7869 df-1st 7995 df-2nd 7996 df-supp 8167 df-tpos 8233 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-2o 8489 df-er 8726 df-map 8849 df-pm 8850 df-ixp 8919 df-en 8967 df-dom 8968 df-sdom 8969 df-fin 8970 df-fsupp 9399 df-sup 9478 df-oi 9546 df-card 9975 df-pnf 11291 df-mnf 11292 df-xr 11293 df-ltxr 11294 df-le 11295 df-sub 11487 df-neg 11488 df-nn 12259 df-2 12321 df-3 12322 df-4 12323 df-5 12324 df-6 12325 df-7 12326 df-8 12327 df-9 12328 df-n0 12519 df-z 12605 df-dec 12724 df-uz 12869 df-fz 13533 df-fzo 13676 df-seq 14016 df-hash 14343 df-struct 17144 df-sets 17161 df-slot 17179 df-ndx 17191 df-base 17209 df-ress 17238 df-plusg 17274 df-mulr 17275 df-starv 17276 df-sca 17277 df-vsca 17278 df-ip 17279 df-tset 17280 df-ple 17281 df-ds 17283 df-unif 17284 df-hom 17285 df-cco 17286 df-0g 17451 df-gsum 17452 df-prds 17457 df-pws 17459 df-mre 17594 df-mrc 17595 df-acs 17597 df-mgm 18628 df-sgrp 18707 df-mnd 18723 df-mhm 18768 df-submnd 18769 df-grp 18926 df-minusg 18927 df-sbg 18928 df-mulg 19058 df-subg 19113 df-ghm 19203 df-cntz 19307 df-cmn 19776 df-abl 19777 df-mgp 20114 df-rng 20132 df-ur 20161 df-ring 20214 df-cring 20215 df-oppr 20312 df-dvdsr 20335 df-unit 20336 df-invr 20366 df-subrng 20524 df-subrg 20549 df-rlreg 20668 df-lmod 20834 df-lss 20905 df-cnfld 21340 df-psr 21902 df-mvr 21903 df-mpl 21904 df-opsr 21906 df-psr1 22165 df-vr1 22166 df-ply1 22167 df-coe1 22168 df-mdeg 26076 df-deg1 26077 df-uc1p 26156 |
This theorem is referenced by: r1peuqusdeg1 35484 |
Copyright terms: Public domain | W3C validator |