Step | Hyp | Ref
| Expression |
1 | | cvmliftpht.b |
. . . 4
⊢ 𝐵 = ∪
𝐶 |
2 | | cvmliftpht.m |
. . . 4
⊢ 𝑀 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃)) |
3 | | cvmliftpht.f |
. . . 4
⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
4 | | cvmliftphtlem.g |
. . . 4
⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) |
5 | | cvmliftpht.p |
. . . 4
⊢ (𝜑 → 𝑃 ∈ 𝐵) |
6 | | cvmliftpht.e |
. . . 4
⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) |
7 | 1, 2, 3, 4, 5, 6 | cvmliftiota 33263 |
. . 3
⊢ (𝜑 → (𝑀 ∈ (II Cn 𝐶) ∧ (𝐹 ∘ 𝑀) = 𝐺 ∧ (𝑀‘0) = 𝑃)) |
8 | 7 | simp1d 1141 |
. 2
⊢ (𝜑 → 𝑀 ∈ (II Cn 𝐶)) |
9 | | cvmliftpht.n |
. . . 4
⊢ 𝑁 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐻 ∧ (𝑓‘0) = 𝑃)) |
10 | | cvmliftphtlem.h |
. . . 4
⊢ (𝜑 → 𝐻 ∈ (II Cn 𝐽)) |
11 | | cvmliftphtlem.k |
. . . . . . 7
⊢ (𝜑 → 𝐾 ∈ (𝐺(PHtpy‘𝐽)𝐻)) |
12 | 4, 10, 11 | phtpy01 24148 |
. . . . . 6
⊢ (𝜑 → ((𝐺‘0) = (𝐻‘0) ∧ (𝐺‘1) = (𝐻‘1))) |
13 | 12 | simpld 495 |
. . . . 5
⊢ (𝜑 → (𝐺‘0) = (𝐻‘0)) |
14 | 6, 13 | eqtrd 2778 |
. . . 4
⊢ (𝜑 → (𝐹‘𝑃) = (𝐻‘0)) |
15 | 1, 9, 3, 10, 5, 14 | cvmliftiota 33263 |
. . 3
⊢ (𝜑 → (𝑁 ∈ (II Cn 𝐶) ∧ (𝐹 ∘ 𝑁) = 𝐻 ∧ (𝑁‘0) = 𝑃)) |
16 | 15 | simp1d 1141 |
. 2
⊢ (𝜑 → 𝑁 ∈ (II Cn 𝐶)) |
17 | | cvmliftphtlem.a |
. 2
⊢ (𝜑 → 𝐴 ∈ ((II ×t II) Cn
𝐶)) |
18 | | iitop 24043 |
. . . . . . . . . . . . . . . 16
⊢ II ∈
Top |
19 | | iiuni 24044 |
. . . . . . . . . . . . . . . 16
⊢ (0[,]1) =
∪ II |
20 | 18, 18, 19, 19 | txunii 22744 |
. . . . . . . . . . . . . . 15
⊢ ((0[,]1)
× (0[,]1)) = ∪ (II ×t
II) |
21 | 20, 1 | cnf 22397 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ ((II ×t
II) Cn 𝐶) → 𝐴:((0[,]1) ×
(0[,]1))⟶𝐵) |
22 | 17, 21 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐴:((0[,]1) × (0[,]1))⟶𝐵) |
23 | | 0elunit 13201 |
. . . . . . . . . . . . . 14
⊢ 0 ∈
(0[,]1) |
24 | | opelxpi 5626 |
. . . . . . . . . . . . . 14
⊢ ((𝑠 ∈ (0[,]1) ∧ 0 ∈
(0[,]1)) → 〈𝑠,
0〉 ∈ ((0[,]1) × (0[,]1))) |
25 | 23, 24 | mpan2 688 |
. . . . . . . . . . . . 13
⊢ (𝑠 ∈ (0[,]1) →
〈𝑠, 0〉 ∈
((0[,]1) × (0[,]1))) |
26 | | fvco3 6867 |
. . . . . . . . . . . . 13
⊢ ((𝐴:((0[,]1) ×
(0[,]1))⟶𝐵 ∧
〈𝑠, 0〉 ∈
((0[,]1) × (0[,]1))) → ((𝐹 ∘ 𝐴)‘〈𝑠, 0〉) = (𝐹‘(𝐴‘〈𝑠, 0〉))) |
27 | 22, 25, 26 | syl2an 596 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → ((𝐹 ∘ 𝐴)‘〈𝑠, 0〉) = (𝐹‘(𝐴‘〈𝑠, 0〉))) |
28 | | cvmliftphtlem.c |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐹 ∘ 𝐴) = 𝐾) |
29 | 28 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (𝐹 ∘ 𝐴) = 𝐾) |
30 | 29 | fveq1d 6776 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → ((𝐹 ∘ 𝐴)‘〈𝑠, 0〉) = (𝐾‘〈𝑠, 0〉)) |
31 | 27, 30 | eqtr3d 2780 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (𝐹‘(𝐴‘〈𝑠, 0〉)) = (𝐾‘〈𝑠, 0〉)) |
32 | | df-ov 7278 |
. . . . . . . . . . . 12
⊢ (𝑠𝐴0) = (𝐴‘〈𝑠, 0〉) |
33 | 32 | fveq2i 6777 |
. . . . . . . . . . 11
⊢ (𝐹‘(𝑠𝐴0)) = (𝐹‘(𝐴‘〈𝑠, 0〉)) |
34 | | df-ov 7278 |
. . . . . . . . . . 11
⊢ (𝑠𝐾0) = (𝐾‘〈𝑠, 0〉) |
35 | 31, 33, 34 | 3eqtr4g 2803 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (𝐹‘(𝑠𝐴0)) = (𝑠𝐾0)) |
36 | | iitopon 24042 |
. . . . . . . . . . . . 13
⊢ II ∈
(TopOn‘(0[,]1)) |
37 | 36 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → II ∈
(TopOn‘(0[,]1))) |
38 | 4, 10 | phtpyhtpy 24145 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐺(PHtpy‘𝐽)𝐻) ⊆ (𝐺(II Htpy 𝐽)𝐻)) |
39 | 38, 11 | sseldd 3922 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐾 ∈ (𝐺(II Htpy 𝐽)𝐻)) |
40 | 37, 4, 10, 39 | htpyi 24137 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → ((𝑠𝐾0) = (𝐺‘𝑠) ∧ (𝑠𝐾1) = (𝐻‘𝑠))) |
41 | 40 | simpld 495 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (𝑠𝐾0) = (𝐺‘𝑠)) |
42 | 35, 41 | eqtrd 2778 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (𝐹‘(𝑠𝐴0)) = (𝐺‘𝑠)) |
43 | 42 | mpteq2dva 5174 |
. . . . . . . 8
⊢ (𝜑 → (𝑠 ∈ (0[,]1) ↦ (𝐹‘(𝑠𝐴0))) = (𝑠 ∈ (0[,]1) ↦ (𝐺‘𝑠))) |
44 | | fovrn 7442 |
. . . . . . . . . . 11
⊢ ((𝐴:((0[,]1) ×
(0[,]1))⟶𝐵 ∧
𝑠 ∈ (0[,]1) ∧ 0
∈ (0[,]1)) → (𝑠𝐴0) ∈ 𝐵) |
45 | 23, 44 | mp3an3 1449 |
. . . . . . . . . 10
⊢ ((𝐴:((0[,]1) ×
(0[,]1))⟶𝐵 ∧
𝑠 ∈ (0[,]1)) →
(𝑠𝐴0) ∈ 𝐵) |
46 | 22, 45 | sylan 580 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (𝑠𝐴0) ∈ 𝐵) |
47 | | eqidd 2739 |
. . . . . . . . 9
⊢ (𝜑 → (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0)) = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0))) |
48 | | cvmcn 33224 |
. . . . . . . . . . . 12
⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹 ∈ (𝐶 Cn 𝐽)) |
49 | 3, 48 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 ∈ (𝐶 Cn 𝐽)) |
50 | | eqid 2738 |
. . . . . . . . . . . 12
⊢ ∪ 𝐽 =
∪ 𝐽 |
51 | 1, 50 | cnf 22397 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ (𝐶 Cn 𝐽) → 𝐹:𝐵⟶∪ 𝐽) |
52 | 49, 51 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹:𝐵⟶∪ 𝐽) |
53 | 52 | feqmptd 6837 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐹‘𝑥))) |
54 | | fveq2 6774 |
. . . . . . . . 9
⊢ (𝑥 = (𝑠𝐴0) → (𝐹‘𝑥) = (𝐹‘(𝑠𝐴0))) |
55 | 46, 47, 53, 54 | fmptco 7001 |
. . . . . . . 8
⊢ (𝜑 → (𝐹 ∘ (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0))) = (𝑠 ∈ (0[,]1) ↦ (𝐹‘(𝑠𝐴0)))) |
56 | 19, 50 | cnf 22397 |
. . . . . . . . . 10
⊢ (𝐺 ∈ (II Cn 𝐽) → 𝐺:(0[,]1)⟶∪
𝐽) |
57 | 4, 56 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐺:(0[,]1)⟶∪
𝐽) |
58 | 57 | feqmptd 6837 |
. . . . . . . 8
⊢ (𝜑 → 𝐺 = (𝑠 ∈ (0[,]1) ↦ (𝐺‘𝑠))) |
59 | 43, 55, 58 | 3eqtr4d 2788 |
. . . . . . 7
⊢ (𝜑 → (𝐹 ∘ (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0))) = 𝐺) |
60 | | cvmliftphtlem.0 |
. . . . . . 7
⊢ (𝜑 → (0𝐴0) = 𝑃) |
61 | 37 | cnmptid 22812 |
. . . . . . . . 9
⊢ (𝜑 → (𝑠 ∈ (0[,]1) ↦ 𝑠) ∈ (II Cn II)) |
62 | 23 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → 0 ∈
(0[,]1)) |
63 | 37, 37, 62 | cnmptc 22813 |
. . . . . . . . 9
⊢ (𝜑 → (𝑠 ∈ (0[,]1) ↦ 0) ∈ (II Cn
II)) |
64 | 37, 61, 63, 17 | cnmpt12f 22817 |
. . . . . . . 8
⊢ (𝜑 → (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0)) ∈ (II Cn 𝐶)) |
65 | 1 | cvmlift 33261 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐺 ∈ (II Cn 𝐽)) ∧ (𝑃 ∈ 𝐵 ∧ (𝐹‘𝑃) = (𝐺‘0))) → ∃!𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃)) |
66 | 3, 4, 5, 6, 65 | syl22anc 836 |
. . . . . . . 8
⊢ (𝜑 → ∃!𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃)) |
67 | | coeq2 5767 |
. . . . . . . . . . 11
⊢ (𝑓 = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0)) → (𝐹 ∘ 𝑓) = (𝐹 ∘ (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0)))) |
68 | 67 | eqeq1d 2740 |
. . . . . . . . . 10
⊢ (𝑓 = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0)) → ((𝐹 ∘ 𝑓) = 𝐺 ↔ (𝐹 ∘ (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0))) = 𝐺)) |
69 | | fveq1 6773 |
. . . . . . . . . . . 12
⊢ (𝑓 = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0)) → (𝑓‘0) = ((𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0))‘0)) |
70 | | oveq1 7282 |
. . . . . . . . . . . . . 14
⊢ (𝑠 = 0 → (𝑠𝐴0) = (0𝐴0)) |
71 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢ (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0)) = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0)) |
72 | | ovex 7308 |
. . . . . . . . . . . . . 14
⊢ (0𝐴0) ∈ V |
73 | 70, 71, 72 | fvmpt 6875 |
. . . . . . . . . . . . 13
⊢ (0 ∈
(0[,]1) → ((𝑠 ∈
(0[,]1) ↦ (𝑠𝐴0))‘0) = (0𝐴0)) |
74 | 23, 73 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ ((𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0))‘0) = (0𝐴0) |
75 | 69, 74 | eqtrdi 2794 |
. . . . . . . . . . 11
⊢ (𝑓 = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0)) → (𝑓‘0) = (0𝐴0)) |
76 | 75 | eqeq1d 2740 |
. . . . . . . . . 10
⊢ (𝑓 = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0)) → ((𝑓‘0) = 𝑃 ↔ (0𝐴0) = 𝑃)) |
77 | 68, 76 | anbi12d 631 |
. . . . . . . . 9
⊢ (𝑓 = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0)) → (((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃) ↔ ((𝐹 ∘ (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0))) = 𝐺 ∧ (0𝐴0) = 𝑃))) |
78 | 77 | riota2 7258 |
. . . . . . . 8
⊢ (((𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0)) ∈ (II Cn 𝐶) ∧ ∃!𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃)) → (((𝐹 ∘ (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0))) = 𝐺 ∧ (0𝐴0) = 𝑃) ↔ (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃)) = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0)))) |
79 | 64, 66, 78 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → (((𝐹 ∘ (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0))) = 𝐺 ∧ (0𝐴0) = 𝑃) ↔ (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃)) = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0)))) |
80 | 59, 60, 79 | mpbi2and 709 |
. . . . . 6
⊢ (𝜑 → (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃)) = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0))) |
81 | 2, 80 | eqtrid 2790 |
. . . . 5
⊢ (𝜑 → 𝑀 = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0))) |
82 | 19, 1 | cnf 22397 |
. . . . . . 7
⊢ (𝑀 ∈ (II Cn 𝐶) → 𝑀:(0[,]1)⟶𝐵) |
83 | 8, 82 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑀:(0[,]1)⟶𝐵) |
84 | 83 | feqmptd 6837 |
. . . . 5
⊢ (𝜑 → 𝑀 = (𝑠 ∈ (0[,]1) ↦ (𝑀‘𝑠))) |
85 | 81, 84 | eqtr3d 2780 |
. . . 4
⊢ (𝜑 → (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0)) = (𝑠 ∈ (0[,]1) ↦ (𝑀‘𝑠))) |
86 | | mpteqb 6894 |
. . . . 5
⊢
(∀𝑠 ∈
(0[,]1)(𝑠𝐴0) ∈ V → ((𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0)) = (𝑠 ∈ (0[,]1) ↦ (𝑀‘𝑠)) ↔ ∀𝑠 ∈ (0[,]1)(𝑠𝐴0) = (𝑀‘𝑠))) |
87 | | ovexd 7310 |
. . . . 5
⊢ (𝑠 ∈ (0[,]1) → (𝑠𝐴0) ∈ V) |
88 | 86, 87 | mprg 3078 |
. . . 4
⊢ ((𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0)) = (𝑠 ∈ (0[,]1) ↦ (𝑀‘𝑠)) ↔ ∀𝑠 ∈ (0[,]1)(𝑠𝐴0) = (𝑀‘𝑠)) |
89 | 85, 88 | sylib 217 |
. . 3
⊢ (𝜑 → ∀𝑠 ∈ (0[,]1)(𝑠𝐴0) = (𝑀‘𝑠)) |
90 | 89 | r19.21bi 3134 |
. 2
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (𝑠𝐴0) = (𝑀‘𝑠)) |
91 | | 1elunit 13202 |
. . . . . . . . . . . . . 14
⊢ 1 ∈
(0[,]1) |
92 | | opelxpi 5626 |
. . . . . . . . . . . . . 14
⊢ ((𝑠 ∈ (0[,]1) ∧ 1 ∈
(0[,]1)) → 〈𝑠,
1〉 ∈ ((0[,]1) × (0[,]1))) |
93 | 91, 92 | mpan2 688 |
. . . . . . . . . . . . 13
⊢ (𝑠 ∈ (0[,]1) →
〈𝑠, 1〉 ∈
((0[,]1) × (0[,]1))) |
94 | | fvco3 6867 |
. . . . . . . . . . . . 13
⊢ ((𝐴:((0[,]1) ×
(0[,]1))⟶𝐵 ∧
〈𝑠, 1〉 ∈
((0[,]1) × (0[,]1))) → ((𝐹 ∘ 𝐴)‘〈𝑠, 1〉) = (𝐹‘(𝐴‘〈𝑠, 1〉))) |
95 | 22, 93, 94 | syl2an 596 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → ((𝐹 ∘ 𝐴)‘〈𝑠, 1〉) = (𝐹‘(𝐴‘〈𝑠, 1〉))) |
96 | 29 | fveq1d 6776 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → ((𝐹 ∘ 𝐴)‘〈𝑠, 1〉) = (𝐾‘〈𝑠, 1〉)) |
97 | 95, 96 | eqtr3d 2780 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (𝐹‘(𝐴‘〈𝑠, 1〉)) = (𝐾‘〈𝑠, 1〉)) |
98 | | df-ov 7278 |
. . . . . . . . . . . 12
⊢ (𝑠𝐴1) = (𝐴‘〈𝑠, 1〉) |
99 | 98 | fveq2i 6777 |
. . . . . . . . . . 11
⊢ (𝐹‘(𝑠𝐴1)) = (𝐹‘(𝐴‘〈𝑠, 1〉)) |
100 | | df-ov 7278 |
. . . . . . . . . . 11
⊢ (𝑠𝐾1) = (𝐾‘〈𝑠, 1〉) |
101 | 97, 99, 100 | 3eqtr4g 2803 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (𝐹‘(𝑠𝐴1)) = (𝑠𝐾1)) |
102 | 40 | simprd 496 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (𝑠𝐾1) = (𝐻‘𝑠)) |
103 | 101, 102 | eqtrd 2778 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (𝐹‘(𝑠𝐴1)) = (𝐻‘𝑠)) |
104 | 103 | mpteq2dva 5174 |
. . . . . . . 8
⊢ (𝜑 → (𝑠 ∈ (0[,]1) ↦ (𝐹‘(𝑠𝐴1))) = (𝑠 ∈ (0[,]1) ↦ (𝐻‘𝑠))) |
105 | | fovrn 7442 |
. . . . . . . . . . 11
⊢ ((𝐴:((0[,]1) ×
(0[,]1))⟶𝐵 ∧
𝑠 ∈ (0[,]1) ∧ 1
∈ (0[,]1)) → (𝑠𝐴1) ∈ 𝐵) |
106 | 91, 105 | mp3an3 1449 |
. . . . . . . . . 10
⊢ ((𝐴:((0[,]1) ×
(0[,]1))⟶𝐵 ∧
𝑠 ∈ (0[,]1)) →
(𝑠𝐴1) ∈ 𝐵) |
107 | 22, 106 | sylan 580 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (𝑠𝐴1) ∈ 𝐵) |
108 | | eqidd 2739 |
. . . . . . . . 9
⊢ (𝜑 → (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1)) = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1))) |
109 | | fveq2 6774 |
. . . . . . . . 9
⊢ (𝑥 = (𝑠𝐴1) → (𝐹‘𝑥) = (𝐹‘(𝑠𝐴1))) |
110 | 107, 108,
53, 109 | fmptco 7001 |
. . . . . . . 8
⊢ (𝜑 → (𝐹 ∘ (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1))) = (𝑠 ∈ (0[,]1) ↦ (𝐹‘(𝑠𝐴1)))) |
111 | 19, 50 | cnf 22397 |
. . . . . . . . . 10
⊢ (𝐻 ∈ (II Cn 𝐽) → 𝐻:(0[,]1)⟶∪
𝐽) |
112 | 10, 111 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐻:(0[,]1)⟶∪
𝐽) |
113 | 112 | feqmptd 6837 |
. . . . . . . 8
⊢ (𝜑 → 𝐻 = (𝑠 ∈ (0[,]1) ↦ (𝐻‘𝑠))) |
114 | 104, 110,
113 | 3eqtr4d 2788 |
. . . . . . 7
⊢ (𝜑 → (𝐹 ∘ (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1))) = 𝐻) |
115 | | iiconn 24050 |
. . . . . . . . . . . . 13
⊢ II ∈
Conn |
116 | 115 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → II ∈
Conn) |
117 | | iinllyconn 33216 |
. . . . . . . . . . . . 13
⊢ II ∈
𝑛-Locally Conn |
118 | 117 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → II ∈
𝑛-Locally Conn) |
119 | 37, 63, 61, 17 | cnmpt12f 22817 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑠 ∈ (0[,]1) ↦ (0𝐴𝑠)) ∈ (II Cn 𝐶)) |
120 | | cvmtop1 33222 |
. . . . . . . . . . . . . . 15
⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐶 ∈ Top) |
121 | 3, 120 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐶 ∈ Top) |
122 | 1 | toptopon 22066 |
. . . . . . . . . . . . . 14
⊢ (𝐶 ∈ Top ↔ 𝐶 ∈ (TopOn‘𝐵)) |
123 | 121, 122 | sylib 217 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐶 ∈ (TopOn‘𝐵)) |
124 | | ffvelrn 6959 |
. . . . . . . . . . . . . 14
⊢ ((𝑀:(0[,]1)⟶𝐵 ∧ 0 ∈ (0[,]1)) →
(𝑀‘0) ∈ 𝐵) |
125 | 83, 23, 124 | sylancl 586 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑀‘0) ∈ 𝐵) |
126 | | cnconst2 22434 |
. . . . . . . . . . . . 13
⊢ ((II
∈ (TopOn‘(0[,]1)) ∧ 𝐶 ∈ (TopOn‘𝐵) ∧ (𝑀‘0) ∈ 𝐵) → ((0[,]1) × {(𝑀‘0)}) ∈ (II Cn 𝐶)) |
127 | 37, 123, 125, 126 | syl3anc 1370 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((0[,]1) × {(𝑀‘0)}) ∈ (II Cn 𝐶)) |
128 | 4, 10, 11 | phtpyi 24147 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → ((0𝐾𝑠) = (𝐺‘0) ∧ (1𝐾𝑠) = (𝐺‘1))) |
129 | 128 | simpld 495 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (0𝐾𝑠) = (𝐺‘0)) |
130 | | opelxpi 5626 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((0
∈ (0[,]1) ∧ 𝑠
∈ (0[,]1)) → 〈0, 𝑠〉 ∈ ((0[,]1) ×
(0[,]1))) |
131 | 23, 130 | mpan 687 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑠 ∈ (0[,]1) → 〈0,
𝑠〉 ∈ ((0[,]1)
× (0[,]1))) |
132 | | fvco3 6867 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴:((0[,]1) ×
(0[,]1))⟶𝐵 ∧
〈0, 𝑠〉 ∈
((0[,]1) × (0[,]1))) → ((𝐹 ∘ 𝐴)‘〈0, 𝑠〉) = (𝐹‘(𝐴‘〈0, 𝑠〉))) |
133 | 22, 131, 132 | syl2an 596 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → ((𝐹 ∘ 𝐴)‘〈0, 𝑠〉) = (𝐹‘(𝐴‘〈0, 𝑠〉))) |
134 | 29 | fveq1d 6776 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → ((𝐹 ∘ 𝐴)‘〈0, 𝑠〉) = (𝐾‘〈0, 𝑠〉)) |
135 | 133, 134 | eqtr3d 2780 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (𝐹‘(𝐴‘〈0, 𝑠〉)) = (𝐾‘〈0, 𝑠〉)) |
136 | | df-ov 7278 |
. . . . . . . . . . . . . . . . . 18
⊢ (0𝐴𝑠) = (𝐴‘〈0, 𝑠〉) |
137 | 136 | fveq2i 6777 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹‘(0𝐴𝑠)) = (𝐹‘(𝐴‘〈0, 𝑠〉)) |
138 | | df-ov 7278 |
. . . . . . . . . . . . . . . . 17
⊢ (0𝐾𝑠) = (𝐾‘〈0, 𝑠〉) |
139 | 135, 137,
138 | 3eqtr4g 2803 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (𝐹‘(0𝐴𝑠)) = (0𝐾𝑠)) |
140 | 7 | simp3d 1143 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑀‘0) = 𝑃) |
141 | 140 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (𝑀‘0) = 𝑃) |
142 | 141 | fveq2d 6778 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (𝐹‘(𝑀‘0)) = (𝐹‘𝑃)) |
143 | 6 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (𝐹‘𝑃) = (𝐺‘0)) |
144 | 142, 143 | eqtrd 2778 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (𝐹‘(𝑀‘0)) = (𝐺‘0)) |
145 | 129, 139,
144 | 3eqtr4d 2788 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (𝐹‘(0𝐴𝑠)) = (𝐹‘(𝑀‘0))) |
146 | 145 | mpteq2dva 5174 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑠 ∈ (0[,]1) ↦ (𝐹‘(0𝐴𝑠))) = (𝑠 ∈ (0[,]1) ↦ (𝐹‘(𝑀‘0)))) |
147 | | fconstmpt 5649 |
. . . . . . . . . . . . . 14
⊢ ((0[,]1)
× {(𝐹‘(𝑀‘0))}) = (𝑠 ∈ (0[,]1) ↦ (𝐹‘(𝑀‘0))) |
148 | 146, 147 | eqtr4di 2796 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑠 ∈ (0[,]1) ↦ (𝐹‘(0𝐴𝑠))) = ((0[,]1) × {(𝐹‘(𝑀‘0))})) |
149 | | fovrn 7442 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴:((0[,]1) ×
(0[,]1))⟶𝐵 ∧ 0
∈ (0[,]1) ∧ 𝑠
∈ (0[,]1)) → (0𝐴𝑠) ∈ 𝐵) |
150 | 23, 149 | mp3an2 1448 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴:((0[,]1) ×
(0[,]1))⟶𝐵 ∧
𝑠 ∈ (0[,]1)) →
(0𝐴𝑠) ∈ 𝐵) |
151 | 22, 150 | sylan 580 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (0𝐴𝑠) ∈ 𝐵) |
152 | | eqidd 2739 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑠 ∈ (0[,]1) ↦ (0𝐴𝑠)) = (𝑠 ∈ (0[,]1) ↦ (0𝐴𝑠))) |
153 | | fveq2 6774 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = (0𝐴𝑠) → (𝐹‘𝑥) = (𝐹‘(0𝐴𝑠))) |
154 | 151, 152,
53, 153 | fmptco 7001 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐹 ∘ (𝑠 ∈ (0[,]1) ↦ (0𝐴𝑠))) = (𝑠 ∈ (0[,]1) ↦ (𝐹‘(0𝐴𝑠)))) |
155 | 52 | ffnd 6601 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐹 Fn 𝐵) |
156 | | fcoconst 7006 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 Fn 𝐵 ∧ (𝑀‘0) ∈ 𝐵) → (𝐹 ∘ ((0[,]1) × {(𝑀‘0)})) = ((0[,]1) ×
{(𝐹‘(𝑀‘0))})) |
157 | 155, 125,
156 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐹 ∘ ((0[,]1) × {(𝑀‘0)})) = ((0[,]1) ×
{(𝐹‘(𝑀‘0))})) |
158 | 148, 154,
157 | 3eqtr4d 2788 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐹 ∘ (𝑠 ∈ (0[,]1) ↦ (0𝐴𝑠))) = (𝐹 ∘ ((0[,]1) × {(𝑀‘0)}))) |
159 | 60, 140 | eqtr4d 2781 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (0𝐴0) = (𝑀‘0)) |
160 | | oveq2 7283 |
. . . . . . . . . . . . . . 15
⊢ (𝑠 = 0 → (0𝐴𝑠) = (0𝐴0)) |
161 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢ (𝑠 ∈ (0[,]1) ↦ (0𝐴𝑠)) = (𝑠 ∈ (0[,]1) ↦ (0𝐴𝑠)) |
162 | 160, 161,
72 | fvmpt 6875 |
. . . . . . . . . . . . . 14
⊢ (0 ∈
(0[,]1) → ((𝑠 ∈
(0[,]1) ↦ (0𝐴𝑠))‘0) = (0𝐴0)) |
163 | 23, 162 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ ((𝑠 ∈ (0[,]1) ↦ (0𝐴𝑠))‘0) = (0𝐴0) |
164 | | fvex 6787 |
. . . . . . . . . . . . . . 15
⊢ (𝑀‘0) ∈
V |
165 | 164 | fvconst2 7079 |
. . . . . . . . . . . . . 14
⊢ (0 ∈
(0[,]1) → (((0[,]1) × {(𝑀‘0)})‘0) = (𝑀‘0)) |
166 | 23, 165 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ (((0[,]1)
× {(𝑀‘0)})‘0) = (𝑀‘0) |
167 | 159, 163,
166 | 3eqtr4g 2803 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑠 ∈ (0[,]1) ↦ (0𝐴𝑠))‘0) = (((0[,]1) × {(𝑀‘0)})‘0)) |
168 | 1, 19, 3, 116, 118, 62, 119, 127, 158, 167 | cvmliftmoi 33245 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑠 ∈ (0[,]1) ↦ (0𝐴𝑠)) = ((0[,]1) × {(𝑀‘0)})) |
169 | | fconstmpt 5649 |
. . . . . . . . . . 11
⊢ ((0[,]1)
× {(𝑀‘0)}) =
(𝑠 ∈ (0[,]1) ↦
(𝑀‘0)) |
170 | 168, 169 | eqtrdi 2794 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑠 ∈ (0[,]1) ↦ (0𝐴𝑠)) = (𝑠 ∈ (0[,]1) ↦ (𝑀‘0))) |
171 | | mpteqb 6894 |
. . . . . . . . . . 11
⊢
(∀𝑠 ∈
(0[,]1)(0𝐴𝑠) ∈ V → ((𝑠 ∈ (0[,]1) ↦ (0𝐴𝑠)) = (𝑠 ∈ (0[,]1) ↦ (𝑀‘0)) ↔ ∀𝑠 ∈ (0[,]1)(0𝐴𝑠) = (𝑀‘0))) |
172 | | ovexd 7310 |
. . . . . . . . . . 11
⊢ (𝑠 ∈ (0[,]1) → (0𝐴𝑠) ∈ V) |
173 | 171, 172 | mprg 3078 |
. . . . . . . . . 10
⊢ ((𝑠 ∈ (0[,]1) ↦ (0𝐴𝑠)) = (𝑠 ∈ (0[,]1) ↦ (𝑀‘0)) ↔ ∀𝑠 ∈ (0[,]1)(0𝐴𝑠) = (𝑀‘0)) |
174 | 170, 173 | sylib 217 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑠 ∈ (0[,]1)(0𝐴𝑠) = (𝑀‘0)) |
175 | | oveq2 7283 |
. . . . . . . . . . 11
⊢ (𝑠 = 1 → (0𝐴𝑠) = (0𝐴1)) |
176 | 175 | eqeq1d 2740 |
. . . . . . . . . 10
⊢ (𝑠 = 1 → ((0𝐴𝑠) = (𝑀‘0) ↔ (0𝐴1) = (𝑀‘0))) |
177 | 176 | rspcv 3557 |
. . . . . . . . 9
⊢ (1 ∈
(0[,]1) → (∀𝑠
∈ (0[,]1)(0𝐴𝑠) = (𝑀‘0) → (0𝐴1) = (𝑀‘0))) |
178 | 91, 174, 177 | mpsyl 68 |
. . . . . . . 8
⊢ (𝜑 → (0𝐴1) = (𝑀‘0)) |
179 | 178, 140 | eqtrd 2778 |
. . . . . . 7
⊢ (𝜑 → (0𝐴1) = 𝑃) |
180 | 91 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → 1 ∈
(0[,]1)) |
181 | 37, 37, 180 | cnmptc 22813 |
. . . . . . . . 9
⊢ (𝜑 → (𝑠 ∈ (0[,]1) ↦ 1) ∈ (II Cn
II)) |
182 | 37, 61, 181, 17 | cnmpt12f 22817 |
. . . . . . . 8
⊢ (𝜑 → (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1)) ∈ (II Cn 𝐶)) |
183 | 1 | cvmlift 33261 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐻 ∈ (II Cn 𝐽)) ∧ (𝑃 ∈ 𝐵 ∧ (𝐹‘𝑃) = (𝐻‘0))) → ∃!𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐻 ∧ (𝑓‘0) = 𝑃)) |
184 | 3, 10, 5, 14, 183 | syl22anc 836 |
. . . . . . . 8
⊢ (𝜑 → ∃!𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐻 ∧ (𝑓‘0) = 𝑃)) |
185 | | coeq2 5767 |
. . . . . . . . . . 11
⊢ (𝑓 = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1)) → (𝐹 ∘ 𝑓) = (𝐹 ∘ (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1)))) |
186 | 185 | eqeq1d 2740 |
. . . . . . . . . 10
⊢ (𝑓 = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1)) → ((𝐹 ∘ 𝑓) = 𝐻 ↔ (𝐹 ∘ (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1))) = 𝐻)) |
187 | | fveq1 6773 |
. . . . . . . . . . . 12
⊢ (𝑓 = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1)) → (𝑓‘0) = ((𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1))‘0)) |
188 | | oveq1 7282 |
. . . . . . . . . . . . . 14
⊢ (𝑠 = 0 → (𝑠𝐴1) = (0𝐴1)) |
189 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢ (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1)) = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1)) |
190 | | ovex 7308 |
. . . . . . . . . . . . . 14
⊢ (0𝐴1) ∈ V |
191 | 188, 189,
190 | fvmpt 6875 |
. . . . . . . . . . . . 13
⊢ (0 ∈
(0[,]1) → ((𝑠 ∈
(0[,]1) ↦ (𝑠𝐴1))‘0) = (0𝐴1)) |
192 | 23, 191 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ ((𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1))‘0) = (0𝐴1) |
193 | 187, 192 | eqtrdi 2794 |
. . . . . . . . . . 11
⊢ (𝑓 = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1)) → (𝑓‘0) = (0𝐴1)) |
194 | 193 | eqeq1d 2740 |
. . . . . . . . . 10
⊢ (𝑓 = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1)) → ((𝑓‘0) = 𝑃 ↔ (0𝐴1) = 𝑃)) |
195 | 186, 194 | anbi12d 631 |
. . . . . . . . 9
⊢ (𝑓 = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1)) → (((𝐹 ∘ 𝑓) = 𝐻 ∧ (𝑓‘0) = 𝑃) ↔ ((𝐹 ∘ (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1))) = 𝐻 ∧ (0𝐴1) = 𝑃))) |
196 | 195 | riota2 7258 |
. . . . . . . 8
⊢ (((𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1)) ∈ (II Cn 𝐶) ∧ ∃!𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐻 ∧ (𝑓‘0) = 𝑃)) → (((𝐹 ∘ (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1))) = 𝐻 ∧ (0𝐴1) = 𝑃) ↔ (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐻 ∧ (𝑓‘0) = 𝑃)) = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1)))) |
197 | 182, 184,
196 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → (((𝐹 ∘ (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1))) = 𝐻 ∧ (0𝐴1) = 𝑃) ↔ (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐻 ∧ (𝑓‘0) = 𝑃)) = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1)))) |
198 | 114, 179,
197 | mpbi2and 709 |
. . . . . 6
⊢ (𝜑 → (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐻 ∧ (𝑓‘0) = 𝑃)) = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1))) |
199 | 9, 198 | eqtrid 2790 |
. . . . 5
⊢ (𝜑 → 𝑁 = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1))) |
200 | 19, 1 | cnf 22397 |
. . . . . . 7
⊢ (𝑁 ∈ (II Cn 𝐶) → 𝑁:(0[,]1)⟶𝐵) |
201 | 16, 200 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑁:(0[,]1)⟶𝐵) |
202 | 201 | feqmptd 6837 |
. . . . 5
⊢ (𝜑 → 𝑁 = (𝑠 ∈ (0[,]1) ↦ (𝑁‘𝑠))) |
203 | 199, 202 | eqtr3d 2780 |
. . . 4
⊢ (𝜑 → (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1)) = (𝑠 ∈ (0[,]1) ↦ (𝑁‘𝑠))) |
204 | | mpteqb 6894 |
. . . . 5
⊢
(∀𝑠 ∈
(0[,]1)(𝑠𝐴1) ∈ V → ((𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1)) = (𝑠 ∈ (0[,]1) ↦ (𝑁‘𝑠)) ↔ ∀𝑠 ∈ (0[,]1)(𝑠𝐴1) = (𝑁‘𝑠))) |
205 | | ovexd 7310 |
. . . . 5
⊢ (𝑠 ∈ (0[,]1) → (𝑠𝐴1) ∈ V) |
206 | 204, 205 | mprg 3078 |
. . . 4
⊢ ((𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1)) = (𝑠 ∈ (0[,]1) ↦ (𝑁‘𝑠)) ↔ ∀𝑠 ∈ (0[,]1)(𝑠𝐴1) = (𝑁‘𝑠)) |
207 | 203, 206 | sylib 217 |
. . 3
⊢ (𝜑 → ∀𝑠 ∈ (0[,]1)(𝑠𝐴1) = (𝑁‘𝑠)) |
208 | 207 | r19.21bi 3134 |
. 2
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (𝑠𝐴1) = (𝑁‘𝑠)) |
209 | 174 | r19.21bi 3134 |
. 2
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (0𝐴𝑠) = (𝑀‘0)) |
210 | 37, 181, 61, 17 | cnmpt12f 22817 |
. . . . . 6
⊢ (𝜑 → (𝑠 ∈ (0[,]1) ↦ (1𝐴𝑠)) ∈ (II Cn 𝐶)) |
211 | | ffvelrn 6959 |
. . . . . . . 8
⊢ ((𝑀:(0[,]1)⟶𝐵 ∧ 1 ∈ (0[,]1)) →
(𝑀‘1) ∈ 𝐵) |
212 | 83, 91, 211 | sylancl 586 |
. . . . . . 7
⊢ (𝜑 → (𝑀‘1) ∈ 𝐵) |
213 | | cnconst2 22434 |
. . . . . . 7
⊢ ((II
∈ (TopOn‘(0[,]1)) ∧ 𝐶 ∈ (TopOn‘𝐵) ∧ (𝑀‘1) ∈ 𝐵) → ((0[,]1) × {(𝑀‘1)}) ∈ (II Cn 𝐶)) |
214 | 37, 123, 212, 213 | syl3anc 1370 |
. . . . . 6
⊢ (𝜑 → ((0[,]1) × {(𝑀‘1)}) ∈ (II Cn 𝐶)) |
215 | | opelxpi 5626 |
. . . . . . . . . . . . . 14
⊢ ((1
∈ (0[,]1) ∧ 𝑠
∈ (0[,]1)) → 〈1, 𝑠〉 ∈ ((0[,]1) ×
(0[,]1))) |
216 | 91, 215 | mpan 687 |
. . . . . . . . . . . . 13
⊢ (𝑠 ∈ (0[,]1) → 〈1,
𝑠〉 ∈ ((0[,]1)
× (0[,]1))) |
217 | | fvco3 6867 |
. . . . . . . . . . . . 13
⊢ ((𝐴:((0[,]1) ×
(0[,]1))⟶𝐵 ∧
〈1, 𝑠〉 ∈
((0[,]1) × (0[,]1))) → ((𝐹 ∘ 𝐴)‘〈1, 𝑠〉) = (𝐹‘(𝐴‘〈1, 𝑠〉))) |
218 | 22, 216, 217 | syl2an 596 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → ((𝐹 ∘ 𝐴)‘〈1, 𝑠〉) = (𝐹‘(𝐴‘〈1, 𝑠〉))) |
219 | 29 | fveq1d 6776 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → ((𝐹 ∘ 𝐴)‘〈1, 𝑠〉) = (𝐾‘〈1, 𝑠〉)) |
220 | 218, 219 | eqtr3d 2780 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (𝐹‘(𝐴‘〈1, 𝑠〉)) = (𝐾‘〈1, 𝑠〉)) |
221 | | df-ov 7278 |
. . . . . . . . . . . 12
⊢ (1𝐴𝑠) = (𝐴‘〈1, 𝑠〉) |
222 | 221 | fveq2i 6777 |
. . . . . . . . . . 11
⊢ (𝐹‘(1𝐴𝑠)) = (𝐹‘(𝐴‘〈1, 𝑠〉)) |
223 | | df-ov 7278 |
. . . . . . . . . . 11
⊢ (1𝐾𝑠) = (𝐾‘〈1, 𝑠〉) |
224 | 220, 222,
223 | 3eqtr4g 2803 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (𝐹‘(1𝐴𝑠)) = (1𝐾𝑠)) |
225 | 128 | simprd 496 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (1𝐾𝑠) = (𝐺‘1)) |
226 | 7 | simp2d 1142 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐹 ∘ 𝑀) = 𝐺) |
227 | 226 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (𝐹 ∘ 𝑀) = 𝐺) |
228 | 227 | fveq1d 6776 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → ((𝐹 ∘ 𝑀)‘1) = (𝐺‘1)) |
229 | 83 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → 𝑀:(0[,]1)⟶𝐵) |
230 | | fvco3 6867 |
. . . . . . . . . . . 12
⊢ ((𝑀:(0[,]1)⟶𝐵 ∧ 1 ∈ (0[,]1)) →
((𝐹 ∘ 𝑀)‘1) = (𝐹‘(𝑀‘1))) |
231 | 229, 91, 230 | sylancl 586 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → ((𝐹 ∘ 𝑀)‘1) = (𝐹‘(𝑀‘1))) |
232 | 228, 231 | eqtr3d 2780 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (𝐺‘1) = (𝐹‘(𝑀‘1))) |
233 | 224, 225,
232 | 3eqtrd 2782 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (𝐹‘(1𝐴𝑠)) = (𝐹‘(𝑀‘1))) |
234 | 233 | mpteq2dva 5174 |
. . . . . . . 8
⊢ (𝜑 → (𝑠 ∈ (0[,]1) ↦ (𝐹‘(1𝐴𝑠))) = (𝑠 ∈ (0[,]1) ↦ (𝐹‘(𝑀‘1)))) |
235 | | fconstmpt 5649 |
. . . . . . . 8
⊢ ((0[,]1)
× {(𝐹‘(𝑀‘1))}) = (𝑠 ∈ (0[,]1) ↦ (𝐹‘(𝑀‘1))) |
236 | 234, 235 | eqtr4di 2796 |
. . . . . . 7
⊢ (𝜑 → (𝑠 ∈ (0[,]1) ↦ (𝐹‘(1𝐴𝑠))) = ((0[,]1) × {(𝐹‘(𝑀‘1))})) |
237 | | fovrn 7442 |
. . . . . . . . . 10
⊢ ((𝐴:((0[,]1) ×
(0[,]1))⟶𝐵 ∧ 1
∈ (0[,]1) ∧ 𝑠
∈ (0[,]1)) → (1𝐴𝑠) ∈ 𝐵) |
238 | 91, 237 | mp3an2 1448 |
. . . . . . . . 9
⊢ ((𝐴:((0[,]1) ×
(0[,]1))⟶𝐵 ∧
𝑠 ∈ (0[,]1)) →
(1𝐴𝑠) ∈ 𝐵) |
239 | 22, 238 | sylan 580 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (1𝐴𝑠) ∈ 𝐵) |
240 | | eqidd 2739 |
. . . . . . . 8
⊢ (𝜑 → (𝑠 ∈ (0[,]1) ↦ (1𝐴𝑠)) = (𝑠 ∈ (0[,]1) ↦ (1𝐴𝑠))) |
241 | | fveq2 6774 |
. . . . . . . 8
⊢ (𝑥 = (1𝐴𝑠) → (𝐹‘𝑥) = (𝐹‘(1𝐴𝑠))) |
242 | 239, 240,
53, 241 | fmptco 7001 |
. . . . . . 7
⊢ (𝜑 → (𝐹 ∘ (𝑠 ∈ (0[,]1) ↦ (1𝐴𝑠))) = (𝑠 ∈ (0[,]1) ↦ (𝐹‘(1𝐴𝑠)))) |
243 | | fcoconst 7006 |
. . . . . . . 8
⊢ ((𝐹 Fn 𝐵 ∧ (𝑀‘1) ∈ 𝐵) → (𝐹 ∘ ((0[,]1) × {(𝑀‘1)})) = ((0[,]1) ×
{(𝐹‘(𝑀‘1))})) |
244 | 155, 212,
243 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → (𝐹 ∘ ((0[,]1) × {(𝑀‘1)})) = ((0[,]1) ×
{(𝐹‘(𝑀‘1))})) |
245 | 236, 242,
244 | 3eqtr4d 2788 |
. . . . . 6
⊢ (𝜑 → (𝐹 ∘ (𝑠 ∈ (0[,]1) ↦ (1𝐴𝑠))) = (𝐹 ∘ ((0[,]1) × {(𝑀‘1)}))) |
246 | | oveq1 7282 |
. . . . . . . . . 10
⊢ (𝑠 = 1 → (𝑠𝐴0) = (1𝐴0)) |
247 | | fveq2 6774 |
. . . . . . . . . 10
⊢ (𝑠 = 1 → (𝑀‘𝑠) = (𝑀‘1)) |
248 | 246, 247 | eqeq12d 2754 |
. . . . . . . . 9
⊢ (𝑠 = 1 → ((𝑠𝐴0) = (𝑀‘𝑠) ↔ (1𝐴0) = (𝑀‘1))) |
249 | 248 | rspcv 3557 |
. . . . . . . 8
⊢ (1 ∈
(0[,]1) → (∀𝑠
∈ (0[,]1)(𝑠𝐴0) = (𝑀‘𝑠) → (1𝐴0) = (𝑀‘1))) |
250 | 91, 89, 249 | mpsyl 68 |
. . . . . . 7
⊢ (𝜑 → (1𝐴0) = (𝑀‘1)) |
251 | | oveq2 7283 |
. . . . . . . . 9
⊢ (𝑠 = 0 → (1𝐴𝑠) = (1𝐴0)) |
252 | | eqid 2738 |
. . . . . . . . 9
⊢ (𝑠 ∈ (0[,]1) ↦ (1𝐴𝑠)) = (𝑠 ∈ (0[,]1) ↦ (1𝐴𝑠)) |
253 | | ovex 7308 |
. . . . . . . . 9
⊢ (1𝐴0) ∈ V |
254 | 251, 252,
253 | fvmpt 6875 |
. . . . . . . 8
⊢ (0 ∈
(0[,]1) → ((𝑠 ∈
(0[,]1) ↦ (1𝐴𝑠))‘0) = (1𝐴0)) |
255 | 23, 254 | ax-mp 5 |
. . . . . . 7
⊢ ((𝑠 ∈ (0[,]1) ↦ (1𝐴𝑠))‘0) = (1𝐴0) |
256 | | fvex 6787 |
. . . . . . . . 9
⊢ (𝑀‘1) ∈
V |
257 | 256 | fvconst2 7079 |
. . . . . . . 8
⊢ (0 ∈
(0[,]1) → (((0[,]1) × {(𝑀‘1)})‘0) = (𝑀‘1)) |
258 | 23, 257 | ax-mp 5 |
. . . . . . 7
⊢ (((0[,]1)
× {(𝑀‘1)})‘0) = (𝑀‘1) |
259 | 250, 255,
258 | 3eqtr4g 2803 |
. . . . . 6
⊢ (𝜑 → ((𝑠 ∈ (0[,]1) ↦ (1𝐴𝑠))‘0) = (((0[,]1) × {(𝑀‘1)})‘0)) |
260 | 1, 19, 3, 116, 118, 62, 210, 214, 245, 259 | cvmliftmoi 33245 |
. . . . 5
⊢ (𝜑 → (𝑠 ∈ (0[,]1) ↦ (1𝐴𝑠)) = ((0[,]1) × {(𝑀‘1)})) |
261 | | fconstmpt 5649 |
. . . . 5
⊢ ((0[,]1)
× {(𝑀‘1)}) =
(𝑠 ∈ (0[,]1) ↦
(𝑀‘1)) |
262 | 260, 261 | eqtrdi 2794 |
. . . 4
⊢ (𝜑 → (𝑠 ∈ (0[,]1) ↦ (1𝐴𝑠)) = (𝑠 ∈ (0[,]1) ↦ (𝑀‘1))) |
263 | | mpteqb 6894 |
. . . . 5
⊢
(∀𝑠 ∈
(0[,]1)(1𝐴𝑠) ∈ V → ((𝑠 ∈ (0[,]1) ↦ (1𝐴𝑠)) = (𝑠 ∈ (0[,]1) ↦ (𝑀‘1)) ↔ ∀𝑠 ∈ (0[,]1)(1𝐴𝑠) = (𝑀‘1))) |
264 | | ovexd 7310 |
. . . . 5
⊢ (𝑠 ∈ (0[,]1) → (1𝐴𝑠) ∈ V) |
265 | 263, 264 | mprg 3078 |
. . . 4
⊢ ((𝑠 ∈ (0[,]1) ↦ (1𝐴𝑠)) = (𝑠 ∈ (0[,]1) ↦ (𝑀‘1)) ↔ ∀𝑠 ∈ (0[,]1)(1𝐴𝑠) = (𝑀‘1)) |
266 | 262, 265 | sylib 217 |
. . 3
⊢ (𝜑 → ∀𝑠 ∈ (0[,]1)(1𝐴𝑠) = (𝑀‘1)) |
267 | 266 | r19.21bi 3134 |
. 2
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (1𝐴𝑠) = (𝑀‘1)) |
268 | 8, 16, 17, 90, 208, 209, 267 | isphtpy2d 24150 |
1
⊢ (𝜑 → 𝐴 ∈ (𝑀(PHtpy‘𝐶)𝑁)) |