MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smndex1igid Structured version   Visualization version   GIF version

Theorem smndex1igid 18887
Description: The composition of the modulo function 𝐼 and a constant function (𝐺𝐾) results in (𝐺𝐾) itself. (Contributed by AV, 14-Feb-2024.)
Hypotheses
Ref Expression
smndex1ibas.m 𝑀 = (EndoFMnd‘ℕ0)
smndex1ibas.n 𝑁 ∈ ℕ
smndex1ibas.i 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))
smndex1ibas.g 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛))
Assertion
Ref Expression
smndex1igid (𝐾 ∈ (0..^𝑁) → (𝐼 ∘ (𝐺𝐾)) = (𝐺𝐾))
Distinct variable groups:   𝑥,𝑁   𝑛,𝐾,𝑥   𝑛,𝑁   𝑥,𝑀
Allowed substitution hints:   𝐺(𝑥,𝑛)   𝐼(𝑥,𝑛)   𝑀(𝑛)

Proof of Theorem smndex1igid
StepHypRef Expression
1 fconstmpt 5721 . . . . 5 (ℕ0 × {𝐾}) = (𝑥 ∈ ℕ0𝐾)
21eqcomi 2745 . . . 4 (𝑥 ∈ ℕ0𝐾) = (ℕ0 × {𝐾})
32a1i 11 . . 3 (𝐾 ∈ (0..^𝑁) → (𝑥 ∈ ℕ0𝐾) = (ℕ0 × {𝐾}))
43coeq2d 5847 . 2 (𝐾 ∈ (0..^𝑁) → (𝐼 ∘ (𝑥 ∈ ℕ0𝐾)) = (𝐼 ∘ (ℕ0 × {𝐾})))
5 simpl 482 . . . . 5 ((𝑛 = 𝐾𝑥 ∈ ℕ0) → 𝑛 = 𝐾)
65mpteq2dva 5219 . . . 4 (𝑛 = 𝐾 → (𝑥 ∈ ℕ0𝑛) = (𝑥 ∈ ℕ0𝐾))
7 smndex1ibas.g . . . 4 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛))
8 nn0ex 12512 . . . . 5 0 ∈ V
98mptex 7220 . . . 4 (𝑥 ∈ ℕ0𝐾) ∈ V
106, 7, 9fvmpt 6991 . . 3 (𝐾 ∈ (0..^𝑁) → (𝐺𝐾) = (𝑥 ∈ ℕ0𝐾))
1110coeq2d 5847 . 2 (𝐾 ∈ (0..^𝑁) → (𝐼 ∘ (𝐺𝐾)) = (𝐼 ∘ (𝑥 ∈ ℕ0𝐾)))
12 smndex1ibas.i . . . . . . 7 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))
13 oveq1 7417 . . . . . . . 8 (𝑥 = 𝐾 → (𝑥 mod 𝑁) = (𝐾 mod 𝑁))
14 zmodidfzoimp 13923 . . . . . . . 8 (𝐾 ∈ (0..^𝑁) → (𝐾 mod 𝑁) = 𝐾)
1513, 14sylan9eqr 2793 . . . . . . 7 ((𝐾 ∈ (0..^𝑁) ∧ 𝑥 = 𝐾) → (𝑥 mod 𝑁) = 𝐾)
16 elfzonn0 13729 . . . . . . 7 (𝐾 ∈ (0..^𝑁) → 𝐾 ∈ ℕ0)
1712, 15, 16, 16fvmptd2 6999 . . . . . 6 (𝐾 ∈ (0..^𝑁) → (𝐼𝐾) = 𝐾)
1817eqcomd 2742 . . . . 5 (𝐾 ∈ (0..^𝑁) → 𝐾 = (𝐼𝐾))
1918sneqd 4618 . . . 4 (𝐾 ∈ (0..^𝑁) → {𝐾} = {(𝐼𝐾)})
2019xpeq2d 5689 . . 3 (𝐾 ∈ (0..^𝑁) → (ℕ0 × {𝐾}) = (ℕ0 × {(𝐼𝐾)}))
2110, 2eqtrdi 2787 . . 3 (𝐾 ∈ (0..^𝑁) → (𝐺𝐾) = (ℕ0 × {𝐾}))
22 ovex 7443 . . . . 5 (𝑥 mod 𝑁) ∈ V
2322, 12fnmpti 6686 . . . 4 𝐼 Fn ℕ0
24 fcoconst 7129 . . . 4 ((𝐼 Fn ℕ0𝐾 ∈ ℕ0) → (𝐼 ∘ (ℕ0 × {𝐾})) = (ℕ0 × {(𝐼𝐾)}))
2523, 16, 24sylancr 587 . . 3 (𝐾 ∈ (0..^𝑁) → (𝐼 ∘ (ℕ0 × {𝐾})) = (ℕ0 × {(𝐼𝐾)}))
2620, 21, 253eqtr4d 2781 . 2 (𝐾 ∈ (0..^𝑁) → (𝐺𝐾) = (𝐼 ∘ (ℕ0 × {𝐾})))
274, 11, 263eqtr4d 2781 1 (𝐾 ∈ (0..^𝑁) → (𝐼 ∘ (𝐺𝐾)) = (𝐺𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {csn 4606  cmpt 5206   × cxp 5657  ccom 5663   Fn wfn 6531  cfv 6536  (class class class)co 7410  0cc0 11134  cn 12245  0cn0 12506  ..^cfzo 13676   mod cmo 13891  EndoFMndcefmnd 18851
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9459  df-inf 9460  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-n0 12507  df-z 12594  df-uz 12858  df-rp 13014  df-fz 13530  df-fzo 13677  df-fl 13814  df-mod 13892
This theorem is referenced by:  smndex1mgm  18890  smndex1mndlem  18892
  Copyright terms: Public domain W3C validator