| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ply1divalg3 | Structured version Visualization version GIF version | ||
| Description: Uniqueness of polynomial remainder: convert the subtraction in ply1divalg2 26071 to addition. (Contributed by SN, 20-Jun-2025.) |
| Ref | Expression |
|---|---|
| ply1divalg3.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| ply1divalg3.d | ⊢ 𝐷 = (deg1‘𝑅) |
| ply1divalg3.b | ⊢ 𝐵 = (Base‘𝑃) |
| ply1divalg3.m | ⊢ + = (+g‘𝑃) |
| ply1divalg3.t | ⊢ ∙ = (.r‘𝑃) |
| ply1divalg3.c | ⊢ 𝐶 = (Unic1p‘𝑅) |
| ply1divalg3.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| ply1divalg3.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
| ply1divalg3.g | ⊢ (𝜑 → 𝐺 ∈ 𝐶) |
| Ref | Expression |
|---|---|
| ply1divalg3 | ⊢ (𝜑 → ∃!𝑞 ∈ 𝐵 (𝐷‘(𝐹 + (𝑞 ∙ 𝐺))) < (𝐷‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1divalg3.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 2 | ply1divalg3.d | . . . 4 ⊢ 𝐷 = (deg1‘𝑅) | |
| 3 | ply1divalg3.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
| 4 | eqid 2731 | . . . 4 ⊢ (-g‘𝑃) = (-g‘𝑃) | |
| 5 | eqid 2731 | . . . 4 ⊢ (0g‘𝑃) = (0g‘𝑃) | |
| 6 | ply1divalg3.t | . . . 4 ⊢ ∙ = (.r‘𝑃) | |
| 7 | ply1divalg3.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 8 | ply1divalg3.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
| 9 | ply1divalg3.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ 𝐶) | |
| 10 | ply1divalg3.c | . . . . . 6 ⊢ 𝐶 = (Unic1p‘𝑅) | |
| 11 | 1, 3, 10 | uc1pcl 26076 | . . . . 5 ⊢ (𝐺 ∈ 𝐶 → 𝐺 ∈ 𝐵) |
| 12 | 9, 11 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝐵) |
| 13 | 1, 5, 10 | uc1pn0 26078 | . . . . 5 ⊢ (𝐺 ∈ 𝐶 → 𝐺 ≠ (0g‘𝑃)) |
| 14 | 9, 13 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐺 ≠ (0g‘𝑃)) |
| 15 | eqid 2731 | . . . . . 6 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
| 16 | 2, 15, 10 | uc1pldg 26081 | . . . . 5 ⊢ (𝐺 ∈ 𝐶 → ((coe1‘𝐺)‘(𝐷‘𝐺)) ∈ (Unit‘𝑅)) |
| 17 | 9, 16 | syl 17 | . . . 4 ⊢ (𝜑 → ((coe1‘𝐺)‘(𝐷‘𝐺)) ∈ (Unit‘𝑅)) |
| 18 | 1, 2, 3, 4, 5, 6, 7, 8, 12, 14, 17, 15 | ply1divalg2 26071 | . . 3 ⊢ (𝜑 → ∃!𝑝 ∈ 𝐵 (𝐷‘(𝐹(-g‘𝑃)(𝑝 ∙ 𝐺))) < (𝐷‘𝐺)) |
| 19 | eqid 2731 | . . . . 5 ⊢ (invg‘𝑃) = (invg‘𝑃) | |
| 20 | 1 | ply1ring 22160 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
| 21 | 7, 20 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑃 ∈ Ring) |
| 22 | 21 | ringgrpd 20160 | . . . . . 6 ⊢ (𝜑 → 𝑃 ∈ Grp) |
| 23 | 22 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐵) → 𝑃 ∈ Grp) |
| 24 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐵) → 𝑞 ∈ 𝐵) | |
| 25 | 3, 19, 23, 24 | grpinvcld 18901 | . . . 4 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐵) → ((invg‘𝑃)‘𝑞) ∈ 𝐵) |
| 26 | 3, 19, 22 | grpinvf1o 18922 | . . . . . 6 ⊢ (𝜑 → (invg‘𝑃):𝐵–1-1-onto→𝐵) |
| 27 | f1ofveu 7340 | . . . . . 6 ⊢ (((invg‘𝑃):𝐵–1-1-onto→𝐵 ∧ 𝑝 ∈ 𝐵) → ∃!𝑞 ∈ 𝐵 ((invg‘𝑃)‘𝑞) = 𝑝) | |
| 28 | 26, 27 | sylan 580 | . . . . 5 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝐵) → ∃!𝑞 ∈ 𝐵 ((invg‘𝑃)‘𝑞) = 𝑝) |
| 29 | eqcom 2738 | . . . . . 6 ⊢ (𝑝 = ((invg‘𝑃)‘𝑞) ↔ ((invg‘𝑃)‘𝑞) = 𝑝) | |
| 30 | 29 | reubii 3355 | . . . . 5 ⊢ (∃!𝑞 ∈ 𝐵 𝑝 = ((invg‘𝑃)‘𝑞) ↔ ∃!𝑞 ∈ 𝐵 ((invg‘𝑃)‘𝑞) = 𝑝) |
| 31 | 28, 30 | sylibr 234 | . . . 4 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝐵) → ∃!𝑞 ∈ 𝐵 𝑝 = ((invg‘𝑃)‘𝑞)) |
| 32 | oveq1 7353 | . . . . . . 7 ⊢ (𝑝 = ((invg‘𝑃)‘𝑞) → (𝑝 ∙ 𝐺) = (((invg‘𝑃)‘𝑞) ∙ 𝐺)) | |
| 33 | 32 | oveq2d 7362 | . . . . . 6 ⊢ (𝑝 = ((invg‘𝑃)‘𝑞) → (𝐹(-g‘𝑃)(𝑝 ∙ 𝐺)) = (𝐹(-g‘𝑃)(((invg‘𝑃)‘𝑞) ∙ 𝐺))) |
| 34 | 33 | fveq2d 6826 | . . . . 5 ⊢ (𝑝 = ((invg‘𝑃)‘𝑞) → (𝐷‘(𝐹(-g‘𝑃)(𝑝 ∙ 𝐺))) = (𝐷‘(𝐹(-g‘𝑃)(((invg‘𝑃)‘𝑞) ∙ 𝐺)))) |
| 35 | 34 | breq1d 5099 | . . . 4 ⊢ (𝑝 = ((invg‘𝑃)‘𝑞) → ((𝐷‘(𝐹(-g‘𝑃)(𝑝 ∙ 𝐺))) < (𝐷‘𝐺) ↔ (𝐷‘(𝐹(-g‘𝑃)(((invg‘𝑃)‘𝑞) ∙ 𝐺))) < (𝐷‘𝐺))) |
| 36 | 25, 31, 35 | reuxfr1ds 3705 | . . 3 ⊢ (𝜑 → (∃!𝑝 ∈ 𝐵 (𝐷‘(𝐹(-g‘𝑃)(𝑝 ∙ 𝐺))) < (𝐷‘𝐺) ↔ ∃!𝑞 ∈ 𝐵 (𝐷‘(𝐹(-g‘𝑃)(((invg‘𝑃)‘𝑞) ∙ 𝐺))) < (𝐷‘𝐺))) |
| 37 | 18, 36 | mpbid 232 | . 2 ⊢ (𝜑 → ∃!𝑞 ∈ 𝐵 (𝐷‘(𝐹(-g‘𝑃)(((invg‘𝑃)‘𝑞) ∙ 𝐺))) < (𝐷‘𝐺)) |
| 38 | 21 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐵) → 𝑃 ∈ Ring) |
| 39 | 12 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐵) → 𝐺 ∈ 𝐵) |
| 40 | 3, 6, 38, 25, 39 | ringcld 20178 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐵) → (((invg‘𝑃)‘𝑞) ∙ 𝐺) ∈ 𝐵) |
| 41 | ply1divalg3.m | . . . . . . . 8 ⊢ + = (+g‘𝑃) | |
| 42 | 3, 41, 19, 4 | grpsubval 18898 | . . . . . . 7 ⊢ ((𝐹 ∈ 𝐵 ∧ (((invg‘𝑃)‘𝑞) ∙ 𝐺) ∈ 𝐵) → (𝐹(-g‘𝑃)(((invg‘𝑃)‘𝑞) ∙ 𝐺)) = (𝐹 + ((invg‘𝑃)‘(((invg‘𝑃)‘𝑞) ∙ 𝐺)))) |
| 43 | 8, 40, 42 | syl2an2r 685 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐵) → (𝐹(-g‘𝑃)(((invg‘𝑃)‘𝑞) ∙ 𝐺)) = (𝐹 + ((invg‘𝑃)‘(((invg‘𝑃)‘𝑞) ∙ 𝐺)))) |
| 44 | 3, 6, 19, 38, 24, 39 | ringmneg1 20222 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐵) → (((invg‘𝑃)‘𝑞) ∙ 𝐺) = ((invg‘𝑃)‘(𝑞 ∙ 𝐺))) |
| 45 | 44 | fveq2d 6826 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐵) → ((invg‘𝑃)‘(((invg‘𝑃)‘𝑞) ∙ 𝐺)) = ((invg‘𝑃)‘((invg‘𝑃)‘(𝑞 ∙ 𝐺)))) |
| 46 | 3, 6, 38, 24, 39 | ringcld 20178 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐵) → (𝑞 ∙ 𝐺) ∈ 𝐵) |
| 47 | 3, 19 | grpinvinv 18918 | . . . . . . . . 9 ⊢ ((𝑃 ∈ Grp ∧ (𝑞 ∙ 𝐺) ∈ 𝐵) → ((invg‘𝑃)‘((invg‘𝑃)‘(𝑞 ∙ 𝐺))) = (𝑞 ∙ 𝐺)) |
| 48 | 22, 46, 47 | syl2an2r 685 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐵) → ((invg‘𝑃)‘((invg‘𝑃)‘(𝑞 ∙ 𝐺))) = (𝑞 ∙ 𝐺)) |
| 49 | 45, 48 | eqtrd 2766 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐵) → ((invg‘𝑃)‘(((invg‘𝑃)‘𝑞) ∙ 𝐺)) = (𝑞 ∙ 𝐺)) |
| 50 | 49 | oveq2d 7362 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐵) → (𝐹 + ((invg‘𝑃)‘(((invg‘𝑃)‘𝑞) ∙ 𝐺))) = (𝐹 + (𝑞 ∙ 𝐺))) |
| 51 | 43, 50 | eqtrd 2766 | . . . . 5 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐵) → (𝐹(-g‘𝑃)(((invg‘𝑃)‘𝑞) ∙ 𝐺)) = (𝐹 + (𝑞 ∙ 𝐺))) |
| 52 | 51 | fveq2d 6826 | . . . 4 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐵) → (𝐷‘(𝐹(-g‘𝑃)(((invg‘𝑃)‘𝑞) ∙ 𝐺))) = (𝐷‘(𝐹 + (𝑞 ∙ 𝐺)))) |
| 53 | 52 | breq1d 5099 | . . 3 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐵) → ((𝐷‘(𝐹(-g‘𝑃)(((invg‘𝑃)‘𝑞) ∙ 𝐺))) < (𝐷‘𝐺) ↔ (𝐷‘(𝐹 + (𝑞 ∙ 𝐺))) < (𝐷‘𝐺))) |
| 54 | 53 | reubidva 3360 | . 2 ⊢ (𝜑 → (∃!𝑞 ∈ 𝐵 (𝐷‘(𝐹(-g‘𝑃)(((invg‘𝑃)‘𝑞) ∙ 𝐺))) < (𝐷‘𝐺) ↔ ∃!𝑞 ∈ 𝐵 (𝐷‘(𝐹 + (𝑞 ∙ 𝐺))) < (𝐷‘𝐺))) |
| 55 | 37, 54 | mpbid 232 | 1 ⊢ (𝜑 → ∃!𝑞 ∈ 𝐵 (𝐷‘(𝐹 + (𝑞 ∙ 𝐺))) < (𝐷‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∃!wreu 3344 class class class wbr 5089 –1-1-onto→wf1o 6480 ‘cfv 6481 (class class class)co 7346 < clt 11146 Basecbs 17120 +gcplusg 17161 .rcmulr 17162 0gc0g 17343 Grpcgrp 18846 invgcminusg 18847 -gcsg 18848 Ringcrg 20151 Unitcui 20273 Poly1cpl1 22089 coe1cco1 22090 deg1cdg1 25986 Unic1pcuc1p 26059 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 ax-addf 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-ofr 7611 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-sup 9326 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-fz 13408 df-fzo 13555 df-seq 13909 df-hash 14238 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-0g 17345 df-gsum 17346 df-prds 17351 df-pws 17353 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-mhm 18691 df-submnd 18692 df-grp 18849 df-minusg 18850 df-sbg 18851 df-mulg 18981 df-subg 19036 df-ghm 19125 df-cntz 19229 df-cmn 19694 df-abl 19695 df-mgp 20059 df-rng 20071 df-ur 20100 df-ring 20153 df-cring 20154 df-oppr 20255 df-dvdsr 20275 df-unit 20276 df-invr 20306 df-subrng 20461 df-subrg 20485 df-rlreg 20609 df-lmod 20795 df-lss 20865 df-cnfld 21292 df-psr 21846 df-mvr 21847 df-mpl 21848 df-opsr 21850 df-psr1 22092 df-vr1 22093 df-ply1 22094 df-coe1 22095 df-mdeg 25987 df-deg1 25988 df-uc1p 26064 |
| This theorem is referenced by: r1peuqusdeg1 35687 |
| Copyright terms: Public domain | W3C validator |