Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > smndex1igid | Structured version Visualization version GIF version |
Description: The composition of the modulo function 𝐼 and a constant function (𝐺‘𝐾) results in (𝐺‘𝐾) itself. (Contributed by AV, 14-Feb-2024.) |
Ref | Expression |
---|---|
smndex1ibas.m | ⊢ 𝑀 = (EndoFMnd‘ℕ0) |
smndex1ibas.n | ⊢ 𝑁 ∈ ℕ |
smndex1ibas.i | ⊢ 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) |
smndex1ibas.g | ⊢ 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0 ↦ 𝑛)) |
Ref | Expression |
---|---|
smndex1igid | ⊢ (𝐾 ∈ (0..^𝑁) → (𝐼 ∘ (𝐺‘𝐾)) = (𝐺‘𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fconstmpt 5640 | . . . . 5 ⊢ (ℕ0 × {𝐾}) = (𝑥 ∈ ℕ0 ↦ 𝐾) | |
2 | 1 | eqcomi 2747 | . . . 4 ⊢ (𝑥 ∈ ℕ0 ↦ 𝐾) = (ℕ0 × {𝐾}) |
3 | 2 | a1i 11 | . . 3 ⊢ (𝐾 ∈ (0..^𝑁) → (𝑥 ∈ ℕ0 ↦ 𝐾) = (ℕ0 × {𝐾})) |
4 | 3 | coeq2d 5760 | . 2 ⊢ (𝐾 ∈ (0..^𝑁) → (𝐼 ∘ (𝑥 ∈ ℕ0 ↦ 𝐾)) = (𝐼 ∘ (ℕ0 × {𝐾}))) |
5 | simpl 482 | . . . . 5 ⊢ ((𝑛 = 𝐾 ∧ 𝑥 ∈ ℕ0) → 𝑛 = 𝐾) | |
6 | 5 | mpteq2dva 5170 | . . . 4 ⊢ (𝑛 = 𝐾 → (𝑥 ∈ ℕ0 ↦ 𝑛) = (𝑥 ∈ ℕ0 ↦ 𝐾)) |
7 | smndex1ibas.g | . . . 4 ⊢ 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0 ↦ 𝑛)) | |
8 | nn0ex 12169 | . . . . 5 ⊢ ℕ0 ∈ V | |
9 | 8 | mptex 7081 | . . . 4 ⊢ (𝑥 ∈ ℕ0 ↦ 𝐾) ∈ V |
10 | 6, 7, 9 | fvmpt 6857 | . . 3 ⊢ (𝐾 ∈ (0..^𝑁) → (𝐺‘𝐾) = (𝑥 ∈ ℕ0 ↦ 𝐾)) |
11 | 10 | coeq2d 5760 | . 2 ⊢ (𝐾 ∈ (0..^𝑁) → (𝐼 ∘ (𝐺‘𝐾)) = (𝐼 ∘ (𝑥 ∈ ℕ0 ↦ 𝐾))) |
12 | smndex1ibas.i | . . . . . . 7 ⊢ 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) | |
13 | oveq1 7262 | . . . . . . . 8 ⊢ (𝑥 = 𝐾 → (𝑥 mod 𝑁) = (𝐾 mod 𝑁)) | |
14 | zmodidfzoimp 13549 | . . . . . . . 8 ⊢ (𝐾 ∈ (0..^𝑁) → (𝐾 mod 𝑁) = 𝐾) | |
15 | 13, 14 | sylan9eqr 2801 | . . . . . . 7 ⊢ ((𝐾 ∈ (0..^𝑁) ∧ 𝑥 = 𝐾) → (𝑥 mod 𝑁) = 𝐾) |
16 | elfzonn0 13360 | . . . . . . 7 ⊢ (𝐾 ∈ (0..^𝑁) → 𝐾 ∈ ℕ0) | |
17 | 12, 15, 16, 16 | fvmptd2 6865 | . . . . . 6 ⊢ (𝐾 ∈ (0..^𝑁) → (𝐼‘𝐾) = 𝐾) |
18 | 17 | eqcomd 2744 | . . . . 5 ⊢ (𝐾 ∈ (0..^𝑁) → 𝐾 = (𝐼‘𝐾)) |
19 | 18 | sneqd 4570 | . . . 4 ⊢ (𝐾 ∈ (0..^𝑁) → {𝐾} = {(𝐼‘𝐾)}) |
20 | 19 | xpeq2d 5610 | . . 3 ⊢ (𝐾 ∈ (0..^𝑁) → (ℕ0 × {𝐾}) = (ℕ0 × {(𝐼‘𝐾)})) |
21 | 10, 2 | eqtrdi 2795 | . . 3 ⊢ (𝐾 ∈ (0..^𝑁) → (𝐺‘𝐾) = (ℕ0 × {𝐾})) |
22 | ovex 7288 | . . . . 5 ⊢ (𝑥 mod 𝑁) ∈ V | |
23 | 22, 12 | fnmpti 6560 | . . . 4 ⊢ 𝐼 Fn ℕ0 |
24 | fcoconst 6988 | . . . 4 ⊢ ((𝐼 Fn ℕ0 ∧ 𝐾 ∈ ℕ0) → (𝐼 ∘ (ℕ0 × {𝐾})) = (ℕ0 × {(𝐼‘𝐾)})) | |
25 | 23, 16, 24 | sylancr 586 | . . 3 ⊢ (𝐾 ∈ (0..^𝑁) → (𝐼 ∘ (ℕ0 × {𝐾})) = (ℕ0 × {(𝐼‘𝐾)})) |
26 | 20, 21, 25 | 3eqtr4d 2788 | . 2 ⊢ (𝐾 ∈ (0..^𝑁) → (𝐺‘𝐾) = (𝐼 ∘ (ℕ0 × {𝐾}))) |
27 | 4, 11, 26 | 3eqtr4d 2788 | 1 ⊢ (𝐾 ∈ (0..^𝑁) → (𝐼 ∘ (𝐺‘𝐾)) = (𝐺‘𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 {csn 4558 ↦ cmpt 5153 × cxp 5578 ∘ ccom 5584 Fn wfn 6413 ‘cfv 6418 (class class class)co 7255 0cc0 10802 ℕcn 11903 ℕ0cn0 12163 ..^cfzo 13311 mod cmo 13517 EndoFMndcefmnd 18422 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-fz 13169 df-fzo 13312 df-fl 13440 df-mod 13518 |
This theorem is referenced by: smndex1mgm 18461 smndex1mndlem 18463 |
Copyright terms: Public domain | W3C validator |