Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ply1divalg3 Structured version   Visualization version   GIF version

Theorem ply1divalg3 35635
Description: Uniqueness of polynomial remainder: convert the subtraction in ply1divalg2 26042 to addition. (Contributed by SN, 20-Jun-2025.)
Hypotheses
Ref Expression
ply1divalg3.p 𝑃 = (Poly1𝑅)
ply1divalg3.d 𝐷 = (deg1𝑅)
ply1divalg3.b 𝐵 = (Base‘𝑃)
ply1divalg3.m + = (+g𝑃)
ply1divalg3.t = (.r𝑃)
ply1divalg3.c 𝐶 = (Unic1p𝑅)
ply1divalg3.r (𝜑𝑅 ∈ Ring)
ply1divalg3.f (𝜑𝐹𝐵)
ply1divalg3.g (𝜑𝐺𝐶)
Assertion
Ref Expression
ply1divalg3 (𝜑 → ∃!𝑞𝐵 (𝐷‘(𝐹 + (𝑞 𝐺))) < (𝐷𝐺))
Distinct variable groups:   𝜑,𝑞   𝐵,𝑞   𝐷,𝑞   𝐹,𝑞   𝐺,𝑞   + ,𝑞   𝑃,𝑞   𝑅,𝑞   ,𝑞
Allowed substitution hint:   𝐶(𝑞)

Proof of Theorem ply1divalg3
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 ply1divalg3.p . . . 4 𝑃 = (Poly1𝑅)
2 ply1divalg3.d . . . 4 𝐷 = (deg1𝑅)
3 ply1divalg3.b . . . 4 𝐵 = (Base‘𝑃)
4 eqid 2729 . . . 4 (-g𝑃) = (-g𝑃)
5 eqid 2729 . . . 4 (0g𝑃) = (0g𝑃)
6 ply1divalg3.t . . . 4 = (.r𝑃)
7 ply1divalg3.r . . . 4 (𝜑𝑅 ∈ Ring)
8 ply1divalg3.f . . . 4 (𝜑𝐹𝐵)
9 ply1divalg3.g . . . . 5 (𝜑𝐺𝐶)
10 ply1divalg3.c . . . . . 6 𝐶 = (Unic1p𝑅)
111, 3, 10uc1pcl 26047 . . . . 5 (𝐺𝐶𝐺𝐵)
129, 11syl 17 . . . 4 (𝜑𝐺𝐵)
131, 5, 10uc1pn0 26049 . . . . 5 (𝐺𝐶𝐺 ≠ (0g𝑃))
149, 13syl 17 . . . 4 (𝜑𝐺 ≠ (0g𝑃))
15 eqid 2729 . . . . . 6 (Unit‘𝑅) = (Unit‘𝑅)
162, 15, 10uc1pldg 26052 . . . . 5 (𝐺𝐶 → ((coe1𝐺)‘(𝐷𝐺)) ∈ (Unit‘𝑅))
179, 16syl 17 . . . 4 (𝜑 → ((coe1𝐺)‘(𝐷𝐺)) ∈ (Unit‘𝑅))
181, 2, 3, 4, 5, 6, 7, 8, 12, 14, 17, 15ply1divalg2 26042 . . 3 (𝜑 → ∃!𝑝𝐵 (𝐷‘(𝐹(-g𝑃)(𝑝 𝐺))) < (𝐷𝐺))
19 eqid 2729 . . . . 5 (invg𝑃) = (invg𝑃)
201ply1ring 22130 . . . . . . . 8 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
217, 20syl 17 . . . . . . 7 (𝜑𝑃 ∈ Ring)
2221ringgrpd 20127 . . . . . 6 (𝜑𝑃 ∈ Grp)
2322adantr 480 . . . . 5 ((𝜑𝑞𝐵) → 𝑃 ∈ Grp)
24 simpr 484 . . . . 5 ((𝜑𝑞𝐵) → 𝑞𝐵)
253, 19, 23, 24grpinvcld 18867 . . . 4 ((𝜑𝑞𝐵) → ((invg𝑃)‘𝑞) ∈ 𝐵)
263, 19, 22grpinvf1o 18888 . . . . . 6 (𝜑 → (invg𝑃):𝐵1-1-onto𝐵)
27 f1ofveu 7343 . . . . . 6 (((invg𝑃):𝐵1-1-onto𝐵𝑝𝐵) → ∃!𝑞𝐵 ((invg𝑃)‘𝑞) = 𝑝)
2826, 27sylan 580 . . . . 5 ((𝜑𝑝𝐵) → ∃!𝑞𝐵 ((invg𝑃)‘𝑞) = 𝑝)
29 eqcom 2736 . . . . . 6 (𝑝 = ((invg𝑃)‘𝑞) ↔ ((invg𝑃)‘𝑞) = 𝑝)
3029reubii 3352 . . . . 5 (∃!𝑞𝐵 𝑝 = ((invg𝑃)‘𝑞) ↔ ∃!𝑞𝐵 ((invg𝑃)‘𝑞) = 𝑝)
3128, 30sylibr 234 . . . 4 ((𝜑𝑝𝐵) → ∃!𝑞𝐵 𝑝 = ((invg𝑃)‘𝑞))
32 oveq1 7356 . . . . . . 7 (𝑝 = ((invg𝑃)‘𝑞) → (𝑝 𝐺) = (((invg𝑃)‘𝑞) 𝐺))
3332oveq2d 7365 . . . . . 6 (𝑝 = ((invg𝑃)‘𝑞) → (𝐹(-g𝑃)(𝑝 𝐺)) = (𝐹(-g𝑃)(((invg𝑃)‘𝑞) 𝐺)))
3433fveq2d 6826 . . . . 5 (𝑝 = ((invg𝑃)‘𝑞) → (𝐷‘(𝐹(-g𝑃)(𝑝 𝐺))) = (𝐷‘(𝐹(-g𝑃)(((invg𝑃)‘𝑞) 𝐺))))
3534breq1d 5102 . . . 4 (𝑝 = ((invg𝑃)‘𝑞) → ((𝐷‘(𝐹(-g𝑃)(𝑝 𝐺))) < (𝐷𝐺) ↔ (𝐷‘(𝐹(-g𝑃)(((invg𝑃)‘𝑞) 𝐺))) < (𝐷𝐺)))
3625, 31, 35reuxfr1ds 3711 . . 3 (𝜑 → (∃!𝑝𝐵 (𝐷‘(𝐹(-g𝑃)(𝑝 𝐺))) < (𝐷𝐺) ↔ ∃!𝑞𝐵 (𝐷‘(𝐹(-g𝑃)(((invg𝑃)‘𝑞) 𝐺))) < (𝐷𝐺)))
3718, 36mpbid 232 . 2 (𝜑 → ∃!𝑞𝐵 (𝐷‘(𝐹(-g𝑃)(((invg𝑃)‘𝑞) 𝐺))) < (𝐷𝐺))
3821adantr 480 . . . . . . . 8 ((𝜑𝑞𝐵) → 𝑃 ∈ Ring)
3912adantr 480 . . . . . . . 8 ((𝜑𝑞𝐵) → 𝐺𝐵)
403, 6, 38, 25, 39ringcld 20145 . . . . . . 7 ((𝜑𝑞𝐵) → (((invg𝑃)‘𝑞) 𝐺) ∈ 𝐵)
41 ply1divalg3.m . . . . . . . 8 + = (+g𝑃)
423, 41, 19, 4grpsubval 18864 . . . . . . 7 ((𝐹𝐵 ∧ (((invg𝑃)‘𝑞) 𝐺) ∈ 𝐵) → (𝐹(-g𝑃)(((invg𝑃)‘𝑞) 𝐺)) = (𝐹 + ((invg𝑃)‘(((invg𝑃)‘𝑞) 𝐺))))
438, 40, 42syl2an2r 685 . . . . . 6 ((𝜑𝑞𝐵) → (𝐹(-g𝑃)(((invg𝑃)‘𝑞) 𝐺)) = (𝐹 + ((invg𝑃)‘(((invg𝑃)‘𝑞) 𝐺))))
443, 6, 19, 38, 24, 39ringmneg1 20189 . . . . . . . . 9 ((𝜑𝑞𝐵) → (((invg𝑃)‘𝑞) 𝐺) = ((invg𝑃)‘(𝑞 𝐺)))
4544fveq2d 6826 . . . . . . . 8 ((𝜑𝑞𝐵) → ((invg𝑃)‘(((invg𝑃)‘𝑞) 𝐺)) = ((invg𝑃)‘((invg𝑃)‘(𝑞 𝐺))))
463, 6, 38, 24, 39ringcld 20145 . . . . . . . . 9 ((𝜑𝑞𝐵) → (𝑞 𝐺) ∈ 𝐵)
473, 19grpinvinv 18884 . . . . . . . . 9 ((𝑃 ∈ Grp ∧ (𝑞 𝐺) ∈ 𝐵) → ((invg𝑃)‘((invg𝑃)‘(𝑞 𝐺))) = (𝑞 𝐺))
4822, 46, 47syl2an2r 685 . . . . . . . 8 ((𝜑𝑞𝐵) → ((invg𝑃)‘((invg𝑃)‘(𝑞 𝐺))) = (𝑞 𝐺))
4945, 48eqtrd 2764 . . . . . . 7 ((𝜑𝑞𝐵) → ((invg𝑃)‘(((invg𝑃)‘𝑞) 𝐺)) = (𝑞 𝐺))
5049oveq2d 7365 . . . . . 6 ((𝜑𝑞𝐵) → (𝐹 + ((invg𝑃)‘(((invg𝑃)‘𝑞) 𝐺))) = (𝐹 + (𝑞 𝐺)))
5143, 50eqtrd 2764 . . . . 5 ((𝜑𝑞𝐵) → (𝐹(-g𝑃)(((invg𝑃)‘𝑞) 𝐺)) = (𝐹 + (𝑞 𝐺)))
5251fveq2d 6826 . . . 4 ((𝜑𝑞𝐵) → (𝐷‘(𝐹(-g𝑃)(((invg𝑃)‘𝑞) 𝐺))) = (𝐷‘(𝐹 + (𝑞 𝐺))))
5352breq1d 5102 . . 3 ((𝜑𝑞𝐵) → ((𝐷‘(𝐹(-g𝑃)(((invg𝑃)‘𝑞) 𝐺))) < (𝐷𝐺) ↔ (𝐷‘(𝐹 + (𝑞 𝐺))) < (𝐷𝐺)))
5453reubidva 3359 . 2 (𝜑 → (∃!𝑞𝐵 (𝐷‘(𝐹(-g𝑃)(((invg𝑃)‘𝑞) 𝐺))) < (𝐷𝐺) ↔ ∃!𝑞𝐵 (𝐷‘(𝐹 + (𝑞 𝐺))) < (𝐷𝐺)))
5537, 54mpbid 232 1 (𝜑 → ∃!𝑞𝐵 (𝐷‘(𝐹 + (𝑞 𝐺))) < (𝐷𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  ∃!wreu 3341   class class class wbr 5092  1-1-ontowf1o 6481  cfv 6482  (class class class)co 7349   < clt 11149  Basecbs 17120  +gcplusg 17161  .rcmulr 17162  0gc0g 17343  Grpcgrp 18812  invgcminusg 18813  -gcsg 18814  Ringcrg 20118  Unitcui 20240  Poly1cpl1 22059  coe1cco1 22060  deg1cdg1 25957  Unic1pcuc1p 26030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-ofr 7614  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-tpos 8159  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-sup 9332  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-fz 13411  df-fzo 13558  df-seq 13909  df-hash 14238  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-mhm 18657  df-submnd 18658  df-grp 18815  df-minusg 18816  df-sbg 18817  df-mulg 18947  df-subg 19002  df-ghm 19092  df-cntz 19196  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-cring 20121  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-invr 20273  df-subrng 20431  df-subrg 20455  df-rlreg 20579  df-lmod 20765  df-lss 20835  df-cnfld 21262  df-psr 21816  df-mvr 21817  df-mpl 21818  df-opsr 21820  df-psr1 22062  df-vr1 22063  df-ply1 22064  df-coe1 22065  df-mdeg 25958  df-deg1 25959  df-uc1p 26035
This theorem is referenced by:  r1peuqusdeg1  35636
  Copyright terms: Public domain W3C validator