Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ply1divalg3 Structured version   Visualization version   GIF version

Theorem ply1divalg3 35627
Description: Uniqueness of polynomial remainder: convert the subtraction in ply1divalg2 26193 to addition. (Contributed by SN, 20-Jun-2025.)
Hypotheses
Ref Expression
ply1divalg3.p 𝑃 = (Poly1𝑅)
ply1divalg3.d 𝐷 = (deg1𝑅)
ply1divalg3.b 𝐵 = (Base‘𝑃)
ply1divalg3.m + = (+g𝑃)
ply1divalg3.t = (.r𝑃)
ply1divalg3.c 𝐶 = (Unic1p𝑅)
ply1divalg3.r (𝜑𝑅 ∈ Ring)
ply1divalg3.f (𝜑𝐹𝐵)
ply1divalg3.g (𝜑𝐺𝐶)
Assertion
Ref Expression
ply1divalg3 (𝜑 → ∃!𝑞𝐵 (𝐷‘(𝐹 + (𝑞 𝐺))) < (𝐷𝐺))
Distinct variable groups:   𝜑,𝑞   𝐵,𝑞   𝐷,𝑞   𝐹,𝑞   𝐺,𝑞   + ,𝑞   𝑃,𝑞   𝑅,𝑞   ,𝑞
Allowed substitution hint:   𝐶(𝑞)

Proof of Theorem ply1divalg3
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 ply1divalg3.p . . . 4 𝑃 = (Poly1𝑅)
2 ply1divalg3.d . . . 4 𝐷 = (deg1𝑅)
3 ply1divalg3.b . . . 4 𝐵 = (Base‘𝑃)
4 eqid 2735 . . . 4 (-g𝑃) = (-g𝑃)
5 eqid 2735 . . . 4 (0g𝑃) = (0g𝑃)
6 ply1divalg3.t . . . 4 = (.r𝑃)
7 ply1divalg3.r . . . 4 (𝜑𝑅 ∈ Ring)
8 ply1divalg3.f . . . 4 (𝜑𝐹𝐵)
9 ply1divalg3.g . . . . 5 (𝜑𝐺𝐶)
10 ply1divalg3.c . . . . . 6 𝐶 = (Unic1p𝑅)
111, 3, 10uc1pcl 26198 . . . . 5 (𝐺𝐶𝐺𝐵)
129, 11syl 17 . . . 4 (𝜑𝐺𝐵)
131, 5, 10uc1pn0 26200 . . . . 5 (𝐺𝐶𝐺 ≠ (0g𝑃))
149, 13syl 17 . . . 4 (𝜑𝐺 ≠ (0g𝑃))
15 eqid 2735 . . . . . 6 (Unit‘𝑅) = (Unit‘𝑅)
162, 15, 10uc1pldg 26203 . . . . 5 (𝐺𝐶 → ((coe1𝐺)‘(𝐷𝐺)) ∈ (Unit‘𝑅))
179, 16syl 17 . . . 4 (𝜑 → ((coe1𝐺)‘(𝐷𝐺)) ∈ (Unit‘𝑅))
181, 2, 3, 4, 5, 6, 7, 8, 12, 14, 17, 15ply1divalg2 26193 . . 3 (𝜑 → ∃!𝑝𝐵 (𝐷‘(𝐹(-g𝑃)(𝑝 𝐺))) < (𝐷𝐺))
19 eqid 2735 . . . . 5 (invg𝑃) = (invg𝑃)
201ply1ring 22265 . . . . . . . 8 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
217, 20syl 17 . . . . . . 7 (𝜑𝑃 ∈ Ring)
2221ringgrpd 20260 . . . . . 6 (𝜑𝑃 ∈ Grp)
2322adantr 480 . . . . 5 ((𝜑𝑞𝐵) → 𝑃 ∈ Grp)
24 simpr 484 . . . . 5 ((𝜑𝑞𝐵) → 𝑞𝐵)
253, 19, 23, 24grpinvcld 19019 . . . 4 ((𝜑𝑞𝐵) → ((invg𝑃)‘𝑞) ∈ 𝐵)
263, 19, 22grpinvf1o 19040 . . . . . 6 (𝜑 → (invg𝑃):𝐵1-1-onto𝐵)
27 f1ofveu 7425 . . . . . 6 (((invg𝑃):𝐵1-1-onto𝐵𝑝𝐵) → ∃!𝑞𝐵 ((invg𝑃)‘𝑞) = 𝑝)
2826, 27sylan 580 . . . . 5 ((𝜑𝑝𝐵) → ∃!𝑞𝐵 ((invg𝑃)‘𝑞) = 𝑝)
29 eqcom 2742 . . . . . 6 (𝑝 = ((invg𝑃)‘𝑞) ↔ ((invg𝑃)‘𝑞) = 𝑝)
3029reubii 3387 . . . . 5 (∃!𝑞𝐵 𝑝 = ((invg𝑃)‘𝑞) ↔ ∃!𝑞𝐵 ((invg𝑃)‘𝑞) = 𝑝)
3128, 30sylibr 234 . . . 4 ((𝜑𝑝𝐵) → ∃!𝑞𝐵 𝑝 = ((invg𝑃)‘𝑞))
32 oveq1 7438 . . . . . . 7 (𝑝 = ((invg𝑃)‘𝑞) → (𝑝 𝐺) = (((invg𝑃)‘𝑞) 𝐺))
3332oveq2d 7447 . . . . . 6 (𝑝 = ((invg𝑃)‘𝑞) → (𝐹(-g𝑃)(𝑝 𝐺)) = (𝐹(-g𝑃)(((invg𝑃)‘𝑞) 𝐺)))
3433fveq2d 6911 . . . . 5 (𝑝 = ((invg𝑃)‘𝑞) → (𝐷‘(𝐹(-g𝑃)(𝑝 𝐺))) = (𝐷‘(𝐹(-g𝑃)(((invg𝑃)‘𝑞) 𝐺))))
3534breq1d 5158 . . . 4 (𝑝 = ((invg𝑃)‘𝑞) → ((𝐷‘(𝐹(-g𝑃)(𝑝 𝐺))) < (𝐷𝐺) ↔ (𝐷‘(𝐹(-g𝑃)(((invg𝑃)‘𝑞) 𝐺))) < (𝐷𝐺)))
3625, 31, 35reuxfr1ds 3760 . . 3 (𝜑 → (∃!𝑝𝐵 (𝐷‘(𝐹(-g𝑃)(𝑝 𝐺))) < (𝐷𝐺) ↔ ∃!𝑞𝐵 (𝐷‘(𝐹(-g𝑃)(((invg𝑃)‘𝑞) 𝐺))) < (𝐷𝐺)))
3718, 36mpbid 232 . 2 (𝜑 → ∃!𝑞𝐵 (𝐷‘(𝐹(-g𝑃)(((invg𝑃)‘𝑞) 𝐺))) < (𝐷𝐺))
3821adantr 480 . . . . . . . 8 ((𝜑𝑞𝐵) → 𝑃 ∈ Ring)
3912adantr 480 . . . . . . . 8 ((𝜑𝑞𝐵) → 𝐺𝐵)
403, 6, 38, 25, 39ringcld 20277 . . . . . . 7 ((𝜑𝑞𝐵) → (((invg𝑃)‘𝑞) 𝐺) ∈ 𝐵)
41 ply1divalg3.m . . . . . . . 8 + = (+g𝑃)
423, 41, 19, 4grpsubval 19016 . . . . . . 7 ((𝐹𝐵 ∧ (((invg𝑃)‘𝑞) 𝐺) ∈ 𝐵) → (𝐹(-g𝑃)(((invg𝑃)‘𝑞) 𝐺)) = (𝐹 + ((invg𝑃)‘(((invg𝑃)‘𝑞) 𝐺))))
438, 40, 42syl2an2r 685 . . . . . 6 ((𝜑𝑞𝐵) → (𝐹(-g𝑃)(((invg𝑃)‘𝑞) 𝐺)) = (𝐹 + ((invg𝑃)‘(((invg𝑃)‘𝑞) 𝐺))))
443, 6, 19, 38, 24, 39ringmneg1 20318 . . . . . . . . 9 ((𝜑𝑞𝐵) → (((invg𝑃)‘𝑞) 𝐺) = ((invg𝑃)‘(𝑞 𝐺)))
4544fveq2d 6911 . . . . . . . 8 ((𝜑𝑞𝐵) → ((invg𝑃)‘(((invg𝑃)‘𝑞) 𝐺)) = ((invg𝑃)‘((invg𝑃)‘(𝑞 𝐺))))
463, 6, 38, 24, 39ringcld 20277 . . . . . . . . 9 ((𝜑𝑞𝐵) → (𝑞 𝐺) ∈ 𝐵)
473, 19grpinvinv 19036 . . . . . . . . 9 ((𝑃 ∈ Grp ∧ (𝑞 𝐺) ∈ 𝐵) → ((invg𝑃)‘((invg𝑃)‘(𝑞 𝐺))) = (𝑞 𝐺))
4822, 46, 47syl2an2r 685 . . . . . . . 8 ((𝜑𝑞𝐵) → ((invg𝑃)‘((invg𝑃)‘(𝑞 𝐺))) = (𝑞 𝐺))
4945, 48eqtrd 2775 . . . . . . 7 ((𝜑𝑞𝐵) → ((invg𝑃)‘(((invg𝑃)‘𝑞) 𝐺)) = (𝑞 𝐺))
5049oveq2d 7447 . . . . . 6 ((𝜑𝑞𝐵) → (𝐹 + ((invg𝑃)‘(((invg𝑃)‘𝑞) 𝐺))) = (𝐹 + (𝑞 𝐺)))
5143, 50eqtrd 2775 . . . . 5 ((𝜑𝑞𝐵) → (𝐹(-g𝑃)(((invg𝑃)‘𝑞) 𝐺)) = (𝐹 + (𝑞 𝐺)))
5251fveq2d 6911 . . . 4 ((𝜑𝑞𝐵) → (𝐷‘(𝐹(-g𝑃)(((invg𝑃)‘𝑞) 𝐺))) = (𝐷‘(𝐹 + (𝑞 𝐺))))
5352breq1d 5158 . . 3 ((𝜑𝑞𝐵) → ((𝐷‘(𝐹(-g𝑃)(((invg𝑃)‘𝑞) 𝐺))) < (𝐷𝐺) ↔ (𝐷‘(𝐹 + (𝑞 𝐺))) < (𝐷𝐺)))
5453reubidva 3394 . 2 (𝜑 → (∃!𝑞𝐵 (𝐷‘(𝐹(-g𝑃)(((invg𝑃)‘𝑞) 𝐺))) < (𝐷𝐺) ↔ ∃!𝑞𝐵 (𝐷‘(𝐹 + (𝑞 𝐺))) < (𝐷𝐺)))
5537, 54mpbid 232 1 (𝜑 → ∃!𝑞𝐵 (𝐷‘(𝐹 + (𝑞 𝐺))) < (𝐷𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wne 2938  ∃!wreu 3376   class class class wbr 5148  1-1-ontowf1o 6562  cfv 6563  (class class class)co 7431   < clt 11293  Basecbs 17245  +gcplusg 17298  .rcmulr 17299  0gc0g 17486  Grpcgrp 18964  invgcminusg 18965  -gcsg 18966  Ringcrg 20251  Unitcui 20372  Poly1cpl1 22194  coe1cco1 22195  deg1cdg1 26108  Unic1pcuc1p 26181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-sup 9480  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-fz 13545  df-fzo 13692  df-seq 14040  df-hash 14367  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-0g 17488  df-gsum 17489  df-prds 17494  df-pws 17496  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mhm 18809  df-submnd 18810  df-grp 18967  df-minusg 18968  df-sbg 18969  df-mulg 19099  df-subg 19154  df-ghm 19244  df-cntz 19348  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-cring 20254  df-oppr 20351  df-dvdsr 20374  df-unit 20375  df-invr 20405  df-subrng 20563  df-subrg 20587  df-rlreg 20711  df-lmod 20877  df-lss 20948  df-cnfld 21383  df-psr 21947  df-mvr 21948  df-mpl 21949  df-opsr 21951  df-psr1 22197  df-vr1 22198  df-ply1 22199  df-coe1 22200  df-mdeg 26109  df-deg1 26110  df-uc1p 26186
This theorem is referenced by:  r1peuqusdeg1  35628
  Copyright terms: Public domain W3C validator