MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smndex1igid Structured version   Visualization version   GIF version

Theorem smndex1igid 18831
Description: The composition of the modulo function 𝐼 and a constant function (𝐺𝐾) results in (𝐺𝐾) itself. (Contributed by AV, 14-Feb-2024.)
Hypotheses
Ref Expression
smndex1ibas.m 𝑀 = (EndoFMnd‘ℕ0)
smndex1ibas.n 𝑁 ∈ ℕ
smndex1ibas.i 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))
smndex1ibas.g 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛))
Assertion
Ref Expression
smndex1igid (𝐾 ∈ (0..^𝑁) → (𝐼 ∘ (𝐺𝐾)) = (𝐺𝐾))
Distinct variable groups:   𝑥,𝑁   𝑛,𝐾,𝑥   𝑛,𝑁   𝑥,𝑀
Allowed substitution hints:   𝐺(𝑥,𝑛)   𝐼(𝑥,𝑛)   𝑀(𝑛)

Proof of Theorem smndex1igid
StepHypRef Expression
1 fconstmpt 5700 . . . . 5 (ℕ0 × {𝐾}) = (𝑥 ∈ ℕ0𝐾)
21eqcomi 2738 . . . 4 (𝑥 ∈ ℕ0𝐾) = (ℕ0 × {𝐾})
32a1i 11 . . 3 (𝐾 ∈ (0..^𝑁) → (𝑥 ∈ ℕ0𝐾) = (ℕ0 × {𝐾}))
43coeq2d 5826 . 2 (𝐾 ∈ (0..^𝑁) → (𝐼 ∘ (𝑥 ∈ ℕ0𝐾)) = (𝐼 ∘ (ℕ0 × {𝐾})))
5 simpl 482 . . . . 5 ((𝑛 = 𝐾𝑥 ∈ ℕ0) → 𝑛 = 𝐾)
65mpteq2dva 5200 . . . 4 (𝑛 = 𝐾 → (𝑥 ∈ ℕ0𝑛) = (𝑥 ∈ ℕ0𝐾))
7 smndex1ibas.g . . . 4 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛))
8 nn0ex 12448 . . . . 5 0 ∈ V
98mptex 7197 . . . 4 (𝑥 ∈ ℕ0𝐾) ∈ V
106, 7, 9fvmpt 6968 . . 3 (𝐾 ∈ (0..^𝑁) → (𝐺𝐾) = (𝑥 ∈ ℕ0𝐾))
1110coeq2d 5826 . 2 (𝐾 ∈ (0..^𝑁) → (𝐼 ∘ (𝐺𝐾)) = (𝐼 ∘ (𝑥 ∈ ℕ0𝐾)))
12 smndex1ibas.i . . . . . . 7 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))
13 oveq1 7394 . . . . . . . 8 (𝑥 = 𝐾 → (𝑥 mod 𝑁) = (𝐾 mod 𝑁))
14 zmodidfzoimp 13863 . . . . . . . 8 (𝐾 ∈ (0..^𝑁) → (𝐾 mod 𝑁) = 𝐾)
1513, 14sylan9eqr 2786 . . . . . . 7 ((𝐾 ∈ (0..^𝑁) ∧ 𝑥 = 𝐾) → (𝑥 mod 𝑁) = 𝐾)
16 elfzonn0 13668 . . . . . . 7 (𝐾 ∈ (0..^𝑁) → 𝐾 ∈ ℕ0)
1712, 15, 16, 16fvmptd2 6976 . . . . . 6 (𝐾 ∈ (0..^𝑁) → (𝐼𝐾) = 𝐾)
1817eqcomd 2735 . . . . 5 (𝐾 ∈ (0..^𝑁) → 𝐾 = (𝐼𝐾))
1918sneqd 4601 . . . 4 (𝐾 ∈ (0..^𝑁) → {𝐾} = {(𝐼𝐾)})
2019xpeq2d 5668 . . 3 (𝐾 ∈ (0..^𝑁) → (ℕ0 × {𝐾}) = (ℕ0 × {(𝐼𝐾)}))
2110, 2eqtrdi 2780 . . 3 (𝐾 ∈ (0..^𝑁) → (𝐺𝐾) = (ℕ0 × {𝐾}))
22 ovex 7420 . . . . 5 (𝑥 mod 𝑁) ∈ V
2322, 12fnmpti 6661 . . . 4 𝐼 Fn ℕ0
24 fcoconst 7106 . . . 4 ((𝐼 Fn ℕ0𝐾 ∈ ℕ0) → (𝐼 ∘ (ℕ0 × {𝐾})) = (ℕ0 × {(𝐼𝐾)}))
2523, 16, 24sylancr 587 . . 3 (𝐾 ∈ (0..^𝑁) → (𝐼 ∘ (ℕ0 × {𝐾})) = (ℕ0 × {(𝐼𝐾)}))
2620, 21, 253eqtr4d 2774 . 2 (𝐾 ∈ (0..^𝑁) → (𝐺𝐾) = (𝐼 ∘ (ℕ0 × {𝐾})))
274, 11, 263eqtr4d 2774 1 (𝐾 ∈ (0..^𝑁) → (𝐼 ∘ (𝐺𝐾)) = (𝐺𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {csn 4589  cmpt 5188   × cxp 5636  ccom 5642   Fn wfn 6506  cfv 6511  (class class class)co 7387  0cc0 11068  cn 12186  0cn0 12442  ..^cfzo 13615   mod cmo 13831  EndoFMndcefmnd 18795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832
This theorem is referenced by:  smndex1mgm  18834  smndex1mndlem  18836
  Copyright terms: Public domain W3C validator