![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > smndex1igid | Structured version Visualization version GIF version |
Description: The composition of the modulo function πΌ and a constant function (πΊβπΎ) results in (πΊβπΎ) itself. (Contributed by AV, 14-Feb-2024.) |
Ref | Expression |
---|---|
smndex1ibas.m | β’ π = (EndoFMndββ0) |
smndex1ibas.n | β’ π β β |
smndex1ibas.i | β’ πΌ = (π₯ β β0 β¦ (π₯ mod π)) |
smndex1ibas.g | β’ πΊ = (π β (0..^π) β¦ (π₯ β β0 β¦ π)) |
Ref | Expression |
---|---|
smndex1igid | β’ (πΎ β (0..^π) β (πΌ β (πΊβπΎ)) = (πΊβπΎ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fconstmpt 5736 | . . . . 5 β’ (β0 Γ {πΎ}) = (π₯ β β0 β¦ πΎ) | |
2 | 1 | eqcomi 2741 | . . . 4 β’ (π₯ β β0 β¦ πΎ) = (β0 Γ {πΎ}) |
3 | 2 | a1i 11 | . . 3 β’ (πΎ β (0..^π) β (π₯ β β0 β¦ πΎ) = (β0 Γ {πΎ})) |
4 | 3 | coeq2d 5860 | . 2 β’ (πΎ β (0..^π) β (πΌ β (π₯ β β0 β¦ πΎ)) = (πΌ β (β0 Γ {πΎ}))) |
5 | simpl 483 | . . . . 5 β’ ((π = πΎ β§ π₯ β β0) β π = πΎ) | |
6 | 5 | mpteq2dva 5247 | . . . 4 β’ (π = πΎ β (π₯ β β0 β¦ π) = (π₯ β β0 β¦ πΎ)) |
7 | smndex1ibas.g | . . . 4 β’ πΊ = (π β (0..^π) β¦ (π₯ β β0 β¦ π)) | |
8 | nn0ex 12474 | . . . . 5 β’ β0 β V | |
9 | 8 | mptex 7221 | . . . 4 β’ (π₯ β β0 β¦ πΎ) β V |
10 | 6, 7, 9 | fvmpt 6995 | . . 3 β’ (πΎ β (0..^π) β (πΊβπΎ) = (π₯ β β0 β¦ πΎ)) |
11 | 10 | coeq2d 5860 | . 2 β’ (πΎ β (0..^π) β (πΌ β (πΊβπΎ)) = (πΌ β (π₯ β β0 β¦ πΎ))) |
12 | smndex1ibas.i | . . . . . . 7 β’ πΌ = (π₯ β β0 β¦ (π₯ mod π)) | |
13 | oveq1 7412 | . . . . . . . 8 β’ (π₯ = πΎ β (π₯ mod π) = (πΎ mod π)) | |
14 | zmodidfzoimp 13862 | . . . . . . . 8 β’ (πΎ β (0..^π) β (πΎ mod π) = πΎ) | |
15 | 13, 14 | sylan9eqr 2794 | . . . . . . 7 β’ ((πΎ β (0..^π) β§ π₯ = πΎ) β (π₯ mod π) = πΎ) |
16 | elfzonn0 13673 | . . . . . . 7 β’ (πΎ β (0..^π) β πΎ β β0) | |
17 | 12, 15, 16, 16 | fvmptd2 7003 | . . . . . 6 β’ (πΎ β (0..^π) β (πΌβπΎ) = πΎ) |
18 | 17 | eqcomd 2738 | . . . . 5 β’ (πΎ β (0..^π) β πΎ = (πΌβπΎ)) |
19 | 18 | sneqd 4639 | . . . 4 β’ (πΎ β (0..^π) β {πΎ} = {(πΌβπΎ)}) |
20 | 19 | xpeq2d 5705 | . . 3 β’ (πΎ β (0..^π) β (β0 Γ {πΎ}) = (β0 Γ {(πΌβπΎ)})) |
21 | 10, 2 | eqtrdi 2788 | . . 3 β’ (πΎ β (0..^π) β (πΊβπΎ) = (β0 Γ {πΎ})) |
22 | ovex 7438 | . . . . 5 β’ (π₯ mod π) β V | |
23 | 22, 12 | fnmpti 6690 | . . . 4 β’ πΌ Fn β0 |
24 | fcoconst 7128 | . . . 4 β’ ((πΌ Fn β0 β§ πΎ β β0) β (πΌ β (β0 Γ {πΎ})) = (β0 Γ {(πΌβπΎ)})) | |
25 | 23, 16, 24 | sylancr 587 | . . 3 β’ (πΎ β (0..^π) β (πΌ β (β0 Γ {πΎ})) = (β0 Γ {(πΌβπΎ)})) |
26 | 20, 21, 25 | 3eqtr4d 2782 | . 2 β’ (πΎ β (0..^π) β (πΊβπΎ) = (πΌ β (β0 Γ {πΎ}))) |
27 | 4, 11, 26 | 3eqtr4d 2782 | 1 β’ (πΎ β (0..^π) β (πΌ β (πΊβπΎ)) = (πΊβπΎ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β wcel 2106 {csn 4627 β¦ cmpt 5230 Γ cxp 5673 β ccom 5679 Fn wfn 6535 βcfv 6540 (class class class)co 7405 0cc0 11106 βcn 12208 β0cn0 12468 ..^cfzo 13623 mod cmo 13830 EndoFMndcefmnd 18745 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-sup 9433 df-inf 9434 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-n0 12469 df-z 12555 df-uz 12819 df-rp 12971 df-fz 13481 df-fzo 13624 df-fl 13753 df-mod 13831 |
This theorem is referenced by: smndex1mgm 18784 smndex1mndlem 18786 |
Copyright terms: Public domain | W3C validator |