Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > smndex1igid | Structured version Visualization version GIF version |
Description: The composition of the modulo function 𝐼 and a constant function (𝐺‘𝐾) results in (𝐺‘𝐾) itself. (Contributed by AV, 14-Feb-2024.) |
Ref | Expression |
---|---|
smndex1ibas.m | ⊢ 𝑀 = (EndoFMnd‘ℕ0) |
smndex1ibas.n | ⊢ 𝑁 ∈ ℕ |
smndex1ibas.i | ⊢ 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) |
smndex1ibas.g | ⊢ 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0 ↦ 𝑛)) |
Ref | Expression |
---|---|
smndex1igid | ⊢ (𝐾 ∈ (0..^𝑁) → (𝐼 ∘ (𝐺‘𝐾)) = (𝐺‘𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fconstmpt 5611 | . . . . 5 ⊢ (ℕ0 × {𝐾}) = (𝑥 ∈ ℕ0 ↦ 𝐾) | |
2 | 1 | eqcomi 2746 | . . . 4 ⊢ (𝑥 ∈ ℕ0 ↦ 𝐾) = (ℕ0 × {𝐾}) |
3 | 2 | a1i 11 | . . 3 ⊢ (𝐾 ∈ (0..^𝑁) → (𝑥 ∈ ℕ0 ↦ 𝐾) = (ℕ0 × {𝐾})) |
4 | 3 | coeq2d 5731 | . 2 ⊢ (𝐾 ∈ (0..^𝑁) → (𝐼 ∘ (𝑥 ∈ ℕ0 ↦ 𝐾)) = (𝐼 ∘ (ℕ0 × {𝐾}))) |
5 | simpl 486 | . . . . 5 ⊢ ((𝑛 = 𝐾 ∧ 𝑥 ∈ ℕ0) → 𝑛 = 𝐾) | |
6 | 5 | mpteq2dva 5150 | . . . 4 ⊢ (𝑛 = 𝐾 → (𝑥 ∈ ℕ0 ↦ 𝑛) = (𝑥 ∈ ℕ0 ↦ 𝐾)) |
7 | smndex1ibas.g | . . . 4 ⊢ 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0 ↦ 𝑛)) | |
8 | nn0ex 12096 | . . . . 5 ⊢ ℕ0 ∈ V | |
9 | 8 | mptex 7039 | . . . 4 ⊢ (𝑥 ∈ ℕ0 ↦ 𝐾) ∈ V |
10 | 6, 7, 9 | fvmpt 6818 | . . 3 ⊢ (𝐾 ∈ (0..^𝑁) → (𝐺‘𝐾) = (𝑥 ∈ ℕ0 ↦ 𝐾)) |
11 | 10 | coeq2d 5731 | . 2 ⊢ (𝐾 ∈ (0..^𝑁) → (𝐼 ∘ (𝐺‘𝐾)) = (𝐼 ∘ (𝑥 ∈ ℕ0 ↦ 𝐾))) |
12 | smndex1ibas.i | . . . . . . 7 ⊢ 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) | |
13 | oveq1 7220 | . . . . . . . 8 ⊢ (𝑥 = 𝐾 → (𝑥 mod 𝑁) = (𝐾 mod 𝑁)) | |
14 | zmodidfzoimp 13474 | . . . . . . . 8 ⊢ (𝐾 ∈ (0..^𝑁) → (𝐾 mod 𝑁) = 𝐾) | |
15 | 13, 14 | sylan9eqr 2800 | . . . . . . 7 ⊢ ((𝐾 ∈ (0..^𝑁) ∧ 𝑥 = 𝐾) → (𝑥 mod 𝑁) = 𝐾) |
16 | elfzonn0 13287 | . . . . . . 7 ⊢ (𝐾 ∈ (0..^𝑁) → 𝐾 ∈ ℕ0) | |
17 | 12, 15, 16, 16 | fvmptd2 6826 | . . . . . 6 ⊢ (𝐾 ∈ (0..^𝑁) → (𝐼‘𝐾) = 𝐾) |
18 | 17 | eqcomd 2743 | . . . . 5 ⊢ (𝐾 ∈ (0..^𝑁) → 𝐾 = (𝐼‘𝐾)) |
19 | 18 | sneqd 4553 | . . . 4 ⊢ (𝐾 ∈ (0..^𝑁) → {𝐾} = {(𝐼‘𝐾)}) |
20 | 19 | xpeq2d 5581 | . . 3 ⊢ (𝐾 ∈ (0..^𝑁) → (ℕ0 × {𝐾}) = (ℕ0 × {(𝐼‘𝐾)})) |
21 | 10, 2 | eqtrdi 2794 | . . 3 ⊢ (𝐾 ∈ (0..^𝑁) → (𝐺‘𝐾) = (ℕ0 × {𝐾})) |
22 | ovex 7246 | . . . . 5 ⊢ (𝑥 mod 𝑁) ∈ V | |
23 | 22, 12 | fnmpti 6521 | . . . 4 ⊢ 𝐼 Fn ℕ0 |
24 | fcoconst 6949 | . . . 4 ⊢ ((𝐼 Fn ℕ0 ∧ 𝐾 ∈ ℕ0) → (𝐼 ∘ (ℕ0 × {𝐾})) = (ℕ0 × {(𝐼‘𝐾)})) | |
25 | 23, 16, 24 | sylancr 590 | . . 3 ⊢ (𝐾 ∈ (0..^𝑁) → (𝐼 ∘ (ℕ0 × {𝐾})) = (ℕ0 × {(𝐼‘𝐾)})) |
26 | 20, 21, 25 | 3eqtr4d 2787 | . 2 ⊢ (𝐾 ∈ (0..^𝑁) → (𝐺‘𝐾) = (𝐼 ∘ (ℕ0 × {𝐾}))) |
27 | 4, 11, 26 | 3eqtr4d 2787 | 1 ⊢ (𝐾 ∈ (0..^𝑁) → (𝐼 ∘ (𝐺‘𝐾)) = (𝐺‘𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∈ wcel 2110 {csn 4541 ↦ cmpt 5135 × cxp 5549 ∘ ccom 5555 Fn wfn 6375 ‘cfv 6380 (class class class)co 7213 0cc0 10729 ℕcn 11830 ℕ0cn0 12090 ..^cfzo 13238 mod cmo 13442 EndoFMndcefmnd 18295 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 ax-pre-sup 10807 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-sup 9058 df-inf 9059 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-div 11490 df-nn 11831 df-n0 12091 df-z 12177 df-uz 12439 df-rp 12587 df-fz 13096 df-fzo 13239 df-fl 13367 df-mod 13443 |
This theorem is referenced by: smndex1mgm 18334 smndex1mndlem 18336 |
Copyright terms: Public domain | W3C validator |