| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > smndex1igid | Structured version Visualization version GIF version | ||
| Description: The composition of the modulo function 𝐼 and a constant function (𝐺‘𝐾) results in (𝐺‘𝐾) itself. (Contributed by AV, 14-Feb-2024.) |
| Ref | Expression |
|---|---|
| smndex1ibas.m | ⊢ 𝑀 = (EndoFMnd‘ℕ0) |
| smndex1ibas.n | ⊢ 𝑁 ∈ ℕ |
| smndex1ibas.i | ⊢ 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) |
| smndex1ibas.g | ⊢ 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0 ↦ 𝑛)) |
| Ref | Expression |
|---|---|
| smndex1igid | ⊢ (𝐾 ∈ (0..^𝑁) → (𝐼 ∘ (𝐺‘𝐾)) = (𝐺‘𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fconstmpt 5678 | . . . . 5 ⊢ (ℕ0 × {𝐾}) = (𝑥 ∈ ℕ0 ↦ 𝐾) | |
| 2 | 1 | eqcomi 2740 | . . . 4 ⊢ (𝑥 ∈ ℕ0 ↦ 𝐾) = (ℕ0 × {𝐾}) |
| 3 | 2 | a1i 11 | . . 3 ⊢ (𝐾 ∈ (0..^𝑁) → (𝑥 ∈ ℕ0 ↦ 𝐾) = (ℕ0 × {𝐾})) |
| 4 | 3 | coeq2d 5802 | . 2 ⊢ (𝐾 ∈ (0..^𝑁) → (𝐼 ∘ (𝑥 ∈ ℕ0 ↦ 𝐾)) = (𝐼 ∘ (ℕ0 × {𝐾}))) |
| 5 | simpl 482 | . . . . 5 ⊢ ((𝑛 = 𝐾 ∧ 𝑥 ∈ ℕ0) → 𝑛 = 𝐾) | |
| 6 | 5 | mpteq2dva 5184 | . . . 4 ⊢ (𝑛 = 𝐾 → (𝑥 ∈ ℕ0 ↦ 𝑛) = (𝑥 ∈ ℕ0 ↦ 𝐾)) |
| 7 | smndex1ibas.g | . . . 4 ⊢ 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0 ↦ 𝑛)) | |
| 8 | nn0ex 12387 | . . . . 5 ⊢ ℕ0 ∈ V | |
| 9 | 8 | mptex 7157 | . . . 4 ⊢ (𝑥 ∈ ℕ0 ↦ 𝐾) ∈ V |
| 10 | 6, 7, 9 | fvmpt 6929 | . . 3 ⊢ (𝐾 ∈ (0..^𝑁) → (𝐺‘𝐾) = (𝑥 ∈ ℕ0 ↦ 𝐾)) |
| 11 | 10 | coeq2d 5802 | . 2 ⊢ (𝐾 ∈ (0..^𝑁) → (𝐼 ∘ (𝐺‘𝐾)) = (𝐼 ∘ (𝑥 ∈ ℕ0 ↦ 𝐾))) |
| 12 | smndex1ibas.i | . . . . . . 7 ⊢ 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) | |
| 13 | oveq1 7353 | . . . . . . . 8 ⊢ (𝑥 = 𝐾 → (𝑥 mod 𝑁) = (𝐾 mod 𝑁)) | |
| 14 | zmodidfzoimp 13805 | . . . . . . . 8 ⊢ (𝐾 ∈ (0..^𝑁) → (𝐾 mod 𝑁) = 𝐾) | |
| 15 | 13, 14 | sylan9eqr 2788 | . . . . . . 7 ⊢ ((𝐾 ∈ (0..^𝑁) ∧ 𝑥 = 𝐾) → (𝑥 mod 𝑁) = 𝐾) |
| 16 | elfzonn0 13607 | . . . . . . 7 ⊢ (𝐾 ∈ (0..^𝑁) → 𝐾 ∈ ℕ0) | |
| 17 | 12, 15, 16, 16 | fvmptd2 6937 | . . . . . 6 ⊢ (𝐾 ∈ (0..^𝑁) → (𝐼‘𝐾) = 𝐾) |
| 18 | 17 | eqcomd 2737 | . . . . 5 ⊢ (𝐾 ∈ (0..^𝑁) → 𝐾 = (𝐼‘𝐾)) |
| 19 | 18 | sneqd 4588 | . . . 4 ⊢ (𝐾 ∈ (0..^𝑁) → {𝐾} = {(𝐼‘𝐾)}) |
| 20 | 19 | xpeq2d 5646 | . . 3 ⊢ (𝐾 ∈ (0..^𝑁) → (ℕ0 × {𝐾}) = (ℕ0 × {(𝐼‘𝐾)})) |
| 21 | 10, 2 | eqtrdi 2782 | . . 3 ⊢ (𝐾 ∈ (0..^𝑁) → (𝐺‘𝐾) = (ℕ0 × {𝐾})) |
| 22 | ovex 7379 | . . . . 5 ⊢ (𝑥 mod 𝑁) ∈ V | |
| 23 | 22, 12 | fnmpti 6624 | . . . 4 ⊢ 𝐼 Fn ℕ0 |
| 24 | fcoconst 7067 | . . . 4 ⊢ ((𝐼 Fn ℕ0 ∧ 𝐾 ∈ ℕ0) → (𝐼 ∘ (ℕ0 × {𝐾})) = (ℕ0 × {(𝐼‘𝐾)})) | |
| 25 | 23, 16, 24 | sylancr 587 | . . 3 ⊢ (𝐾 ∈ (0..^𝑁) → (𝐼 ∘ (ℕ0 × {𝐾})) = (ℕ0 × {(𝐼‘𝐾)})) |
| 26 | 20, 21, 25 | 3eqtr4d 2776 | . 2 ⊢ (𝐾 ∈ (0..^𝑁) → (𝐺‘𝐾) = (𝐼 ∘ (ℕ0 × {𝐾}))) |
| 27 | 4, 11, 26 | 3eqtr4d 2776 | 1 ⊢ (𝐾 ∈ (0..^𝑁) → (𝐼 ∘ (𝐺‘𝐾)) = (𝐺‘𝐾)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 {csn 4576 ↦ cmpt 5172 × cxp 5614 ∘ ccom 5620 Fn wfn 6476 ‘cfv 6481 (class class class)co 7346 0cc0 11006 ℕcn 12125 ℕ0cn0 12381 ..^cfzo 13554 mod cmo 13773 EndoFMndcefmnd 18776 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-inf 9327 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-n0 12382 df-z 12469 df-uz 12733 df-rp 12891 df-fz 13408 df-fzo 13555 df-fl 13696 df-mod 13774 |
| This theorem is referenced by: smndex1mgm 18815 smndex1mndlem 18817 |
| Copyright terms: Public domain | W3C validator |