Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmliftphtlem Structured version   Visualization version   GIF version

Theorem cvmliftphtlem 35145
Description: Lemma for cvmliftpht 35146. (Contributed by Mario Carneiro, 6-Jul-2015.)
Hypotheses
Ref Expression
cvmliftpht.b 𝐵 = 𝐶
cvmliftpht.m 𝑀 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃))
cvmliftpht.n 𝑁 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐻 ∧ (𝑓‘0) = 𝑃))
cvmliftpht.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmliftpht.p (𝜑𝑃𝐵)
cvmliftpht.e (𝜑 → (𝐹𝑃) = (𝐺‘0))
cvmliftphtlem.g (𝜑𝐺 ∈ (II Cn 𝐽))
cvmliftphtlem.h (𝜑𝐻 ∈ (II Cn 𝐽))
cvmliftphtlem.k (𝜑𝐾 ∈ (𝐺(PHtpy‘𝐽)𝐻))
cvmliftphtlem.a (𝜑𝐴 ∈ ((II ×t II) Cn 𝐶))
cvmliftphtlem.c (𝜑 → (𝐹𝐴) = 𝐾)
cvmliftphtlem.0 (𝜑 → (0𝐴0) = 𝑃)
Assertion
Ref Expression
cvmliftphtlem (𝜑𝐴 ∈ (𝑀(PHtpy‘𝐶)𝑁))
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓   𝑓,𝐹   𝑓,𝐽   𝐶,𝑓   𝑓,𝐺   𝑓,𝐻   𝑃,𝑓
Allowed substitution hints:   𝜑(𝑓)   𝐾(𝑓)   𝑀(𝑓)   𝑁(𝑓)

Proof of Theorem cvmliftphtlem
Dummy variables 𝑠 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvmliftpht.b . . . 4 𝐵 = 𝐶
2 cvmliftpht.m . . . 4 𝑀 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃))
3 cvmliftpht.f . . . 4 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
4 cvmliftphtlem.g . . . 4 (𝜑𝐺 ∈ (II Cn 𝐽))
5 cvmliftpht.p . . . 4 (𝜑𝑃𝐵)
6 cvmliftpht.e . . . 4 (𝜑 → (𝐹𝑃) = (𝐺‘0))
71, 2, 3, 4, 5, 6cvmliftiota 35129 . . 3 (𝜑 → (𝑀 ∈ (II Cn 𝐶) ∧ (𝐹𝑀) = 𝐺 ∧ (𝑀‘0) = 𝑃))
87simp1d 1139 . 2 (𝜑𝑀 ∈ (II Cn 𝐶))
9 cvmliftpht.n . . . 4 𝑁 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐻 ∧ (𝑓‘0) = 𝑃))
10 cvmliftphtlem.h . . . 4 (𝜑𝐻 ∈ (II Cn 𝐽))
11 cvmliftphtlem.k . . . . . . 7 (𝜑𝐾 ∈ (𝐺(PHtpy‘𝐽)𝐻))
124, 10, 11phtpy01 25002 . . . . . 6 (𝜑 → ((𝐺‘0) = (𝐻‘0) ∧ (𝐺‘1) = (𝐻‘1)))
1312simpld 493 . . . . 5 (𝜑 → (𝐺‘0) = (𝐻‘0))
146, 13eqtrd 2766 . . . 4 (𝜑 → (𝐹𝑃) = (𝐻‘0))
151, 9, 3, 10, 5, 14cvmliftiota 35129 . . 3 (𝜑 → (𝑁 ∈ (II Cn 𝐶) ∧ (𝐹𝑁) = 𝐻 ∧ (𝑁‘0) = 𝑃))
1615simp1d 1139 . 2 (𝜑𝑁 ∈ (II Cn 𝐶))
17 cvmliftphtlem.a . 2 (𝜑𝐴 ∈ ((II ×t II) Cn 𝐶))
18 iitop 24891 . . . . . . . . . . . . . . . 16 II ∈ Top
19 iiuni 24892 . . . . . . . . . . . . . . . 16 (0[,]1) = II
2018, 18, 19, 19txunii 23588 . . . . . . . . . . . . . . 15 ((0[,]1) × (0[,]1)) = (II ×t II)
2120, 1cnf 23241 . . . . . . . . . . . . . 14 (𝐴 ∈ ((II ×t II) Cn 𝐶) → 𝐴:((0[,]1) × (0[,]1))⟶𝐵)
2217, 21syl 17 . . . . . . . . . . . . 13 (𝜑𝐴:((0[,]1) × (0[,]1))⟶𝐵)
23 0elunit 13500 . . . . . . . . . . . . . 14 0 ∈ (0[,]1)
24 opelxpi 5719 . . . . . . . . . . . . . 14 ((𝑠 ∈ (0[,]1) ∧ 0 ∈ (0[,]1)) → ⟨𝑠, 0⟩ ∈ ((0[,]1) × (0[,]1)))
2523, 24mpan2 689 . . . . . . . . . . . . 13 (𝑠 ∈ (0[,]1) → ⟨𝑠, 0⟩ ∈ ((0[,]1) × (0[,]1)))
26 fvco3 7001 . . . . . . . . . . . . 13 ((𝐴:((0[,]1) × (0[,]1))⟶𝐵 ∧ ⟨𝑠, 0⟩ ∈ ((0[,]1) × (0[,]1))) → ((𝐹𝐴)‘⟨𝑠, 0⟩) = (𝐹‘(𝐴‘⟨𝑠, 0⟩)))
2722, 25, 26syl2an 594 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (0[,]1)) → ((𝐹𝐴)‘⟨𝑠, 0⟩) = (𝐹‘(𝐴‘⟨𝑠, 0⟩)))
28 cvmliftphtlem.c . . . . . . . . . . . . . 14 (𝜑 → (𝐹𝐴) = 𝐾)
2928adantr 479 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (0[,]1)) → (𝐹𝐴) = 𝐾)
3029fveq1d 6903 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (0[,]1)) → ((𝐹𝐴)‘⟨𝑠, 0⟩) = (𝐾‘⟨𝑠, 0⟩))
3127, 30eqtr3d 2768 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (0[,]1)) → (𝐹‘(𝐴‘⟨𝑠, 0⟩)) = (𝐾‘⟨𝑠, 0⟩))
32 df-ov 7427 . . . . . . . . . . . 12 (𝑠𝐴0) = (𝐴‘⟨𝑠, 0⟩)
3332fveq2i 6904 . . . . . . . . . . 11 (𝐹‘(𝑠𝐴0)) = (𝐹‘(𝐴‘⟨𝑠, 0⟩))
34 df-ov 7427 . . . . . . . . . . 11 (𝑠𝐾0) = (𝐾‘⟨𝑠, 0⟩)
3531, 33, 343eqtr4g 2791 . . . . . . . . . 10 ((𝜑𝑠 ∈ (0[,]1)) → (𝐹‘(𝑠𝐴0)) = (𝑠𝐾0))
36 iitopon 24890 . . . . . . . . . . . . 13 II ∈ (TopOn‘(0[,]1))
3736a1i 11 . . . . . . . . . . . 12 (𝜑 → II ∈ (TopOn‘(0[,]1)))
384, 10phtpyhtpy 24999 . . . . . . . . . . . . 13 (𝜑 → (𝐺(PHtpy‘𝐽)𝐻) ⊆ (𝐺(II Htpy 𝐽)𝐻))
3938, 11sseldd 3980 . . . . . . . . . . . 12 (𝜑𝐾 ∈ (𝐺(II Htpy 𝐽)𝐻))
4037, 4, 10, 39htpyi 24991 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (0[,]1)) → ((𝑠𝐾0) = (𝐺𝑠) ∧ (𝑠𝐾1) = (𝐻𝑠)))
4140simpld 493 . . . . . . . . . 10 ((𝜑𝑠 ∈ (0[,]1)) → (𝑠𝐾0) = (𝐺𝑠))
4235, 41eqtrd 2766 . . . . . . . . 9 ((𝜑𝑠 ∈ (0[,]1)) → (𝐹‘(𝑠𝐴0)) = (𝐺𝑠))
4342mpteq2dva 5253 . . . . . . . 8 (𝜑 → (𝑠 ∈ (0[,]1) ↦ (𝐹‘(𝑠𝐴0))) = (𝑠 ∈ (0[,]1) ↦ (𝐺𝑠)))
44 fovcdm 7596 . . . . . . . . . . 11 ((𝐴:((0[,]1) × (0[,]1))⟶𝐵𝑠 ∈ (0[,]1) ∧ 0 ∈ (0[,]1)) → (𝑠𝐴0) ∈ 𝐵)
4523, 44mp3an3 1447 . . . . . . . . . 10 ((𝐴:((0[,]1) × (0[,]1))⟶𝐵𝑠 ∈ (0[,]1)) → (𝑠𝐴0) ∈ 𝐵)
4622, 45sylan 578 . . . . . . . . 9 ((𝜑𝑠 ∈ (0[,]1)) → (𝑠𝐴0) ∈ 𝐵)
47 eqidd 2727 . . . . . . . . 9 (𝜑 → (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0)) = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0)))
48 cvmcn 35090 . . . . . . . . . . . 12 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹 ∈ (𝐶 Cn 𝐽))
493, 48syl 17 . . . . . . . . . . 11 (𝜑𝐹 ∈ (𝐶 Cn 𝐽))
50 eqid 2726 . . . . . . . . . . . 12 𝐽 = 𝐽
511, 50cnf 23241 . . . . . . . . . . 11 (𝐹 ∈ (𝐶 Cn 𝐽) → 𝐹:𝐵 𝐽)
5249, 51syl 17 . . . . . . . . . 10 (𝜑𝐹:𝐵 𝐽)
5352feqmptd 6971 . . . . . . . . 9 (𝜑𝐹 = (𝑥𝐵 ↦ (𝐹𝑥)))
54 fveq2 6901 . . . . . . . . 9 (𝑥 = (𝑠𝐴0) → (𝐹𝑥) = (𝐹‘(𝑠𝐴0)))
5546, 47, 53, 54fmptco 7143 . . . . . . . 8 (𝜑 → (𝐹 ∘ (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0))) = (𝑠 ∈ (0[,]1) ↦ (𝐹‘(𝑠𝐴0))))
5619, 50cnf 23241 . . . . . . . . . 10 (𝐺 ∈ (II Cn 𝐽) → 𝐺:(0[,]1)⟶ 𝐽)
574, 56syl 17 . . . . . . . . 9 (𝜑𝐺:(0[,]1)⟶ 𝐽)
5857feqmptd 6971 . . . . . . . 8 (𝜑𝐺 = (𝑠 ∈ (0[,]1) ↦ (𝐺𝑠)))
5943, 55, 583eqtr4d 2776 . . . . . . 7 (𝜑 → (𝐹 ∘ (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0))) = 𝐺)
60 cvmliftphtlem.0 . . . . . . 7 (𝜑 → (0𝐴0) = 𝑃)
6137cnmptid 23656 . . . . . . . . 9 (𝜑 → (𝑠 ∈ (0[,]1) ↦ 𝑠) ∈ (II Cn II))
6223a1i 11 . . . . . . . . . 10 (𝜑 → 0 ∈ (0[,]1))
6337, 37, 62cnmptc 23657 . . . . . . . . 9 (𝜑 → (𝑠 ∈ (0[,]1) ↦ 0) ∈ (II Cn II))
6437, 61, 63, 17cnmpt12f 23661 . . . . . . . 8 (𝜑 → (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0)) ∈ (II Cn 𝐶))
651cvmlift 35127 . . . . . . . . 9 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐺 ∈ (II Cn 𝐽)) ∧ (𝑃𝐵 ∧ (𝐹𝑃) = (𝐺‘0))) → ∃!𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃))
663, 4, 5, 6, 65syl22anc 837 . . . . . . . 8 (𝜑 → ∃!𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃))
67 coeq2 5865 . . . . . . . . . . 11 (𝑓 = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0)) → (𝐹𝑓) = (𝐹 ∘ (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0))))
6867eqeq1d 2728 . . . . . . . . . 10 (𝑓 = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0)) → ((𝐹𝑓) = 𝐺 ↔ (𝐹 ∘ (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0))) = 𝐺))
69 fveq1 6900 . . . . . . . . . . . 12 (𝑓 = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0)) → (𝑓‘0) = ((𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0))‘0))
70 oveq1 7431 . . . . . . . . . . . . . 14 (𝑠 = 0 → (𝑠𝐴0) = (0𝐴0))
71 eqid 2726 . . . . . . . . . . . . . 14 (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0)) = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0))
72 ovex 7457 . . . . . . . . . . . . . 14 (0𝐴0) ∈ V
7370, 71, 72fvmpt 7009 . . . . . . . . . . . . 13 (0 ∈ (0[,]1) → ((𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0))‘0) = (0𝐴0))
7423, 73ax-mp 5 . . . . . . . . . . . 12 ((𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0))‘0) = (0𝐴0)
7569, 74eqtrdi 2782 . . . . . . . . . . 11 (𝑓 = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0)) → (𝑓‘0) = (0𝐴0))
7675eqeq1d 2728 . . . . . . . . . 10 (𝑓 = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0)) → ((𝑓‘0) = 𝑃 ↔ (0𝐴0) = 𝑃))
7768, 76anbi12d 630 . . . . . . . . 9 (𝑓 = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0)) → (((𝐹𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃) ↔ ((𝐹 ∘ (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0))) = 𝐺 ∧ (0𝐴0) = 𝑃)))
7877riota2 7406 . . . . . . . 8 (((𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0)) ∈ (II Cn 𝐶) ∧ ∃!𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃)) → (((𝐹 ∘ (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0))) = 𝐺 ∧ (0𝐴0) = 𝑃) ↔ (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃)) = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0))))
7964, 66, 78syl2anc 582 . . . . . . 7 (𝜑 → (((𝐹 ∘ (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0))) = 𝐺 ∧ (0𝐴0) = 𝑃) ↔ (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃)) = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0))))
8059, 60, 79mpbi2and 710 . . . . . 6 (𝜑 → (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃)) = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0)))
812, 80eqtrid 2778 . . . . 5 (𝜑𝑀 = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0)))
8219, 1cnf 23241 . . . . . . 7 (𝑀 ∈ (II Cn 𝐶) → 𝑀:(0[,]1)⟶𝐵)
838, 82syl 17 . . . . . 6 (𝜑𝑀:(0[,]1)⟶𝐵)
8483feqmptd 6971 . . . . 5 (𝜑𝑀 = (𝑠 ∈ (0[,]1) ↦ (𝑀𝑠)))
8581, 84eqtr3d 2768 . . . 4 (𝜑 → (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0)) = (𝑠 ∈ (0[,]1) ↦ (𝑀𝑠)))
86 mpteqb 7028 . . . . 5 (∀𝑠 ∈ (0[,]1)(𝑠𝐴0) ∈ V → ((𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0)) = (𝑠 ∈ (0[,]1) ↦ (𝑀𝑠)) ↔ ∀𝑠 ∈ (0[,]1)(𝑠𝐴0) = (𝑀𝑠)))
87 ovexd 7459 . . . . 5 (𝑠 ∈ (0[,]1) → (𝑠𝐴0) ∈ V)
8886, 87mprg 3057 . . . 4 ((𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0)) = (𝑠 ∈ (0[,]1) ↦ (𝑀𝑠)) ↔ ∀𝑠 ∈ (0[,]1)(𝑠𝐴0) = (𝑀𝑠))
8985, 88sylib 217 . . 3 (𝜑 → ∀𝑠 ∈ (0[,]1)(𝑠𝐴0) = (𝑀𝑠))
9089r19.21bi 3239 . 2 ((𝜑𝑠 ∈ (0[,]1)) → (𝑠𝐴0) = (𝑀𝑠))
91 1elunit 13501 . . . . . . . . . . . . . 14 1 ∈ (0[,]1)
92 opelxpi 5719 . . . . . . . . . . . . . 14 ((𝑠 ∈ (0[,]1) ∧ 1 ∈ (0[,]1)) → ⟨𝑠, 1⟩ ∈ ((0[,]1) × (0[,]1)))
9391, 92mpan2 689 . . . . . . . . . . . . 13 (𝑠 ∈ (0[,]1) → ⟨𝑠, 1⟩ ∈ ((0[,]1) × (0[,]1)))
94 fvco3 7001 . . . . . . . . . . . . 13 ((𝐴:((0[,]1) × (0[,]1))⟶𝐵 ∧ ⟨𝑠, 1⟩ ∈ ((0[,]1) × (0[,]1))) → ((𝐹𝐴)‘⟨𝑠, 1⟩) = (𝐹‘(𝐴‘⟨𝑠, 1⟩)))
9522, 93, 94syl2an 594 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (0[,]1)) → ((𝐹𝐴)‘⟨𝑠, 1⟩) = (𝐹‘(𝐴‘⟨𝑠, 1⟩)))
9629fveq1d 6903 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (0[,]1)) → ((𝐹𝐴)‘⟨𝑠, 1⟩) = (𝐾‘⟨𝑠, 1⟩))
9795, 96eqtr3d 2768 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (0[,]1)) → (𝐹‘(𝐴‘⟨𝑠, 1⟩)) = (𝐾‘⟨𝑠, 1⟩))
98 df-ov 7427 . . . . . . . . . . . 12 (𝑠𝐴1) = (𝐴‘⟨𝑠, 1⟩)
9998fveq2i 6904 . . . . . . . . . . 11 (𝐹‘(𝑠𝐴1)) = (𝐹‘(𝐴‘⟨𝑠, 1⟩))
100 df-ov 7427 . . . . . . . . . . 11 (𝑠𝐾1) = (𝐾‘⟨𝑠, 1⟩)
10197, 99, 1003eqtr4g 2791 . . . . . . . . . 10 ((𝜑𝑠 ∈ (0[,]1)) → (𝐹‘(𝑠𝐴1)) = (𝑠𝐾1))
10240simprd 494 . . . . . . . . . 10 ((𝜑𝑠 ∈ (0[,]1)) → (𝑠𝐾1) = (𝐻𝑠))
103101, 102eqtrd 2766 . . . . . . . . 9 ((𝜑𝑠 ∈ (0[,]1)) → (𝐹‘(𝑠𝐴1)) = (𝐻𝑠))
104103mpteq2dva 5253 . . . . . . . 8 (𝜑 → (𝑠 ∈ (0[,]1) ↦ (𝐹‘(𝑠𝐴1))) = (𝑠 ∈ (0[,]1) ↦ (𝐻𝑠)))
105 fovcdm 7596 . . . . . . . . . . 11 ((𝐴:((0[,]1) × (0[,]1))⟶𝐵𝑠 ∈ (0[,]1) ∧ 1 ∈ (0[,]1)) → (𝑠𝐴1) ∈ 𝐵)
10691, 105mp3an3 1447 . . . . . . . . . 10 ((𝐴:((0[,]1) × (0[,]1))⟶𝐵𝑠 ∈ (0[,]1)) → (𝑠𝐴1) ∈ 𝐵)
10722, 106sylan 578 . . . . . . . . 9 ((𝜑𝑠 ∈ (0[,]1)) → (𝑠𝐴1) ∈ 𝐵)
108 eqidd 2727 . . . . . . . . 9 (𝜑 → (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1)) = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1)))
109 fveq2 6901 . . . . . . . . 9 (𝑥 = (𝑠𝐴1) → (𝐹𝑥) = (𝐹‘(𝑠𝐴1)))
110107, 108, 53, 109fmptco 7143 . . . . . . . 8 (𝜑 → (𝐹 ∘ (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1))) = (𝑠 ∈ (0[,]1) ↦ (𝐹‘(𝑠𝐴1))))
11119, 50cnf 23241 . . . . . . . . . 10 (𝐻 ∈ (II Cn 𝐽) → 𝐻:(0[,]1)⟶ 𝐽)
11210, 111syl 17 . . . . . . . . 9 (𝜑𝐻:(0[,]1)⟶ 𝐽)
113112feqmptd 6971 . . . . . . . 8 (𝜑𝐻 = (𝑠 ∈ (0[,]1) ↦ (𝐻𝑠)))
114104, 110, 1133eqtr4d 2776 . . . . . . 7 (𝜑 → (𝐹 ∘ (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1))) = 𝐻)
115 iiconn 24898 . . . . . . . . . . . . 13 II ∈ Conn
116115a1i 11 . . . . . . . . . . . 12 (𝜑 → II ∈ Conn)
117 iinllyconn 35082 . . . . . . . . . . . . 13 II ∈ 𝑛-Locally Conn
118117a1i 11 . . . . . . . . . . . 12 (𝜑 → II ∈ 𝑛-Locally Conn)
11937, 63, 61, 17cnmpt12f 23661 . . . . . . . . . . . 12 (𝜑 → (𝑠 ∈ (0[,]1) ↦ (0𝐴𝑠)) ∈ (II Cn 𝐶))
120 cvmtop1 35088 . . . . . . . . . . . . . . 15 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐶 ∈ Top)
1213, 120syl 17 . . . . . . . . . . . . . 14 (𝜑𝐶 ∈ Top)
1221toptopon 22910 . . . . . . . . . . . . . 14 (𝐶 ∈ Top ↔ 𝐶 ∈ (TopOn‘𝐵))
123121, 122sylib 217 . . . . . . . . . . . . 13 (𝜑𝐶 ∈ (TopOn‘𝐵))
124 ffvelcdm 7095 . . . . . . . . . . . . . 14 ((𝑀:(0[,]1)⟶𝐵 ∧ 0 ∈ (0[,]1)) → (𝑀‘0) ∈ 𝐵)
12583, 23, 124sylancl 584 . . . . . . . . . . . . 13 (𝜑 → (𝑀‘0) ∈ 𝐵)
126 cnconst2 23278 . . . . . . . . . . . . 13 ((II ∈ (TopOn‘(0[,]1)) ∧ 𝐶 ∈ (TopOn‘𝐵) ∧ (𝑀‘0) ∈ 𝐵) → ((0[,]1) × {(𝑀‘0)}) ∈ (II Cn 𝐶))
12737, 123, 125, 126syl3anc 1368 . . . . . . . . . . . 12 (𝜑 → ((0[,]1) × {(𝑀‘0)}) ∈ (II Cn 𝐶))
1284, 10, 11phtpyi 25001 . . . . . . . . . . . . . . . . 17 ((𝜑𝑠 ∈ (0[,]1)) → ((0𝐾𝑠) = (𝐺‘0) ∧ (1𝐾𝑠) = (𝐺‘1)))
129128simpld 493 . . . . . . . . . . . . . . . 16 ((𝜑𝑠 ∈ (0[,]1)) → (0𝐾𝑠) = (𝐺‘0))
130 opelxpi 5719 . . . . . . . . . . . . . . . . . . . 20 ((0 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) → ⟨0, 𝑠⟩ ∈ ((0[,]1) × (0[,]1)))
13123, 130mpan 688 . . . . . . . . . . . . . . . . . . 19 (𝑠 ∈ (0[,]1) → ⟨0, 𝑠⟩ ∈ ((0[,]1) × (0[,]1)))
132 fvco3 7001 . . . . . . . . . . . . . . . . . . 19 ((𝐴:((0[,]1) × (0[,]1))⟶𝐵 ∧ ⟨0, 𝑠⟩ ∈ ((0[,]1) × (0[,]1))) → ((𝐹𝐴)‘⟨0, 𝑠⟩) = (𝐹‘(𝐴‘⟨0, 𝑠⟩)))
13322, 131, 132syl2an 594 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑠 ∈ (0[,]1)) → ((𝐹𝐴)‘⟨0, 𝑠⟩) = (𝐹‘(𝐴‘⟨0, 𝑠⟩)))
13429fveq1d 6903 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑠 ∈ (0[,]1)) → ((𝐹𝐴)‘⟨0, 𝑠⟩) = (𝐾‘⟨0, 𝑠⟩))
135133, 134eqtr3d 2768 . . . . . . . . . . . . . . . . 17 ((𝜑𝑠 ∈ (0[,]1)) → (𝐹‘(𝐴‘⟨0, 𝑠⟩)) = (𝐾‘⟨0, 𝑠⟩))
136 df-ov 7427 . . . . . . . . . . . . . . . . . 18 (0𝐴𝑠) = (𝐴‘⟨0, 𝑠⟩)
137136fveq2i 6904 . . . . . . . . . . . . . . . . 17 (𝐹‘(0𝐴𝑠)) = (𝐹‘(𝐴‘⟨0, 𝑠⟩))
138 df-ov 7427 . . . . . . . . . . . . . . . . 17 (0𝐾𝑠) = (𝐾‘⟨0, 𝑠⟩)
139135, 137, 1383eqtr4g 2791 . . . . . . . . . . . . . . . 16 ((𝜑𝑠 ∈ (0[,]1)) → (𝐹‘(0𝐴𝑠)) = (0𝐾𝑠))
1407simp3d 1141 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑀‘0) = 𝑃)
141140adantr 479 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑠 ∈ (0[,]1)) → (𝑀‘0) = 𝑃)
142141fveq2d 6905 . . . . . . . . . . . . . . . . 17 ((𝜑𝑠 ∈ (0[,]1)) → (𝐹‘(𝑀‘0)) = (𝐹𝑃))
1436adantr 479 . . . . . . . . . . . . . . . . 17 ((𝜑𝑠 ∈ (0[,]1)) → (𝐹𝑃) = (𝐺‘0))
144142, 143eqtrd 2766 . . . . . . . . . . . . . . . 16 ((𝜑𝑠 ∈ (0[,]1)) → (𝐹‘(𝑀‘0)) = (𝐺‘0))
145129, 139, 1443eqtr4d 2776 . . . . . . . . . . . . . . 15 ((𝜑𝑠 ∈ (0[,]1)) → (𝐹‘(0𝐴𝑠)) = (𝐹‘(𝑀‘0)))
146145mpteq2dva 5253 . . . . . . . . . . . . . 14 (𝜑 → (𝑠 ∈ (0[,]1) ↦ (𝐹‘(0𝐴𝑠))) = (𝑠 ∈ (0[,]1) ↦ (𝐹‘(𝑀‘0))))
147 fconstmpt 5744 . . . . . . . . . . . . . 14 ((0[,]1) × {(𝐹‘(𝑀‘0))}) = (𝑠 ∈ (0[,]1) ↦ (𝐹‘(𝑀‘0)))
148146, 147eqtr4di 2784 . . . . . . . . . . . . 13 (𝜑 → (𝑠 ∈ (0[,]1) ↦ (𝐹‘(0𝐴𝑠))) = ((0[,]1) × {(𝐹‘(𝑀‘0))}))
149 fovcdm 7596 . . . . . . . . . . . . . . . 16 ((𝐴:((0[,]1) × (0[,]1))⟶𝐵 ∧ 0 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) → (0𝐴𝑠) ∈ 𝐵)
15023, 149mp3an2 1446 . . . . . . . . . . . . . . 15 ((𝐴:((0[,]1) × (0[,]1))⟶𝐵𝑠 ∈ (0[,]1)) → (0𝐴𝑠) ∈ 𝐵)
15122, 150sylan 578 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ (0[,]1)) → (0𝐴𝑠) ∈ 𝐵)
152 eqidd 2727 . . . . . . . . . . . . . 14 (𝜑 → (𝑠 ∈ (0[,]1) ↦ (0𝐴𝑠)) = (𝑠 ∈ (0[,]1) ↦ (0𝐴𝑠)))
153 fveq2 6901 . . . . . . . . . . . . . 14 (𝑥 = (0𝐴𝑠) → (𝐹𝑥) = (𝐹‘(0𝐴𝑠)))
154151, 152, 53, 153fmptco 7143 . . . . . . . . . . . . 13 (𝜑 → (𝐹 ∘ (𝑠 ∈ (0[,]1) ↦ (0𝐴𝑠))) = (𝑠 ∈ (0[,]1) ↦ (𝐹‘(0𝐴𝑠))))
15552ffnd 6729 . . . . . . . . . . . . . 14 (𝜑𝐹 Fn 𝐵)
156 fcoconst 7148 . . . . . . . . . . . . . 14 ((𝐹 Fn 𝐵 ∧ (𝑀‘0) ∈ 𝐵) → (𝐹 ∘ ((0[,]1) × {(𝑀‘0)})) = ((0[,]1) × {(𝐹‘(𝑀‘0))}))
157155, 125, 156syl2anc 582 . . . . . . . . . . . . 13 (𝜑 → (𝐹 ∘ ((0[,]1) × {(𝑀‘0)})) = ((0[,]1) × {(𝐹‘(𝑀‘0))}))
158148, 154, 1573eqtr4d 2776 . . . . . . . . . . . 12 (𝜑 → (𝐹 ∘ (𝑠 ∈ (0[,]1) ↦ (0𝐴𝑠))) = (𝐹 ∘ ((0[,]1) × {(𝑀‘0)})))
15960, 140eqtr4d 2769 . . . . . . . . . . . . 13 (𝜑 → (0𝐴0) = (𝑀‘0))
160 oveq2 7432 . . . . . . . . . . . . . . 15 (𝑠 = 0 → (0𝐴𝑠) = (0𝐴0))
161 eqid 2726 . . . . . . . . . . . . . . 15 (𝑠 ∈ (0[,]1) ↦ (0𝐴𝑠)) = (𝑠 ∈ (0[,]1) ↦ (0𝐴𝑠))
162160, 161, 72fvmpt 7009 . . . . . . . . . . . . . 14 (0 ∈ (0[,]1) → ((𝑠 ∈ (0[,]1) ↦ (0𝐴𝑠))‘0) = (0𝐴0))
16323, 162ax-mp 5 . . . . . . . . . . . . 13 ((𝑠 ∈ (0[,]1) ↦ (0𝐴𝑠))‘0) = (0𝐴0)
164 fvex 6914 . . . . . . . . . . . . . . 15 (𝑀‘0) ∈ V
165164fvconst2 7221 . . . . . . . . . . . . . 14 (0 ∈ (0[,]1) → (((0[,]1) × {(𝑀‘0)})‘0) = (𝑀‘0))
16623, 165ax-mp 5 . . . . . . . . . . . . 13 (((0[,]1) × {(𝑀‘0)})‘0) = (𝑀‘0)
167159, 163, 1663eqtr4g 2791 . . . . . . . . . . . 12 (𝜑 → ((𝑠 ∈ (0[,]1) ↦ (0𝐴𝑠))‘0) = (((0[,]1) × {(𝑀‘0)})‘0))
1681, 19, 3, 116, 118, 62, 119, 127, 158, 167cvmliftmoi 35111 . . . . . . . . . . 11 (𝜑 → (𝑠 ∈ (0[,]1) ↦ (0𝐴𝑠)) = ((0[,]1) × {(𝑀‘0)}))
169 fconstmpt 5744 . . . . . . . . . . 11 ((0[,]1) × {(𝑀‘0)}) = (𝑠 ∈ (0[,]1) ↦ (𝑀‘0))
170168, 169eqtrdi 2782 . . . . . . . . . 10 (𝜑 → (𝑠 ∈ (0[,]1) ↦ (0𝐴𝑠)) = (𝑠 ∈ (0[,]1) ↦ (𝑀‘0)))
171 mpteqb 7028 . . . . . . . . . . 11 (∀𝑠 ∈ (0[,]1)(0𝐴𝑠) ∈ V → ((𝑠 ∈ (0[,]1) ↦ (0𝐴𝑠)) = (𝑠 ∈ (0[,]1) ↦ (𝑀‘0)) ↔ ∀𝑠 ∈ (0[,]1)(0𝐴𝑠) = (𝑀‘0)))
172 ovexd 7459 . . . . . . . . . . 11 (𝑠 ∈ (0[,]1) → (0𝐴𝑠) ∈ V)
173171, 172mprg 3057 . . . . . . . . . 10 ((𝑠 ∈ (0[,]1) ↦ (0𝐴𝑠)) = (𝑠 ∈ (0[,]1) ↦ (𝑀‘0)) ↔ ∀𝑠 ∈ (0[,]1)(0𝐴𝑠) = (𝑀‘0))
174170, 173sylib 217 . . . . . . . . 9 (𝜑 → ∀𝑠 ∈ (0[,]1)(0𝐴𝑠) = (𝑀‘0))
175 oveq2 7432 . . . . . . . . . . 11 (𝑠 = 1 → (0𝐴𝑠) = (0𝐴1))
176175eqeq1d 2728 . . . . . . . . . 10 (𝑠 = 1 → ((0𝐴𝑠) = (𝑀‘0) ↔ (0𝐴1) = (𝑀‘0)))
177176rspcv 3604 . . . . . . . . 9 (1 ∈ (0[,]1) → (∀𝑠 ∈ (0[,]1)(0𝐴𝑠) = (𝑀‘0) → (0𝐴1) = (𝑀‘0)))
17891, 174, 177mpsyl 68 . . . . . . . 8 (𝜑 → (0𝐴1) = (𝑀‘0))
179178, 140eqtrd 2766 . . . . . . 7 (𝜑 → (0𝐴1) = 𝑃)
18091a1i 11 . . . . . . . . . 10 (𝜑 → 1 ∈ (0[,]1))
18137, 37, 180cnmptc 23657 . . . . . . . . 9 (𝜑 → (𝑠 ∈ (0[,]1) ↦ 1) ∈ (II Cn II))
18237, 61, 181, 17cnmpt12f 23661 . . . . . . . 8 (𝜑 → (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1)) ∈ (II Cn 𝐶))
1831cvmlift 35127 . . . . . . . . 9 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐻 ∈ (II Cn 𝐽)) ∧ (𝑃𝐵 ∧ (𝐹𝑃) = (𝐻‘0))) → ∃!𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐻 ∧ (𝑓‘0) = 𝑃))
1843, 10, 5, 14, 183syl22anc 837 . . . . . . . 8 (𝜑 → ∃!𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐻 ∧ (𝑓‘0) = 𝑃))
185 coeq2 5865 . . . . . . . . . . 11 (𝑓 = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1)) → (𝐹𝑓) = (𝐹 ∘ (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1))))
186185eqeq1d 2728 . . . . . . . . . 10 (𝑓 = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1)) → ((𝐹𝑓) = 𝐻 ↔ (𝐹 ∘ (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1))) = 𝐻))
187 fveq1 6900 . . . . . . . . . . . 12 (𝑓 = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1)) → (𝑓‘0) = ((𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1))‘0))
188 oveq1 7431 . . . . . . . . . . . . . 14 (𝑠 = 0 → (𝑠𝐴1) = (0𝐴1))
189 eqid 2726 . . . . . . . . . . . . . 14 (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1)) = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1))
190 ovex 7457 . . . . . . . . . . . . . 14 (0𝐴1) ∈ V
191188, 189, 190fvmpt 7009 . . . . . . . . . . . . 13 (0 ∈ (0[,]1) → ((𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1))‘0) = (0𝐴1))
19223, 191ax-mp 5 . . . . . . . . . . . 12 ((𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1))‘0) = (0𝐴1)
193187, 192eqtrdi 2782 . . . . . . . . . . 11 (𝑓 = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1)) → (𝑓‘0) = (0𝐴1))
194193eqeq1d 2728 . . . . . . . . . 10 (𝑓 = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1)) → ((𝑓‘0) = 𝑃 ↔ (0𝐴1) = 𝑃))
195186, 194anbi12d 630 . . . . . . . . 9 (𝑓 = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1)) → (((𝐹𝑓) = 𝐻 ∧ (𝑓‘0) = 𝑃) ↔ ((𝐹 ∘ (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1))) = 𝐻 ∧ (0𝐴1) = 𝑃)))
196195riota2 7406 . . . . . . . 8 (((𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1)) ∈ (II Cn 𝐶) ∧ ∃!𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐻 ∧ (𝑓‘0) = 𝑃)) → (((𝐹 ∘ (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1))) = 𝐻 ∧ (0𝐴1) = 𝑃) ↔ (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐻 ∧ (𝑓‘0) = 𝑃)) = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1))))
197182, 184, 196syl2anc 582 . . . . . . 7 (𝜑 → (((𝐹 ∘ (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1))) = 𝐻 ∧ (0𝐴1) = 𝑃) ↔ (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐻 ∧ (𝑓‘0) = 𝑃)) = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1))))
198114, 179, 197mpbi2and 710 . . . . . 6 (𝜑 → (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐻 ∧ (𝑓‘0) = 𝑃)) = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1)))
1999, 198eqtrid 2778 . . . . 5 (𝜑𝑁 = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1)))
20019, 1cnf 23241 . . . . . . 7 (𝑁 ∈ (II Cn 𝐶) → 𝑁:(0[,]1)⟶𝐵)
20116, 200syl 17 . . . . . 6 (𝜑𝑁:(0[,]1)⟶𝐵)
202201feqmptd 6971 . . . . 5 (𝜑𝑁 = (𝑠 ∈ (0[,]1) ↦ (𝑁𝑠)))
203199, 202eqtr3d 2768 . . . 4 (𝜑 → (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1)) = (𝑠 ∈ (0[,]1) ↦ (𝑁𝑠)))
204 mpteqb 7028 . . . . 5 (∀𝑠 ∈ (0[,]1)(𝑠𝐴1) ∈ V → ((𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1)) = (𝑠 ∈ (0[,]1) ↦ (𝑁𝑠)) ↔ ∀𝑠 ∈ (0[,]1)(𝑠𝐴1) = (𝑁𝑠)))
205 ovexd 7459 . . . . 5 (𝑠 ∈ (0[,]1) → (𝑠𝐴1) ∈ V)
206204, 205mprg 3057 . . . 4 ((𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1)) = (𝑠 ∈ (0[,]1) ↦ (𝑁𝑠)) ↔ ∀𝑠 ∈ (0[,]1)(𝑠𝐴1) = (𝑁𝑠))
207203, 206sylib 217 . . 3 (𝜑 → ∀𝑠 ∈ (0[,]1)(𝑠𝐴1) = (𝑁𝑠))
208207r19.21bi 3239 . 2 ((𝜑𝑠 ∈ (0[,]1)) → (𝑠𝐴1) = (𝑁𝑠))
209174r19.21bi 3239 . 2 ((𝜑𝑠 ∈ (0[,]1)) → (0𝐴𝑠) = (𝑀‘0))
21037, 181, 61, 17cnmpt12f 23661 . . . . . 6 (𝜑 → (𝑠 ∈ (0[,]1) ↦ (1𝐴𝑠)) ∈ (II Cn 𝐶))
211 ffvelcdm 7095 . . . . . . . 8 ((𝑀:(0[,]1)⟶𝐵 ∧ 1 ∈ (0[,]1)) → (𝑀‘1) ∈ 𝐵)
21283, 91, 211sylancl 584 . . . . . . 7 (𝜑 → (𝑀‘1) ∈ 𝐵)
213 cnconst2 23278 . . . . . . 7 ((II ∈ (TopOn‘(0[,]1)) ∧ 𝐶 ∈ (TopOn‘𝐵) ∧ (𝑀‘1) ∈ 𝐵) → ((0[,]1) × {(𝑀‘1)}) ∈ (II Cn 𝐶))
21437, 123, 212, 213syl3anc 1368 . . . . . 6 (𝜑 → ((0[,]1) × {(𝑀‘1)}) ∈ (II Cn 𝐶))
215 opelxpi 5719 . . . . . . . . . . . . . 14 ((1 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) → ⟨1, 𝑠⟩ ∈ ((0[,]1) × (0[,]1)))
21691, 215mpan 688 . . . . . . . . . . . . 13 (𝑠 ∈ (0[,]1) → ⟨1, 𝑠⟩ ∈ ((0[,]1) × (0[,]1)))
217 fvco3 7001 . . . . . . . . . . . . 13 ((𝐴:((0[,]1) × (0[,]1))⟶𝐵 ∧ ⟨1, 𝑠⟩ ∈ ((0[,]1) × (0[,]1))) → ((𝐹𝐴)‘⟨1, 𝑠⟩) = (𝐹‘(𝐴‘⟨1, 𝑠⟩)))
21822, 216, 217syl2an 594 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (0[,]1)) → ((𝐹𝐴)‘⟨1, 𝑠⟩) = (𝐹‘(𝐴‘⟨1, 𝑠⟩)))
21929fveq1d 6903 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (0[,]1)) → ((𝐹𝐴)‘⟨1, 𝑠⟩) = (𝐾‘⟨1, 𝑠⟩))
220218, 219eqtr3d 2768 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (0[,]1)) → (𝐹‘(𝐴‘⟨1, 𝑠⟩)) = (𝐾‘⟨1, 𝑠⟩))
221 df-ov 7427 . . . . . . . . . . . 12 (1𝐴𝑠) = (𝐴‘⟨1, 𝑠⟩)
222221fveq2i 6904 . . . . . . . . . . 11 (𝐹‘(1𝐴𝑠)) = (𝐹‘(𝐴‘⟨1, 𝑠⟩))
223 df-ov 7427 . . . . . . . . . . 11 (1𝐾𝑠) = (𝐾‘⟨1, 𝑠⟩)
224220, 222, 2233eqtr4g 2791 . . . . . . . . . 10 ((𝜑𝑠 ∈ (0[,]1)) → (𝐹‘(1𝐴𝑠)) = (1𝐾𝑠))
225128simprd 494 . . . . . . . . . 10 ((𝜑𝑠 ∈ (0[,]1)) → (1𝐾𝑠) = (𝐺‘1))
2267simp2d 1140 . . . . . . . . . . . . 13 (𝜑 → (𝐹𝑀) = 𝐺)
227226adantr 479 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (0[,]1)) → (𝐹𝑀) = 𝐺)
228227fveq1d 6903 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (0[,]1)) → ((𝐹𝑀)‘1) = (𝐺‘1))
22983adantr 479 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (0[,]1)) → 𝑀:(0[,]1)⟶𝐵)
230 fvco3 7001 . . . . . . . . . . . 12 ((𝑀:(0[,]1)⟶𝐵 ∧ 1 ∈ (0[,]1)) → ((𝐹𝑀)‘1) = (𝐹‘(𝑀‘1)))
231229, 91, 230sylancl 584 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (0[,]1)) → ((𝐹𝑀)‘1) = (𝐹‘(𝑀‘1)))
232228, 231eqtr3d 2768 . . . . . . . . . 10 ((𝜑𝑠 ∈ (0[,]1)) → (𝐺‘1) = (𝐹‘(𝑀‘1)))
233224, 225, 2323eqtrd 2770 . . . . . . . . 9 ((𝜑𝑠 ∈ (0[,]1)) → (𝐹‘(1𝐴𝑠)) = (𝐹‘(𝑀‘1)))
234233mpteq2dva 5253 . . . . . . . 8 (𝜑 → (𝑠 ∈ (0[,]1) ↦ (𝐹‘(1𝐴𝑠))) = (𝑠 ∈ (0[,]1) ↦ (𝐹‘(𝑀‘1))))
235 fconstmpt 5744 . . . . . . . 8 ((0[,]1) × {(𝐹‘(𝑀‘1))}) = (𝑠 ∈ (0[,]1) ↦ (𝐹‘(𝑀‘1)))
236234, 235eqtr4di 2784 . . . . . . 7 (𝜑 → (𝑠 ∈ (0[,]1) ↦ (𝐹‘(1𝐴𝑠))) = ((0[,]1) × {(𝐹‘(𝑀‘1))}))
237 fovcdm 7596 . . . . . . . . . 10 ((𝐴:((0[,]1) × (0[,]1))⟶𝐵 ∧ 1 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) → (1𝐴𝑠) ∈ 𝐵)
23891, 237mp3an2 1446 . . . . . . . . 9 ((𝐴:((0[,]1) × (0[,]1))⟶𝐵𝑠 ∈ (0[,]1)) → (1𝐴𝑠) ∈ 𝐵)
23922, 238sylan 578 . . . . . . . 8 ((𝜑𝑠 ∈ (0[,]1)) → (1𝐴𝑠) ∈ 𝐵)
240 eqidd 2727 . . . . . . . 8 (𝜑 → (𝑠 ∈ (0[,]1) ↦ (1𝐴𝑠)) = (𝑠 ∈ (0[,]1) ↦ (1𝐴𝑠)))
241 fveq2 6901 . . . . . . . 8 (𝑥 = (1𝐴𝑠) → (𝐹𝑥) = (𝐹‘(1𝐴𝑠)))
242239, 240, 53, 241fmptco 7143 . . . . . . 7 (𝜑 → (𝐹 ∘ (𝑠 ∈ (0[,]1) ↦ (1𝐴𝑠))) = (𝑠 ∈ (0[,]1) ↦ (𝐹‘(1𝐴𝑠))))
243 fcoconst 7148 . . . . . . . 8 ((𝐹 Fn 𝐵 ∧ (𝑀‘1) ∈ 𝐵) → (𝐹 ∘ ((0[,]1) × {(𝑀‘1)})) = ((0[,]1) × {(𝐹‘(𝑀‘1))}))
244155, 212, 243syl2anc 582 . . . . . . 7 (𝜑 → (𝐹 ∘ ((0[,]1) × {(𝑀‘1)})) = ((0[,]1) × {(𝐹‘(𝑀‘1))}))
245236, 242, 2443eqtr4d 2776 . . . . . 6 (𝜑 → (𝐹 ∘ (𝑠 ∈ (0[,]1) ↦ (1𝐴𝑠))) = (𝐹 ∘ ((0[,]1) × {(𝑀‘1)})))
246 oveq1 7431 . . . . . . . . . 10 (𝑠 = 1 → (𝑠𝐴0) = (1𝐴0))
247 fveq2 6901 . . . . . . . . . 10 (𝑠 = 1 → (𝑀𝑠) = (𝑀‘1))
248246, 247eqeq12d 2742 . . . . . . . . 9 (𝑠 = 1 → ((𝑠𝐴0) = (𝑀𝑠) ↔ (1𝐴0) = (𝑀‘1)))
249248rspcv 3604 . . . . . . . 8 (1 ∈ (0[,]1) → (∀𝑠 ∈ (0[,]1)(𝑠𝐴0) = (𝑀𝑠) → (1𝐴0) = (𝑀‘1)))
25091, 89, 249mpsyl 68 . . . . . . 7 (𝜑 → (1𝐴0) = (𝑀‘1))
251 oveq2 7432 . . . . . . . . 9 (𝑠 = 0 → (1𝐴𝑠) = (1𝐴0))
252 eqid 2726 . . . . . . . . 9 (𝑠 ∈ (0[,]1) ↦ (1𝐴𝑠)) = (𝑠 ∈ (0[,]1) ↦ (1𝐴𝑠))
253 ovex 7457 . . . . . . . . 9 (1𝐴0) ∈ V
254251, 252, 253fvmpt 7009 . . . . . . . 8 (0 ∈ (0[,]1) → ((𝑠 ∈ (0[,]1) ↦ (1𝐴𝑠))‘0) = (1𝐴0))
25523, 254ax-mp 5 . . . . . . 7 ((𝑠 ∈ (0[,]1) ↦ (1𝐴𝑠))‘0) = (1𝐴0)
256 fvex 6914 . . . . . . . . 9 (𝑀‘1) ∈ V
257256fvconst2 7221 . . . . . . . 8 (0 ∈ (0[,]1) → (((0[,]1) × {(𝑀‘1)})‘0) = (𝑀‘1))
25823, 257ax-mp 5 . . . . . . 7 (((0[,]1) × {(𝑀‘1)})‘0) = (𝑀‘1)
259250, 255, 2583eqtr4g 2791 . . . . . 6 (𝜑 → ((𝑠 ∈ (0[,]1) ↦ (1𝐴𝑠))‘0) = (((0[,]1) × {(𝑀‘1)})‘0))
2601, 19, 3, 116, 118, 62, 210, 214, 245, 259cvmliftmoi 35111 . . . . 5 (𝜑 → (𝑠 ∈ (0[,]1) ↦ (1𝐴𝑠)) = ((0[,]1) × {(𝑀‘1)}))
261 fconstmpt 5744 . . . . 5 ((0[,]1) × {(𝑀‘1)}) = (𝑠 ∈ (0[,]1) ↦ (𝑀‘1))
262260, 261eqtrdi 2782 . . . 4 (𝜑 → (𝑠 ∈ (0[,]1) ↦ (1𝐴𝑠)) = (𝑠 ∈ (0[,]1) ↦ (𝑀‘1)))
263 mpteqb 7028 . . . . 5 (∀𝑠 ∈ (0[,]1)(1𝐴𝑠) ∈ V → ((𝑠 ∈ (0[,]1) ↦ (1𝐴𝑠)) = (𝑠 ∈ (0[,]1) ↦ (𝑀‘1)) ↔ ∀𝑠 ∈ (0[,]1)(1𝐴𝑠) = (𝑀‘1)))
264 ovexd 7459 . . . . 5 (𝑠 ∈ (0[,]1) → (1𝐴𝑠) ∈ V)
265263, 264mprg 3057 . . . 4 ((𝑠 ∈ (0[,]1) ↦ (1𝐴𝑠)) = (𝑠 ∈ (0[,]1) ↦ (𝑀‘1)) ↔ ∀𝑠 ∈ (0[,]1)(1𝐴𝑠) = (𝑀‘1))
266262, 265sylib 217 . . 3 (𝜑 → ∀𝑠 ∈ (0[,]1)(1𝐴𝑠) = (𝑀‘1))
267266r19.21bi 3239 . 2 ((𝜑𝑠 ∈ (0[,]1)) → (1𝐴𝑠) = (𝑀‘1))
2688, 16, 17, 90, 208, 209, 267isphtpy2d 25004 1 (𝜑𝐴 ∈ (𝑀(PHtpy‘𝐶)𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1534  wcel 2099  wral 3051  ∃!wreu 3362  Vcvv 3462  {csn 4633  cop 4639   cuni 4913  cmpt 5236   × cxp 5680  ccom 5686   Fn wfn 6549  wf 6550  cfv 6554  crio 7379  (class class class)co 7424  0cc0 11158  1c1 11159  [,]cicc 13381  Topctop 22886  TopOnctopon 22903   Cn ccn 23219  Conncconn 23406  𝑛-Locally cnlly 23460   ×t ctx 23555  IIcii 24886   Htpy chtpy 24984  PHtpycphtpy 24985   CovMap ccvm 35083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-inf2 9684  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235  ax-pre-sup 11236  ax-addf 11237
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-tp 4638  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-iin 5004  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-isom 6563  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-of 7690  df-om 7877  df-1st 8003  df-2nd 8004  df-supp 8175  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-2o 8497  df-er 8734  df-ec 8736  df-map 8857  df-ixp 8927  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-fsupp 9406  df-fi 9454  df-sup 9485  df-inf 9486  df-oi 9553  df-card 9982  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-div 11922  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12611  df-dec 12730  df-uz 12875  df-q 12985  df-rp 13029  df-xneg 13146  df-xadd 13147  df-xmul 13148  df-ioo 13382  df-ico 13384  df-icc 13385  df-fz 13539  df-fzo 13682  df-fl 13812  df-seq 14022  df-exp 14082  df-hash 14348  df-cj 15104  df-re 15105  df-im 15106  df-sqrt 15240  df-abs 15241  df-clim 15490  df-sum 15691  df-struct 17149  df-sets 17166  df-slot 17184  df-ndx 17196  df-base 17214  df-ress 17243  df-plusg 17279  df-mulr 17280  df-starv 17281  df-sca 17282  df-vsca 17283  df-ip 17284  df-tset 17285  df-ple 17286  df-ds 17288  df-unif 17289  df-hom 17290  df-cco 17291  df-rest 17437  df-topn 17438  df-0g 17456  df-gsum 17457  df-topgen 17458  df-pt 17459  df-prds 17462  df-xrs 17517  df-qtop 17522  df-imas 17523  df-xps 17525  df-mre 17599  df-mrc 17600  df-acs 17602  df-mgm 18633  df-sgrp 18712  df-mnd 18728  df-submnd 18774  df-mulg 19062  df-cntz 19311  df-cmn 19780  df-psmet 21335  df-xmet 21336  df-met 21337  df-bl 21338  df-mopn 21339  df-cnfld 21344  df-top 22887  df-topon 22904  df-topsp 22926  df-bases 22940  df-cld 23014  df-ntr 23015  df-cls 23016  df-nei 23093  df-cn 23222  df-cnp 23223  df-cmp 23382  df-conn 23407  df-lly 23461  df-nlly 23462  df-tx 23557  df-hmeo 23750  df-xms 24317  df-ms 24318  df-tms 24319  df-ii 24888  df-cncf 24889  df-htpy 24987  df-phtpy 24988  df-phtpc 25009  df-pconn 35049  df-sconn 35050  df-cvm 35084
This theorem is referenced by:  cvmliftpht  35146
  Copyright terms: Public domain W3C validator