| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > smndex1igid | Structured version Visualization version GIF version | ||
| Description: The composition of the modulo function 𝐼 and a constant function (𝐺‘𝐾) results in (𝐺‘𝐾) itself. (Contributed by AV, 14-Feb-2024.) |
| Ref | Expression |
|---|---|
| smndex1ibas.m | ⊢ 𝑀 = (EndoFMnd‘ℕ0) |
| smndex1ibas.n | ⊢ 𝑁 ∈ ℕ |
| smndex1ibas.i | ⊢ 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) |
| smndex1ibas.g | ⊢ 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0 ↦ 𝑛)) |
| Ref | Expression |
|---|---|
| smndex1igid | ⊢ (𝐾 ∈ (0..^𝑁) → (𝐼 ∘ (𝐺‘𝐾)) = (𝐺‘𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fconstmpt 5721 | . . . . 5 ⊢ (ℕ0 × {𝐾}) = (𝑥 ∈ ℕ0 ↦ 𝐾) | |
| 2 | 1 | eqcomi 2745 | . . . 4 ⊢ (𝑥 ∈ ℕ0 ↦ 𝐾) = (ℕ0 × {𝐾}) |
| 3 | 2 | a1i 11 | . . 3 ⊢ (𝐾 ∈ (0..^𝑁) → (𝑥 ∈ ℕ0 ↦ 𝐾) = (ℕ0 × {𝐾})) |
| 4 | 3 | coeq2d 5847 | . 2 ⊢ (𝐾 ∈ (0..^𝑁) → (𝐼 ∘ (𝑥 ∈ ℕ0 ↦ 𝐾)) = (𝐼 ∘ (ℕ0 × {𝐾}))) |
| 5 | simpl 482 | . . . . 5 ⊢ ((𝑛 = 𝐾 ∧ 𝑥 ∈ ℕ0) → 𝑛 = 𝐾) | |
| 6 | 5 | mpteq2dva 5219 | . . . 4 ⊢ (𝑛 = 𝐾 → (𝑥 ∈ ℕ0 ↦ 𝑛) = (𝑥 ∈ ℕ0 ↦ 𝐾)) |
| 7 | smndex1ibas.g | . . . 4 ⊢ 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0 ↦ 𝑛)) | |
| 8 | nn0ex 12512 | . . . . 5 ⊢ ℕ0 ∈ V | |
| 9 | 8 | mptex 7220 | . . . 4 ⊢ (𝑥 ∈ ℕ0 ↦ 𝐾) ∈ V |
| 10 | 6, 7, 9 | fvmpt 6991 | . . 3 ⊢ (𝐾 ∈ (0..^𝑁) → (𝐺‘𝐾) = (𝑥 ∈ ℕ0 ↦ 𝐾)) |
| 11 | 10 | coeq2d 5847 | . 2 ⊢ (𝐾 ∈ (0..^𝑁) → (𝐼 ∘ (𝐺‘𝐾)) = (𝐼 ∘ (𝑥 ∈ ℕ0 ↦ 𝐾))) |
| 12 | smndex1ibas.i | . . . . . . 7 ⊢ 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) | |
| 13 | oveq1 7417 | . . . . . . . 8 ⊢ (𝑥 = 𝐾 → (𝑥 mod 𝑁) = (𝐾 mod 𝑁)) | |
| 14 | zmodidfzoimp 13923 | . . . . . . . 8 ⊢ (𝐾 ∈ (0..^𝑁) → (𝐾 mod 𝑁) = 𝐾) | |
| 15 | 13, 14 | sylan9eqr 2793 | . . . . . . 7 ⊢ ((𝐾 ∈ (0..^𝑁) ∧ 𝑥 = 𝐾) → (𝑥 mod 𝑁) = 𝐾) |
| 16 | elfzonn0 13729 | . . . . . . 7 ⊢ (𝐾 ∈ (0..^𝑁) → 𝐾 ∈ ℕ0) | |
| 17 | 12, 15, 16, 16 | fvmptd2 6999 | . . . . . 6 ⊢ (𝐾 ∈ (0..^𝑁) → (𝐼‘𝐾) = 𝐾) |
| 18 | 17 | eqcomd 2742 | . . . . 5 ⊢ (𝐾 ∈ (0..^𝑁) → 𝐾 = (𝐼‘𝐾)) |
| 19 | 18 | sneqd 4618 | . . . 4 ⊢ (𝐾 ∈ (0..^𝑁) → {𝐾} = {(𝐼‘𝐾)}) |
| 20 | 19 | xpeq2d 5689 | . . 3 ⊢ (𝐾 ∈ (0..^𝑁) → (ℕ0 × {𝐾}) = (ℕ0 × {(𝐼‘𝐾)})) |
| 21 | 10, 2 | eqtrdi 2787 | . . 3 ⊢ (𝐾 ∈ (0..^𝑁) → (𝐺‘𝐾) = (ℕ0 × {𝐾})) |
| 22 | ovex 7443 | . . . . 5 ⊢ (𝑥 mod 𝑁) ∈ V | |
| 23 | 22, 12 | fnmpti 6686 | . . . 4 ⊢ 𝐼 Fn ℕ0 |
| 24 | fcoconst 7129 | . . . 4 ⊢ ((𝐼 Fn ℕ0 ∧ 𝐾 ∈ ℕ0) → (𝐼 ∘ (ℕ0 × {𝐾})) = (ℕ0 × {(𝐼‘𝐾)})) | |
| 25 | 23, 16, 24 | sylancr 587 | . . 3 ⊢ (𝐾 ∈ (0..^𝑁) → (𝐼 ∘ (ℕ0 × {𝐾})) = (ℕ0 × {(𝐼‘𝐾)})) |
| 26 | 20, 21, 25 | 3eqtr4d 2781 | . 2 ⊢ (𝐾 ∈ (0..^𝑁) → (𝐺‘𝐾) = (𝐼 ∘ (ℕ0 × {𝐾}))) |
| 27 | 4, 11, 26 | 3eqtr4d 2781 | 1 ⊢ (𝐾 ∈ (0..^𝑁) → (𝐼 ∘ (𝐺‘𝐾)) = (𝐺‘𝐾)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {csn 4606 ↦ cmpt 5206 × cxp 5657 ∘ ccom 5663 Fn wfn 6531 ‘cfv 6536 (class class class)co 7410 0cc0 11134 ℕcn 12245 ℕ0cn0 12506 ..^cfzo 13676 mod cmo 13891 EndoFMndcefmnd 18851 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-sup 9459 df-inf 9460 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-n0 12507 df-z 12594 df-uz 12858 df-rp 13014 df-fz 13530 df-fzo 13677 df-fl 13814 df-mod 13892 |
| This theorem is referenced by: smndex1mgm 18890 smndex1mndlem 18892 |
| Copyright terms: Public domain | W3C validator |