![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > smndex1igid | Structured version Visualization version GIF version |
Description: The composition of the modulo function πΌ and a constant function (πΊβπΎ) results in (πΊβπΎ) itself. (Contributed by AV, 14-Feb-2024.) |
Ref | Expression |
---|---|
smndex1ibas.m | β’ π = (EndoFMndββ0) |
smndex1ibas.n | β’ π β β |
smndex1ibas.i | β’ πΌ = (π₯ β β0 β¦ (π₯ mod π)) |
smndex1ibas.g | β’ πΊ = (π β (0..^π) β¦ (π₯ β β0 β¦ π)) |
Ref | Expression |
---|---|
smndex1igid | β’ (πΎ β (0..^π) β (πΌ β (πΊβπΎ)) = (πΊβπΎ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fconstmpt 5734 | . . . . 5 β’ (β0 Γ {πΎ}) = (π₯ β β0 β¦ πΎ) | |
2 | 1 | eqcomi 2736 | . . . 4 β’ (π₯ β β0 β¦ πΎ) = (β0 Γ {πΎ}) |
3 | 2 | a1i 11 | . . 3 β’ (πΎ β (0..^π) β (π₯ β β0 β¦ πΎ) = (β0 Γ {πΎ})) |
4 | 3 | coeq2d 5859 | . 2 β’ (πΎ β (0..^π) β (πΌ β (π₯ β β0 β¦ πΎ)) = (πΌ β (β0 Γ {πΎ}))) |
5 | simpl 482 | . . . . 5 β’ ((π = πΎ β§ π₯ β β0) β π = πΎ) | |
6 | 5 | mpteq2dva 5242 | . . . 4 β’ (π = πΎ β (π₯ β β0 β¦ π) = (π₯ β β0 β¦ πΎ)) |
7 | smndex1ibas.g | . . . 4 β’ πΊ = (π β (0..^π) β¦ (π₯ β β0 β¦ π)) | |
8 | nn0ex 12494 | . . . . 5 β’ β0 β V | |
9 | 8 | mptex 7229 | . . . 4 β’ (π₯ β β0 β¦ πΎ) β V |
10 | 6, 7, 9 | fvmpt 6999 | . . 3 β’ (πΎ β (0..^π) β (πΊβπΎ) = (π₯ β β0 β¦ πΎ)) |
11 | 10 | coeq2d 5859 | . 2 β’ (πΎ β (0..^π) β (πΌ β (πΊβπΎ)) = (πΌ β (π₯ β β0 β¦ πΎ))) |
12 | smndex1ibas.i | . . . . . . 7 β’ πΌ = (π₯ β β0 β¦ (π₯ mod π)) | |
13 | oveq1 7421 | . . . . . . . 8 β’ (π₯ = πΎ β (π₯ mod π) = (πΎ mod π)) | |
14 | zmodidfzoimp 13884 | . . . . . . . 8 β’ (πΎ β (0..^π) β (πΎ mod π) = πΎ) | |
15 | 13, 14 | sylan9eqr 2789 | . . . . . . 7 β’ ((πΎ β (0..^π) β§ π₯ = πΎ) β (π₯ mod π) = πΎ) |
16 | elfzonn0 13695 | . . . . . . 7 β’ (πΎ β (0..^π) β πΎ β β0) | |
17 | 12, 15, 16, 16 | fvmptd2 7007 | . . . . . 6 β’ (πΎ β (0..^π) β (πΌβπΎ) = πΎ) |
18 | 17 | eqcomd 2733 | . . . . 5 β’ (πΎ β (0..^π) β πΎ = (πΌβπΎ)) |
19 | 18 | sneqd 4636 | . . . 4 β’ (πΎ β (0..^π) β {πΎ} = {(πΌβπΎ)}) |
20 | 19 | xpeq2d 5702 | . . 3 β’ (πΎ β (0..^π) β (β0 Γ {πΎ}) = (β0 Γ {(πΌβπΎ)})) |
21 | 10, 2 | eqtrdi 2783 | . . 3 β’ (πΎ β (0..^π) β (πΊβπΎ) = (β0 Γ {πΎ})) |
22 | ovex 7447 | . . . . 5 β’ (π₯ mod π) β V | |
23 | 22, 12 | fnmpti 6692 | . . . 4 β’ πΌ Fn β0 |
24 | fcoconst 7137 | . . . 4 β’ ((πΌ Fn β0 β§ πΎ β β0) β (πΌ β (β0 Γ {πΎ})) = (β0 Γ {(πΌβπΎ)})) | |
25 | 23, 16, 24 | sylancr 586 | . . 3 β’ (πΎ β (0..^π) β (πΌ β (β0 Γ {πΎ})) = (β0 Γ {(πΌβπΎ)})) |
26 | 20, 21, 25 | 3eqtr4d 2777 | . 2 β’ (πΎ β (0..^π) β (πΊβπΎ) = (πΌ β (β0 Γ {πΎ}))) |
27 | 4, 11, 26 | 3eqtr4d 2777 | 1 β’ (πΎ β (0..^π) β (πΌ β (πΊβπΎ)) = (πΊβπΎ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1534 β wcel 2099 {csn 4624 β¦ cmpt 5225 Γ cxp 5670 β ccom 5676 Fn wfn 6537 βcfv 6542 (class class class)co 7414 0cc0 11124 βcn 12228 β0cn0 12488 ..^cfzo 13645 mod cmo 13852 EndoFMndcefmnd 18805 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 ax-cnex 11180 ax-resscn 11181 ax-1cn 11182 ax-icn 11183 ax-addcl 11184 ax-addrcl 11185 ax-mulcl 11186 ax-mulrcl 11187 ax-mulcom 11188 ax-addass 11189 ax-mulass 11190 ax-distr 11191 ax-i2m1 11192 ax-1ne0 11193 ax-1rid 11194 ax-rnegex 11195 ax-rrecex 11196 ax-cnre 11197 ax-pre-lttri 11198 ax-pre-lttrn 11199 ax-pre-ltadd 11200 ax-pre-mulgt0 11201 ax-pre-sup 11202 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7863 df-1st 7985 df-2nd 7986 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-er 8716 df-en 8954 df-dom 8955 df-sdom 8956 df-sup 9451 df-inf 9452 df-pnf 11266 df-mnf 11267 df-xr 11268 df-ltxr 11269 df-le 11270 df-sub 11462 df-neg 11463 df-div 11888 df-nn 12229 df-n0 12489 df-z 12575 df-uz 12839 df-rp 12993 df-fz 13503 df-fzo 13646 df-fl 13775 df-mod 13853 |
This theorem is referenced by: smndex1mgm 18844 smndex1mndlem 18846 |
Copyright terms: Public domain | W3C validator |