MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smndex1igid Structured version   Visualization version   GIF version

Theorem smndex1igid 18820
Description: The composition of the modulo function 𝐼 and a constant function (𝐺𝐾) results in (𝐺𝐾) itself. (Contributed by AV, 14-Feb-2024.)
Hypotheses
Ref Expression
smndex1ibas.m 𝑀 = (EndoFMnd‘ℕ0)
smndex1ibas.n 𝑁 ∈ ℕ
smndex1ibas.i 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))
smndex1ibas.g 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛))
Assertion
Ref Expression
smndex1igid (𝐾 ∈ (0..^𝑁) → (𝐼 ∘ (𝐺𝐾)) = (𝐺𝐾))
Distinct variable groups:   𝑥,𝑁   𝑛,𝐾,𝑥   𝑛,𝑁   𝑥,𝑀
Allowed substitution hints:   𝐺(𝑥,𝑛)   𝐼(𝑥,𝑛)   𝑀(𝑛)

Proof of Theorem smndex1igid
StepHypRef Expression
1 fconstmpt 5683 . . . . 5 (ℕ0 × {𝐾}) = (𝑥 ∈ ℕ0𝐾)
21eqcomi 2742 . . . 4 (𝑥 ∈ ℕ0𝐾) = (ℕ0 × {𝐾})
32a1i 11 . . 3 (𝐾 ∈ (0..^𝑁) → (𝑥 ∈ ℕ0𝐾) = (ℕ0 × {𝐾}))
43coeq2d 5808 . 2 (𝐾 ∈ (0..^𝑁) → (𝐼 ∘ (𝑥 ∈ ℕ0𝐾)) = (𝐼 ∘ (ℕ0 × {𝐾})))
5 simpl 482 . . . . 5 ((𝑛 = 𝐾𝑥 ∈ ℕ0) → 𝑛 = 𝐾)
65mpteq2dva 5188 . . . 4 (𝑛 = 𝐾 → (𝑥 ∈ ℕ0𝑛) = (𝑥 ∈ ℕ0𝐾))
7 smndex1ibas.g . . . 4 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛))
8 nn0ex 12398 . . . . 5 0 ∈ V
98mptex 7166 . . . 4 (𝑥 ∈ ℕ0𝐾) ∈ V
106, 7, 9fvmpt 6938 . . 3 (𝐾 ∈ (0..^𝑁) → (𝐺𝐾) = (𝑥 ∈ ℕ0𝐾))
1110coeq2d 5808 . 2 (𝐾 ∈ (0..^𝑁) → (𝐼 ∘ (𝐺𝐾)) = (𝐼 ∘ (𝑥 ∈ ℕ0𝐾)))
12 smndex1ibas.i . . . . . . 7 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))
13 oveq1 7362 . . . . . . . 8 (𝑥 = 𝐾 → (𝑥 mod 𝑁) = (𝐾 mod 𝑁))
14 zmodidfzoimp 13812 . . . . . . . 8 (𝐾 ∈ (0..^𝑁) → (𝐾 mod 𝑁) = 𝐾)
1513, 14sylan9eqr 2790 . . . . . . 7 ((𝐾 ∈ (0..^𝑁) ∧ 𝑥 = 𝐾) → (𝑥 mod 𝑁) = 𝐾)
16 elfzonn0 13614 . . . . . . 7 (𝐾 ∈ (0..^𝑁) → 𝐾 ∈ ℕ0)
1712, 15, 16, 16fvmptd2 6946 . . . . . 6 (𝐾 ∈ (0..^𝑁) → (𝐼𝐾) = 𝐾)
1817eqcomd 2739 . . . . 5 (𝐾 ∈ (0..^𝑁) → 𝐾 = (𝐼𝐾))
1918sneqd 4589 . . . 4 (𝐾 ∈ (0..^𝑁) → {𝐾} = {(𝐼𝐾)})
2019xpeq2d 5651 . . 3 (𝐾 ∈ (0..^𝑁) → (ℕ0 × {𝐾}) = (ℕ0 × {(𝐼𝐾)}))
2110, 2eqtrdi 2784 . . 3 (𝐾 ∈ (0..^𝑁) → (𝐺𝐾) = (ℕ0 × {𝐾}))
22 ovex 7388 . . . . 5 (𝑥 mod 𝑁) ∈ V
2322, 12fnmpti 6632 . . . 4 𝐼 Fn ℕ0
24 fcoconst 7076 . . . 4 ((𝐼 Fn ℕ0𝐾 ∈ ℕ0) → (𝐼 ∘ (ℕ0 × {𝐾})) = (ℕ0 × {(𝐼𝐾)}))
2523, 16, 24sylancr 587 . . 3 (𝐾 ∈ (0..^𝑁) → (𝐼 ∘ (ℕ0 × {𝐾})) = (ℕ0 × {(𝐼𝐾)}))
2620, 21, 253eqtr4d 2778 . 2 (𝐾 ∈ (0..^𝑁) → (𝐺𝐾) = (𝐼 ∘ (ℕ0 × {𝐾})))
274, 11, 263eqtr4d 2778 1 (𝐾 ∈ (0..^𝑁) → (𝐼 ∘ (𝐺𝐾)) = (𝐺𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  {csn 4577  cmpt 5176   × cxp 5619  ccom 5625   Fn wfn 6484  cfv 6489  (class class class)co 7355  0cc0 11017  cn 12136  0cn0 12392  ..^cfzo 13561   mod cmo 13780  EndoFMndcefmnd 18784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094  ax-pre-sup 11095
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9337  df-inf 9338  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786  df-nn 12137  df-n0 12393  df-z 12480  df-uz 12743  df-rp 12897  df-fz 13415  df-fzo 13562  df-fl 13703  df-mod 13781
This theorem is referenced by:  smndex1mgm  18823  smndex1mndlem  18825
  Copyright terms: Public domain W3C validator