MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smndex1igid Structured version   Visualization version   GIF version

Theorem smndex1igid 18543
Description: The composition of the modulo function 𝐼 and a constant function (𝐺𝐾) results in (𝐺𝐾) itself. (Contributed by AV, 14-Feb-2024.)
Hypotheses
Ref Expression
smndex1ibas.m 𝑀 = (EndoFMnd‘ℕ0)
smndex1ibas.n 𝑁 ∈ ℕ
smndex1ibas.i 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))
smndex1ibas.g 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛))
Assertion
Ref Expression
smndex1igid (𝐾 ∈ (0..^𝑁) → (𝐼 ∘ (𝐺𝐾)) = (𝐺𝐾))
Distinct variable groups:   𝑥,𝑁   𝑛,𝐾,𝑥   𝑛,𝑁   𝑥,𝑀
Allowed substitution hints:   𝐺(𝑥,𝑛)   𝐼(𝑥,𝑛)   𝑀(𝑛)

Proof of Theorem smndex1igid
StepHypRef Expression
1 fconstmpt 5649 . . . . 5 (ℕ0 × {𝐾}) = (𝑥 ∈ ℕ0𝐾)
21eqcomi 2747 . . . 4 (𝑥 ∈ ℕ0𝐾) = (ℕ0 × {𝐾})
32a1i 11 . . 3 (𝐾 ∈ (0..^𝑁) → (𝑥 ∈ ℕ0𝐾) = (ℕ0 × {𝐾}))
43coeq2d 5771 . 2 (𝐾 ∈ (0..^𝑁) → (𝐼 ∘ (𝑥 ∈ ℕ0𝐾)) = (𝐼 ∘ (ℕ0 × {𝐾})))
5 simpl 483 . . . . 5 ((𝑛 = 𝐾𝑥 ∈ ℕ0) → 𝑛 = 𝐾)
65mpteq2dva 5174 . . . 4 (𝑛 = 𝐾 → (𝑥 ∈ ℕ0𝑛) = (𝑥 ∈ ℕ0𝐾))
7 smndex1ibas.g . . . 4 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛))
8 nn0ex 12239 . . . . 5 0 ∈ V
98mptex 7099 . . . 4 (𝑥 ∈ ℕ0𝐾) ∈ V
106, 7, 9fvmpt 6875 . . 3 (𝐾 ∈ (0..^𝑁) → (𝐺𝐾) = (𝑥 ∈ ℕ0𝐾))
1110coeq2d 5771 . 2 (𝐾 ∈ (0..^𝑁) → (𝐼 ∘ (𝐺𝐾)) = (𝐼 ∘ (𝑥 ∈ ℕ0𝐾)))
12 smndex1ibas.i . . . . . . 7 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))
13 oveq1 7282 . . . . . . . 8 (𝑥 = 𝐾 → (𝑥 mod 𝑁) = (𝐾 mod 𝑁))
14 zmodidfzoimp 13621 . . . . . . . 8 (𝐾 ∈ (0..^𝑁) → (𝐾 mod 𝑁) = 𝐾)
1513, 14sylan9eqr 2800 . . . . . . 7 ((𝐾 ∈ (0..^𝑁) ∧ 𝑥 = 𝐾) → (𝑥 mod 𝑁) = 𝐾)
16 elfzonn0 13432 . . . . . . 7 (𝐾 ∈ (0..^𝑁) → 𝐾 ∈ ℕ0)
1712, 15, 16, 16fvmptd2 6883 . . . . . 6 (𝐾 ∈ (0..^𝑁) → (𝐼𝐾) = 𝐾)
1817eqcomd 2744 . . . . 5 (𝐾 ∈ (0..^𝑁) → 𝐾 = (𝐼𝐾))
1918sneqd 4573 . . . 4 (𝐾 ∈ (0..^𝑁) → {𝐾} = {(𝐼𝐾)})
2019xpeq2d 5619 . . 3 (𝐾 ∈ (0..^𝑁) → (ℕ0 × {𝐾}) = (ℕ0 × {(𝐼𝐾)}))
2110, 2eqtrdi 2794 . . 3 (𝐾 ∈ (0..^𝑁) → (𝐺𝐾) = (ℕ0 × {𝐾}))
22 ovex 7308 . . . . 5 (𝑥 mod 𝑁) ∈ V
2322, 12fnmpti 6576 . . . 4 𝐼 Fn ℕ0
24 fcoconst 7006 . . . 4 ((𝐼 Fn ℕ0𝐾 ∈ ℕ0) → (𝐼 ∘ (ℕ0 × {𝐾})) = (ℕ0 × {(𝐼𝐾)}))
2523, 16, 24sylancr 587 . . 3 (𝐾 ∈ (0..^𝑁) → (𝐼 ∘ (ℕ0 × {𝐾})) = (ℕ0 × {(𝐼𝐾)}))
2620, 21, 253eqtr4d 2788 . 2 (𝐾 ∈ (0..^𝑁) → (𝐺𝐾) = (𝐼 ∘ (ℕ0 × {𝐾})))
274, 11, 263eqtr4d 2788 1 (𝐾 ∈ (0..^𝑁) → (𝐼 ∘ (𝐺𝐾)) = (𝐺𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  {csn 4561  cmpt 5157   × cxp 5587  ccom 5593   Fn wfn 6428  cfv 6433  (class class class)co 7275  0cc0 10871  cn 11973  0cn0 12233  ..^cfzo 13382   mod cmo 13589  EndoFMndcefmnd 18507
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590
This theorem is referenced by:  smndex1mgm  18546  smndex1mndlem  18548
  Copyright terms: Public domain W3C validator