![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > smndex1igid | Structured version Visualization version GIF version |
Description: The composition of the modulo function πΌ and a constant function (πΊβπΎ) results in (πΊβπΎ) itself. (Contributed by AV, 14-Feb-2024.) |
Ref | Expression |
---|---|
smndex1ibas.m | β’ π = (EndoFMndββ0) |
smndex1ibas.n | β’ π β β |
smndex1ibas.i | β’ πΌ = (π₯ β β0 β¦ (π₯ mod π)) |
smndex1ibas.g | β’ πΊ = (π β (0..^π) β¦ (π₯ β β0 β¦ π)) |
Ref | Expression |
---|---|
smndex1igid | β’ (πΎ β (0..^π) β (πΌ β (πΊβπΎ)) = (πΊβπΎ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fconstmpt 5734 | . . . . 5 β’ (β0 Γ {πΎ}) = (π₯ β β0 β¦ πΎ) | |
2 | 1 | eqcomi 2734 | . . . 4 β’ (π₯ β β0 β¦ πΎ) = (β0 Γ {πΎ}) |
3 | 2 | a1i 11 | . . 3 β’ (πΎ β (0..^π) β (π₯ β β0 β¦ πΎ) = (β0 Γ {πΎ})) |
4 | 3 | coeq2d 5859 | . 2 β’ (πΎ β (0..^π) β (πΌ β (π₯ β β0 β¦ πΎ)) = (πΌ β (β0 Γ {πΎ}))) |
5 | simpl 481 | . . . . 5 β’ ((π = πΎ β§ π₯ β β0) β π = πΎ) | |
6 | 5 | mpteq2dva 5243 | . . . 4 β’ (π = πΎ β (π₯ β β0 β¦ π) = (π₯ β β0 β¦ πΎ)) |
7 | smndex1ibas.g | . . . 4 β’ πΊ = (π β (0..^π) β¦ (π₯ β β0 β¦ π)) | |
8 | nn0ex 12506 | . . . . 5 β’ β0 β V | |
9 | 8 | mptex 7230 | . . . 4 β’ (π₯ β β0 β¦ πΎ) β V |
10 | 6, 7, 9 | fvmpt 6999 | . . 3 β’ (πΎ β (0..^π) β (πΊβπΎ) = (π₯ β β0 β¦ πΎ)) |
11 | 10 | coeq2d 5859 | . 2 β’ (πΎ β (0..^π) β (πΌ β (πΊβπΎ)) = (πΌ β (π₯ β β0 β¦ πΎ))) |
12 | smndex1ibas.i | . . . . . . 7 β’ πΌ = (π₯ β β0 β¦ (π₯ mod π)) | |
13 | oveq1 7422 | . . . . . . . 8 β’ (π₯ = πΎ β (π₯ mod π) = (πΎ mod π)) | |
14 | zmodidfzoimp 13896 | . . . . . . . 8 β’ (πΎ β (0..^π) β (πΎ mod π) = πΎ) | |
15 | 13, 14 | sylan9eqr 2787 | . . . . . . 7 β’ ((πΎ β (0..^π) β§ π₯ = πΎ) β (π₯ mod π) = πΎ) |
16 | elfzonn0 13707 | . . . . . . 7 β’ (πΎ β (0..^π) β πΎ β β0) | |
17 | 12, 15, 16, 16 | fvmptd2 7007 | . . . . . 6 β’ (πΎ β (0..^π) β (πΌβπΎ) = πΎ) |
18 | 17 | eqcomd 2731 | . . . . 5 β’ (πΎ β (0..^π) β πΎ = (πΌβπΎ)) |
19 | 18 | sneqd 4636 | . . . 4 β’ (πΎ β (0..^π) β {πΎ} = {(πΌβπΎ)}) |
20 | 19 | xpeq2d 5702 | . . 3 β’ (πΎ β (0..^π) β (β0 Γ {πΎ}) = (β0 Γ {(πΌβπΎ)})) |
21 | 10, 2 | eqtrdi 2781 | . . 3 β’ (πΎ β (0..^π) β (πΊβπΎ) = (β0 Γ {πΎ})) |
22 | ovex 7448 | . . . . 5 β’ (π₯ mod π) β V | |
23 | 22, 12 | fnmpti 6692 | . . . 4 β’ πΌ Fn β0 |
24 | fcoconst 7138 | . . . 4 β’ ((πΌ Fn β0 β§ πΎ β β0) β (πΌ β (β0 Γ {πΎ})) = (β0 Γ {(πΌβπΎ)})) | |
25 | 23, 16, 24 | sylancr 585 | . . 3 β’ (πΎ β (0..^π) β (πΌ β (β0 Γ {πΎ})) = (β0 Γ {(πΌβπΎ)})) |
26 | 20, 21, 25 | 3eqtr4d 2775 | . 2 β’ (πΎ β (0..^π) β (πΊβπΎ) = (πΌ β (β0 Γ {πΎ}))) |
27 | 4, 11, 26 | 3eqtr4d 2775 | 1 β’ (πΎ β (0..^π) β (πΌ β (πΊβπΎ)) = (πΊβπΎ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 {csn 4624 β¦ cmpt 5226 Γ cxp 5670 β ccom 5676 Fn wfn 6537 βcfv 6542 (class class class)co 7415 0cc0 11136 βcn 12240 β0cn0 12500 ..^cfzo 13657 mod cmo 13864 EndoFMndcefmnd 18822 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 ax-pre-sup 11214 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3960 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7868 df-1st 7989 df-2nd 7990 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-er 8721 df-en 8961 df-dom 8962 df-sdom 8963 df-sup 9463 df-inf 9464 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11474 df-neg 11475 df-div 11900 df-nn 12241 df-n0 12501 df-z 12587 df-uz 12851 df-rp 13005 df-fz 13515 df-fzo 13658 df-fl 13787 df-mod 13865 |
This theorem is referenced by: smndex1mgm 18861 smndex1mndlem 18863 |
Copyright terms: Public domain | W3C validator |