| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ply1divalg3 | Structured version Visualization version GIF version | ||
| Description: Uniqueness of polynomial remainder: convert the subtraction in ply1divalg2 26101 to addition. (Contributed by SN, 20-Jun-2025.) |
| Ref | Expression |
|---|---|
| ply1divalg3.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| ply1divalg3.d | ⊢ 𝐷 = (deg1‘𝑅) |
| ply1divalg3.b | ⊢ 𝐵 = (Base‘𝑃) |
| ply1divalg3.m | ⊢ + = (+g‘𝑃) |
| ply1divalg3.t | ⊢ ∙ = (.r‘𝑃) |
| ply1divalg3.c | ⊢ 𝐶 = (Unic1p‘𝑅) |
| ply1divalg3.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| ply1divalg3.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
| ply1divalg3.g | ⊢ (𝜑 → 𝐺 ∈ 𝐶) |
| Ref | Expression |
|---|---|
| ply1divalg3 | ⊢ (𝜑 → ∃!𝑞 ∈ 𝐵 (𝐷‘(𝐹 + (𝑞 ∙ 𝐺))) < (𝐷‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1divalg3.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 2 | ply1divalg3.d | . . . 4 ⊢ 𝐷 = (deg1‘𝑅) | |
| 3 | ply1divalg3.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
| 4 | eqid 2736 | . . . 4 ⊢ (-g‘𝑃) = (-g‘𝑃) | |
| 5 | eqid 2736 | . . . 4 ⊢ (0g‘𝑃) = (0g‘𝑃) | |
| 6 | ply1divalg3.t | . . . 4 ⊢ ∙ = (.r‘𝑃) | |
| 7 | ply1divalg3.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 8 | ply1divalg3.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
| 9 | ply1divalg3.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ 𝐶) | |
| 10 | ply1divalg3.c | . . . . . 6 ⊢ 𝐶 = (Unic1p‘𝑅) | |
| 11 | 1, 3, 10 | uc1pcl 26106 | . . . . 5 ⊢ (𝐺 ∈ 𝐶 → 𝐺 ∈ 𝐵) |
| 12 | 9, 11 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝐵) |
| 13 | 1, 5, 10 | uc1pn0 26108 | . . . . 5 ⊢ (𝐺 ∈ 𝐶 → 𝐺 ≠ (0g‘𝑃)) |
| 14 | 9, 13 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐺 ≠ (0g‘𝑃)) |
| 15 | eqid 2736 | . . . . . 6 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
| 16 | 2, 15, 10 | uc1pldg 26111 | . . . . 5 ⊢ (𝐺 ∈ 𝐶 → ((coe1‘𝐺)‘(𝐷‘𝐺)) ∈ (Unit‘𝑅)) |
| 17 | 9, 16 | syl 17 | . . . 4 ⊢ (𝜑 → ((coe1‘𝐺)‘(𝐷‘𝐺)) ∈ (Unit‘𝑅)) |
| 18 | 1, 2, 3, 4, 5, 6, 7, 8, 12, 14, 17, 15 | ply1divalg2 26101 | . . 3 ⊢ (𝜑 → ∃!𝑝 ∈ 𝐵 (𝐷‘(𝐹(-g‘𝑃)(𝑝 ∙ 𝐺))) < (𝐷‘𝐺)) |
| 19 | eqid 2736 | . . . . 5 ⊢ (invg‘𝑃) = (invg‘𝑃) | |
| 20 | 1 | ply1ring 22188 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
| 21 | 7, 20 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑃 ∈ Ring) |
| 22 | 21 | ringgrpd 20207 | . . . . . 6 ⊢ (𝜑 → 𝑃 ∈ Grp) |
| 23 | 22 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐵) → 𝑃 ∈ Grp) |
| 24 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐵) → 𝑞 ∈ 𝐵) | |
| 25 | 3, 19, 23, 24 | grpinvcld 18976 | . . . 4 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐵) → ((invg‘𝑃)‘𝑞) ∈ 𝐵) |
| 26 | 3, 19, 22 | grpinvf1o 18997 | . . . . . 6 ⊢ (𝜑 → (invg‘𝑃):𝐵–1-1-onto→𝐵) |
| 27 | f1ofveu 7404 | . . . . . 6 ⊢ (((invg‘𝑃):𝐵–1-1-onto→𝐵 ∧ 𝑝 ∈ 𝐵) → ∃!𝑞 ∈ 𝐵 ((invg‘𝑃)‘𝑞) = 𝑝) | |
| 28 | 26, 27 | sylan 580 | . . . . 5 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝐵) → ∃!𝑞 ∈ 𝐵 ((invg‘𝑃)‘𝑞) = 𝑝) |
| 29 | eqcom 2743 | . . . . . 6 ⊢ (𝑝 = ((invg‘𝑃)‘𝑞) ↔ ((invg‘𝑃)‘𝑞) = 𝑝) | |
| 30 | 29 | reubii 3373 | . . . . 5 ⊢ (∃!𝑞 ∈ 𝐵 𝑝 = ((invg‘𝑃)‘𝑞) ↔ ∃!𝑞 ∈ 𝐵 ((invg‘𝑃)‘𝑞) = 𝑝) |
| 31 | 28, 30 | sylibr 234 | . . . 4 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝐵) → ∃!𝑞 ∈ 𝐵 𝑝 = ((invg‘𝑃)‘𝑞)) |
| 32 | oveq1 7417 | . . . . . . 7 ⊢ (𝑝 = ((invg‘𝑃)‘𝑞) → (𝑝 ∙ 𝐺) = (((invg‘𝑃)‘𝑞) ∙ 𝐺)) | |
| 33 | 32 | oveq2d 7426 | . . . . . 6 ⊢ (𝑝 = ((invg‘𝑃)‘𝑞) → (𝐹(-g‘𝑃)(𝑝 ∙ 𝐺)) = (𝐹(-g‘𝑃)(((invg‘𝑃)‘𝑞) ∙ 𝐺))) |
| 34 | 33 | fveq2d 6885 | . . . . 5 ⊢ (𝑝 = ((invg‘𝑃)‘𝑞) → (𝐷‘(𝐹(-g‘𝑃)(𝑝 ∙ 𝐺))) = (𝐷‘(𝐹(-g‘𝑃)(((invg‘𝑃)‘𝑞) ∙ 𝐺)))) |
| 35 | 34 | breq1d 5134 | . . . 4 ⊢ (𝑝 = ((invg‘𝑃)‘𝑞) → ((𝐷‘(𝐹(-g‘𝑃)(𝑝 ∙ 𝐺))) < (𝐷‘𝐺) ↔ (𝐷‘(𝐹(-g‘𝑃)(((invg‘𝑃)‘𝑞) ∙ 𝐺))) < (𝐷‘𝐺))) |
| 36 | 25, 31, 35 | reuxfr1ds 3739 | . . 3 ⊢ (𝜑 → (∃!𝑝 ∈ 𝐵 (𝐷‘(𝐹(-g‘𝑃)(𝑝 ∙ 𝐺))) < (𝐷‘𝐺) ↔ ∃!𝑞 ∈ 𝐵 (𝐷‘(𝐹(-g‘𝑃)(((invg‘𝑃)‘𝑞) ∙ 𝐺))) < (𝐷‘𝐺))) |
| 37 | 18, 36 | mpbid 232 | . 2 ⊢ (𝜑 → ∃!𝑞 ∈ 𝐵 (𝐷‘(𝐹(-g‘𝑃)(((invg‘𝑃)‘𝑞) ∙ 𝐺))) < (𝐷‘𝐺)) |
| 38 | 21 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐵) → 𝑃 ∈ Ring) |
| 39 | 12 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐵) → 𝐺 ∈ 𝐵) |
| 40 | 3, 6, 38, 25, 39 | ringcld 20225 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐵) → (((invg‘𝑃)‘𝑞) ∙ 𝐺) ∈ 𝐵) |
| 41 | ply1divalg3.m | . . . . . . . 8 ⊢ + = (+g‘𝑃) | |
| 42 | 3, 41, 19, 4 | grpsubval 18973 | . . . . . . 7 ⊢ ((𝐹 ∈ 𝐵 ∧ (((invg‘𝑃)‘𝑞) ∙ 𝐺) ∈ 𝐵) → (𝐹(-g‘𝑃)(((invg‘𝑃)‘𝑞) ∙ 𝐺)) = (𝐹 + ((invg‘𝑃)‘(((invg‘𝑃)‘𝑞) ∙ 𝐺)))) |
| 43 | 8, 40, 42 | syl2an2r 685 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐵) → (𝐹(-g‘𝑃)(((invg‘𝑃)‘𝑞) ∙ 𝐺)) = (𝐹 + ((invg‘𝑃)‘(((invg‘𝑃)‘𝑞) ∙ 𝐺)))) |
| 44 | 3, 6, 19, 38, 24, 39 | ringmneg1 20269 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐵) → (((invg‘𝑃)‘𝑞) ∙ 𝐺) = ((invg‘𝑃)‘(𝑞 ∙ 𝐺))) |
| 45 | 44 | fveq2d 6885 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐵) → ((invg‘𝑃)‘(((invg‘𝑃)‘𝑞) ∙ 𝐺)) = ((invg‘𝑃)‘((invg‘𝑃)‘(𝑞 ∙ 𝐺)))) |
| 46 | 3, 6, 38, 24, 39 | ringcld 20225 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐵) → (𝑞 ∙ 𝐺) ∈ 𝐵) |
| 47 | 3, 19 | grpinvinv 18993 | . . . . . . . . 9 ⊢ ((𝑃 ∈ Grp ∧ (𝑞 ∙ 𝐺) ∈ 𝐵) → ((invg‘𝑃)‘((invg‘𝑃)‘(𝑞 ∙ 𝐺))) = (𝑞 ∙ 𝐺)) |
| 48 | 22, 46, 47 | syl2an2r 685 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐵) → ((invg‘𝑃)‘((invg‘𝑃)‘(𝑞 ∙ 𝐺))) = (𝑞 ∙ 𝐺)) |
| 49 | 45, 48 | eqtrd 2771 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐵) → ((invg‘𝑃)‘(((invg‘𝑃)‘𝑞) ∙ 𝐺)) = (𝑞 ∙ 𝐺)) |
| 50 | 49 | oveq2d 7426 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐵) → (𝐹 + ((invg‘𝑃)‘(((invg‘𝑃)‘𝑞) ∙ 𝐺))) = (𝐹 + (𝑞 ∙ 𝐺))) |
| 51 | 43, 50 | eqtrd 2771 | . . . . 5 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐵) → (𝐹(-g‘𝑃)(((invg‘𝑃)‘𝑞) ∙ 𝐺)) = (𝐹 + (𝑞 ∙ 𝐺))) |
| 52 | 51 | fveq2d 6885 | . . . 4 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐵) → (𝐷‘(𝐹(-g‘𝑃)(((invg‘𝑃)‘𝑞) ∙ 𝐺))) = (𝐷‘(𝐹 + (𝑞 ∙ 𝐺)))) |
| 53 | 52 | breq1d 5134 | . . 3 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐵) → ((𝐷‘(𝐹(-g‘𝑃)(((invg‘𝑃)‘𝑞) ∙ 𝐺))) < (𝐷‘𝐺) ↔ (𝐷‘(𝐹 + (𝑞 ∙ 𝐺))) < (𝐷‘𝐺))) |
| 54 | 53 | reubidva 3380 | . 2 ⊢ (𝜑 → (∃!𝑞 ∈ 𝐵 (𝐷‘(𝐹(-g‘𝑃)(((invg‘𝑃)‘𝑞) ∙ 𝐺))) < (𝐷‘𝐺) ↔ ∃!𝑞 ∈ 𝐵 (𝐷‘(𝐹 + (𝑞 ∙ 𝐺))) < (𝐷‘𝐺))) |
| 55 | 37, 54 | mpbid 232 | 1 ⊢ (𝜑 → ∃!𝑞 ∈ 𝐵 (𝐷‘(𝐹 + (𝑞 ∙ 𝐺))) < (𝐷‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 ∃!wreu 3362 class class class wbr 5124 –1-1-onto→wf1o 6535 ‘cfv 6536 (class class class)co 7410 < clt 11274 Basecbs 17233 +gcplusg 17276 .rcmulr 17277 0gc0g 17458 Grpcgrp 18921 invgcminusg 18922 -gcsg 18923 Ringcrg 20198 Unitcui 20320 Poly1cpl1 22117 coe1cco1 22118 deg1cdg1 26016 Unic1pcuc1p 26089 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 ax-addf 11213 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-iin 4975 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-of 7676 df-ofr 7677 df-om 7867 df-1st 7993 df-2nd 7994 df-supp 8165 df-tpos 8230 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-er 8724 df-map 8847 df-pm 8848 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9379 df-sup 9459 df-oi 9529 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-dec 12714 df-uz 12858 df-fz 13530 df-fzo 13677 df-seq 14025 df-hash 14354 df-struct 17171 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-mulr 17290 df-starv 17291 df-sca 17292 df-vsca 17293 df-ip 17294 df-tset 17295 df-ple 17296 df-ds 17298 df-unif 17299 df-hom 17300 df-cco 17301 df-0g 17460 df-gsum 17461 df-prds 17466 df-pws 17468 df-mre 17603 df-mrc 17604 df-acs 17606 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-mhm 18766 df-submnd 18767 df-grp 18924 df-minusg 18925 df-sbg 18926 df-mulg 19056 df-subg 19111 df-ghm 19201 df-cntz 19305 df-cmn 19768 df-abl 19769 df-mgp 20106 df-rng 20118 df-ur 20147 df-ring 20200 df-cring 20201 df-oppr 20302 df-dvdsr 20322 df-unit 20323 df-invr 20353 df-subrng 20511 df-subrg 20535 df-rlreg 20659 df-lmod 20824 df-lss 20894 df-cnfld 21321 df-psr 21874 df-mvr 21875 df-mpl 21876 df-opsr 21878 df-psr1 22120 df-vr1 22121 df-ply1 22122 df-coe1 22123 df-mdeg 26017 df-deg1 26018 df-uc1p 26094 |
| This theorem is referenced by: r1peuqusdeg1 35670 |
| Copyright terms: Public domain | W3C validator |