Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmliftphtlem Structured version   Visualization version   GIF version

Theorem cvmliftphtlem 35304
Description: Lemma for cvmliftpht 35305. (Contributed by Mario Carneiro, 6-Jul-2015.)
Hypotheses
Ref Expression
cvmliftpht.b 𝐵 = 𝐶
cvmliftpht.m 𝑀 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃))
cvmliftpht.n 𝑁 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐻 ∧ (𝑓‘0) = 𝑃))
cvmliftpht.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmliftpht.p (𝜑𝑃𝐵)
cvmliftpht.e (𝜑 → (𝐹𝑃) = (𝐺‘0))
cvmliftphtlem.g (𝜑𝐺 ∈ (II Cn 𝐽))
cvmliftphtlem.h (𝜑𝐻 ∈ (II Cn 𝐽))
cvmliftphtlem.k (𝜑𝐾 ∈ (𝐺(PHtpy‘𝐽)𝐻))
cvmliftphtlem.a (𝜑𝐴 ∈ ((II ×t II) Cn 𝐶))
cvmliftphtlem.c (𝜑 → (𝐹𝐴) = 𝐾)
cvmliftphtlem.0 (𝜑 → (0𝐴0) = 𝑃)
Assertion
Ref Expression
cvmliftphtlem (𝜑𝐴 ∈ (𝑀(PHtpy‘𝐶)𝑁))
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓   𝑓,𝐹   𝑓,𝐽   𝐶,𝑓   𝑓,𝐺   𝑓,𝐻   𝑃,𝑓
Allowed substitution hints:   𝜑(𝑓)   𝐾(𝑓)   𝑀(𝑓)   𝑁(𝑓)

Proof of Theorem cvmliftphtlem
Dummy variables 𝑠 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvmliftpht.b . . . 4 𝐵 = 𝐶
2 cvmliftpht.m . . . 4 𝑀 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃))
3 cvmliftpht.f . . . 4 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
4 cvmliftphtlem.g . . . 4 (𝜑𝐺 ∈ (II Cn 𝐽))
5 cvmliftpht.p . . . 4 (𝜑𝑃𝐵)
6 cvmliftpht.e . . . 4 (𝜑 → (𝐹𝑃) = (𝐺‘0))
71, 2, 3, 4, 5, 6cvmliftiota 35288 . . 3 (𝜑 → (𝑀 ∈ (II Cn 𝐶) ∧ (𝐹𝑀) = 𝐺 ∧ (𝑀‘0) = 𝑃))
87simp1d 1142 . 2 (𝜑𝑀 ∈ (II Cn 𝐶))
9 cvmliftpht.n . . . 4 𝑁 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐻 ∧ (𝑓‘0) = 𝑃))
10 cvmliftphtlem.h . . . 4 (𝜑𝐻 ∈ (II Cn 𝐽))
11 cvmliftphtlem.k . . . . . . 7 (𝜑𝐾 ∈ (𝐺(PHtpy‘𝐽)𝐻))
124, 10, 11phtpy01 24884 . . . . . 6 (𝜑 → ((𝐺‘0) = (𝐻‘0) ∧ (𝐺‘1) = (𝐻‘1)))
1312simpld 494 . . . . 5 (𝜑 → (𝐺‘0) = (𝐻‘0))
146, 13eqtrd 2764 . . . 4 (𝜑 → (𝐹𝑃) = (𝐻‘0))
151, 9, 3, 10, 5, 14cvmliftiota 35288 . . 3 (𝜑 → (𝑁 ∈ (II Cn 𝐶) ∧ (𝐹𝑁) = 𝐻 ∧ (𝑁‘0) = 𝑃))
1615simp1d 1142 . 2 (𝜑𝑁 ∈ (II Cn 𝐶))
17 cvmliftphtlem.a . 2 (𝜑𝐴 ∈ ((II ×t II) Cn 𝐶))
18 iitop 24773 . . . . . . . . . . . . . . . 16 II ∈ Top
19 iiuni 24774 . . . . . . . . . . . . . . . 16 (0[,]1) = II
2018, 18, 19, 19txunii 23480 . . . . . . . . . . . . . . 15 ((0[,]1) × (0[,]1)) = (II ×t II)
2120, 1cnf 23133 . . . . . . . . . . . . . 14 (𝐴 ∈ ((II ×t II) Cn 𝐶) → 𝐴:((0[,]1) × (0[,]1))⟶𝐵)
2217, 21syl 17 . . . . . . . . . . . . 13 (𝜑𝐴:((0[,]1) × (0[,]1))⟶𝐵)
23 0elunit 13430 . . . . . . . . . . . . . 14 0 ∈ (0[,]1)
24 opelxpi 5675 . . . . . . . . . . . . . 14 ((𝑠 ∈ (0[,]1) ∧ 0 ∈ (0[,]1)) → ⟨𝑠, 0⟩ ∈ ((0[,]1) × (0[,]1)))
2523, 24mpan2 691 . . . . . . . . . . . . 13 (𝑠 ∈ (0[,]1) → ⟨𝑠, 0⟩ ∈ ((0[,]1) × (0[,]1)))
26 fvco3 6960 . . . . . . . . . . . . 13 ((𝐴:((0[,]1) × (0[,]1))⟶𝐵 ∧ ⟨𝑠, 0⟩ ∈ ((0[,]1) × (0[,]1))) → ((𝐹𝐴)‘⟨𝑠, 0⟩) = (𝐹‘(𝐴‘⟨𝑠, 0⟩)))
2722, 25, 26syl2an 596 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (0[,]1)) → ((𝐹𝐴)‘⟨𝑠, 0⟩) = (𝐹‘(𝐴‘⟨𝑠, 0⟩)))
28 cvmliftphtlem.c . . . . . . . . . . . . . 14 (𝜑 → (𝐹𝐴) = 𝐾)
2928adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (0[,]1)) → (𝐹𝐴) = 𝐾)
3029fveq1d 6860 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (0[,]1)) → ((𝐹𝐴)‘⟨𝑠, 0⟩) = (𝐾‘⟨𝑠, 0⟩))
3127, 30eqtr3d 2766 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (0[,]1)) → (𝐹‘(𝐴‘⟨𝑠, 0⟩)) = (𝐾‘⟨𝑠, 0⟩))
32 df-ov 7390 . . . . . . . . . . . 12 (𝑠𝐴0) = (𝐴‘⟨𝑠, 0⟩)
3332fveq2i 6861 . . . . . . . . . . 11 (𝐹‘(𝑠𝐴0)) = (𝐹‘(𝐴‘⟨𝑠, 0⟩))
34 df-ov 7390 . . . . . . . . . . 11 (𝑠𝐾0) = (𝐾‘⟨𝑠, 0⟩)
3531, 33, 343eqtr4g 2789 . . . . . . . . . 10 ((𝜑𝑠 ∈ (0[,]1)) → (𝐹‘(𝑠𝐴0)) = (𝑠𝐾0))
36 iitopon 24772 . . . . . . . . . . . . 13 II ∈ (TopOn‘(0[,]1))
3736a1i 11 . . . . . . . . . . . 12 (𝜑 → II ∈ (TopOn‘(0[,]1)))
384, 10phtpyhtpy 24881 . . . . . . . . . . . . 13 (𝜑 → (𝐺(PHtpy‘𝐽)𝐻) ⊆ (𝐺(II Htpy 𝐽)𝐻))
3938, 11sseldd 3947 . . . . . . . . . . . 12 (𝜑𝐾 ∈ (𝐺(II Htpy 𝐽)𝐻))
4037, 4, 10, 39htpyi 24873 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (0[,]1)) → ((𝑠𝐾0) = (𝐺𝑠) ∧ (𝑠𝐾1) = (𝐻𝑠)))
4140simpld 494 . . . . . . . . . 10 ((𝜑𝑠 ∈ (0[,]1)) → (𝑠𝐾0) = (𝐺𝑠))
4235, 41eqtrd 2764 . . . . . . . . 9 ((𝜑𝑠 ∈ (0[,]1)) → (𝐹‘(𝑠𝐴0)) = (𝐺𝑠))
4342mpteq2dva 5200 . . . . . . . 8 (𝜑 → (𝑠 ∈ (0[,]1) ↦ (𝐹‘(𝑠𝐴0))) = (𝑠 ∈ (0[,]1) ↦ (𝐺𝑠)))
44 fovcdm 7559 . . . . . . . . . . 11 ((𝐴:((0[,]1) × (0[,]1))⟶𝐵𝑠 ∈ (0[,]1) ∧ 0 ∈ (0[,]1)) → (𝑠𝐴0) ∈ 𝐵)
4523, 44mp3an3 1452 . . . . . . . . . 10 ((𝐴:((0[,]1) × (0[,]1))⟶𝐵𝑠 ∈ (0[,]1)) → (𝑠𝐴0) ∈ 𝐵)
4622, 45sylan 580 . . . . . . . . 9 ((𝜑𝑠 ∈ (0[,]1)) → (𝑠𝐴0) ∈ 𝐵)
47 eqidd 2730 . . . . . . . . 9 (𝜑 → (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0)) = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0)))
48 cvmcn 35249 . . . . . . . . . . . 12 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹 ∈ (𝐶 Cn 𝐽))
493, 48syl 17 . . . . . . . . . . 11 (𝜑𝐹 ∈ (𝐶 Cn 𝐽))
50 eqid 2729 . . . . . . . . . . . 12 𝐽 = 𝐽
511, 50cnf 23133 . . . . . . . . . . 11 (𝐹 ∈ (𝐶 Cn 𝐽) → 𝐹:𝐵 𝐽)
5249, 51syl 17 . . . . . . . . . 10 (𝜑𝐹:𝐵 𝐽)
5352feqmptd 6929 . . . . . . . . 9 (𝜑𝐹 = (𝑥𝐵 ↦ (𝐹𝑥)))
54 fveq2 6858 . . . . . . . . 9 (𝑥 = (𝑠𝐴0) → (𝐹𝑥) = (𝐹‘(𝑠𝐴0)))
5546, 47, 53, 54fmptco 7101 . . . . . . . 8 (𝜑 → (𝐹 ∘ (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0))) = (𝑠 ∈ (0[,]1) ↦ (𝐹‘(𝑠𝐴0))))
5619, 50cnf 23133 . . . . . . . . . 10 (𝐺 ∈ (II Cn 𝐽) → 𝐺:(0[,]1)⟶ 𝐽)
574, 56syl 17 . . . . . . . . 9 (𝜑𝐺:(0[,]1)⟶ 𝐽)
5857feqmptd 6929 . . . . . . . 8 (𝜑𝐺 = (𝑠 ∈ (0[,]1) ↦ (𝐺𝑠)))
5943, 55, 583eqtr4d 2774 . . . . . . 7 (𝜑 → (𝐹 ∘ (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0))) = 𝐺)
60 cvmliftphtlem.0 . . . . . . 7 (𝜑 → (0𝐴0) = 𝑃)
6137cnmptid 23548 . . . . . . . . 9 (𝜑 → (𝑠 ∈ (0[,]1) ↦ 𝑠) ∈ (II Cn II))
6223a1i 11 . . . . . . . . . 10 (𝜑 → 0 ∈ (0[,]1))
6337, 37, 62cnmptc 23549 . . . . . . . . 9 (𝜑 → (𝑠 ∈ (0[,]1) ↦ 0) ∈ (II Cn II))
6437, 61, 63, 17cnmpt12f 23553 . . . . . . . 8 (𝜑 → (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0)) ∈ (II Cn 𝐶))
651cvmlift 35286 . . . . . . . . 9 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐺 ∈ (II Cn 𝐽)) ∧ (𝑃𝐵 ∧ (𝐹𝑃) = (𝐺‘0))) → ∃!𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃))
663, 4, 5, 6, 65syl22anc 838 . . . . . . . 8 (𝜑 → ∃!𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃))
67 coeq2 5822 . . . . . . . . . . 11 (𝑓 = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0)) → (𝐹𝑓) = (𝐹 ∘ (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0))))
6867eqeq1d 2731 . . . . . . . . . 10 (𝑓 = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0)) → ((𝐹𝑓) = 𝐺 ↔ (𝐹 ∘ (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0))) = 𝐺))
69 fveq1 6857 . . . . . . . . . . . 12 (𝑓 = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0)) → (𝑓‘0) = ((𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0))‘0))
70 oveq1 7394 . . . . . . . . . . . . . 14 (𝑠 = 0 → (𝑠𝐴0) = (0𝐴0))
71 eqid 2729 . . . . . . . . . . . . . 14 (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0)) = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0))
72 ovex 7420 . . . . . . . . . . . . . 14 (0𝐴0) ∈ V
7370, 71, 72fvmpt 6968 . . . . . . . . . . . . 13 (0 ∈ (0[,]1) → ((𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0))‘0) = (0𝐴0))
7423, 73ax-mp 5 . . . . . . . . . . . 12 ((𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0))‘0) = (0𝐴0)
7569, 74eqtrdi 2780 . . . . . . . . . . 11 (𝑓 = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0)) → (𝑓‘0) = (0𝐴0))
7675eqeq1d 2731 . . . . . . . . . 10 (𝑓 = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0)) → ((𝑓‘0) = 𝑃 ↔ (0𝐴0) = 𝑃))
7768, 76anbi12d 632 . . . . . . . . 9 (𝑓 = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0)) → (((𝐹𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃) ↔ ((𝐹 ∘ (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0))) = 𝐺 ∧ (0𝐴0) = 𝑃)))
7877riota2 7369 . . . . . . . 8 (((𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0)) ∈ (II Cn 𝐶) ∧ ∃!𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃)) → (((𝐹 ∘ (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0))) = 𝐺 ∧ (0𝐴0) = 𝑃) ↔ (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃)) = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0))))
7964, 66, 78syl2anc 584 . . . . . . 7 (𝜑 → (((𝐹 ∘ (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0))) = 𝐺 ∧ (0𝐴0) = 𝑃) ↔ (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃)) = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0))))
8059, 60, 79mpbi2and 712 . . . . . 6 (𝜑 → (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃)) = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0)))
812, 80eqtrid 2776 . . . . 5 (𝜑𝑀 = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0)))
8219, 1cnf 23133 . . . . . . 7 (𝑀 ∈ (II Cn 𝐶) → 𝑀:(0[,]1)⟶𝐵)
838, 82syl 17 . . . . . 6 (𝜑𝑀:(0[,]1)⟶𝐵)
8483feqmptd 6929 . . . . 5 (𝜑𝑀 = (𝑠 ∈ (0[,]1) ↦ (𝑀𝑠)))
8581, 84eqtr3d 2766 . . . 4 (𝜑 → (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0)) = (𝑠 ∈ (0[,]1) ↦ (𝑀𝑠)))
86 mpteqb 6987 . . . . 5 (∀𝑠 ∈ (0[,]1)(𝑠𝐴0) ∈ V → ((𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0)) = (𝑠 ∈ (0[,]1) ↦ (𝑀𝑠)) ↔ ∀𝑠 ∈ (0[,]1)(𝑠𝐴0) = (𝑀𝑠)))
87 ovexd 7422 . . . . 5 (𝑠 ∈ (0[,]1) → (𝑠𝐴0) ∈ V)
8886, 87mprg 3050 . . . 4 ((𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0)) = (𝑠 ∈ (0[,]1) ↦ (𝑀𝑠)) ↔ ∀𝑠 ∈ (0[,]1)(𝑠𝐴0) = (𝑀𝑠))
8985, 88sylib 218 . . 3 (𝜑 → ∀𝑠 ∈ (0[,]1)(𝑠𝐴0) = (𝑀𝑠))
9089r19.21bi 3229 . 2 ((𝜑𝑠 ∈ (0[,]1)) → (𝑠𝐴0) = (𝑀𝑠))
91 1elunit 13431 . . . . . . . . . . . . . 14 1 ∈ (0[,]1)
92 opelxpi 5675 . . . . . . . . . . . . . 14 ((𝑠 ∈ (0[,]1) ∧ 1 ∈ (0[,]1)) → ⟨𝑠, 1⟩ ∈ ((0[,]1) × (0[,]1)))
9391, 92mpan2 691 . . . . . . . . . . . . 13 (𝑠 ∈ (0[,]1) → ⟨𝑠, 1⟩ ∈ ((0[,]1) × (0[,]1)))
94 fvco3 6960 . . . . . . . . . . . . 13 ((𝐴:((0[,]1) × (0[,]1))⟶𝐵 ∧ ⟨𝑠, 1⟩ ∈ ((0[,]1) × (0[,]1))) → ((𝐹𝐴)‘⟨𝑠, 1⟩) = (𝐹‘(𝐴‘⟨𝑠, 1⟩)))
9522, 93, 94syl2an 596 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (0[,]1)) → ((𝐹𝐴)‘⟨𝑠, 1⟩) = (𝐹‘(𝐴‘⟨𝑠, 1⟩)))
9629fveq1d 6860 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (0[,]1)) → ((𝐹𝐴)‘⟨𝑠, 1⟩) = (𝐾‘⟨𝑠, 1⟩))
9795, 96eqtr3d 2766 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (0[,]1)) → (𝐹‘(𝐴‘⟨𝑠, 1⟩)) = (𝐾‘⟨𝑠, 1⟩))
98 df-ov 7390 . . . . . . . . . . . 12 (𝑠𝐴1) = (𝐴‘⟨𝑠, 1⟩)
9998fveq2i 6861 . . . . . . . . . . 11 (𝐹‘(𝑠𝐴1)) = (𝐹‘(𝐴‘⟨𝑠, 1⟩))
100 df-ov 7390 . . . . . . . . . . 11 (𝑠𝐾1) = (𝐾‘⟨𝑠, 1⟩)
10197, 99, 1003eqtr4g 2789 . . . . . . . . . 10 ((𝜑𝑠 ∈ (0[,]1)) → (𝐹‘(𝑠𝐴1)) = (𝑠𝐾1))
10240simprd 495 . . . . . . . . . 10 ((𝜑𝑠 ∈ (0[,]1)) → (𝑠𝐾1) = (𝐻𝑠))
103101, 102eqtrd 2764 . . . . . . . . 9 ((𝜑𝑠 ∈ (0[,]1)) → (𝐹‘(𝑠𝐴1)) = (𝐻𝑠))
104103mpteq2dva 5200 . . . . . . . 8 (𝜑 → (𝑠 ∈ (0[,]1) ↦ (𝐹‘(𝑠𝐴1))) = (𝑠 ∈ (0[,]1) ↦ (𝐻𝑠)))
105 fovcdm 7559 . . . . . . . . . . 11 ((𝐴:((0[,]1) × (0[,]1))⟶𝐵𝑠 ∈ (0[,]1) ∧ 1 ∈ (0[,]1)) → (𝑠𝐴1) ∈ 𝐵)
10691, 105mp3an3 1452 . . . . . . . . . 10 ((𝐴:((0[,]1) × (0[,]1))⟶𝐵𝑠 ∈ (0[,]1)) → (𝑠𝐴1) ∈ 𝐵)
10722, 106sylan 580 . . . . . . . . 9 ((𝜑𝑠 ∈ (0[,]1)) → (𝑠𝐴1) ∈ 𝐵)
108 eqidd 2730 . . . . . . . . 9 (𝜑 → (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1)) = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1)))
109 fveq2 6858 . . . . . . . . 9 (𝑥 = (𝑠𝐴1) → (𝐹𝑥) = (𝐹‘(𝑠𝐴1)))
110107, 108, 53, 109fmptco 7101 . . . . . . . 8 (𝜑 → (𝐹 ∘ (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1))) = (𝑠 ∈ (0[,]1) ↦ (𝐹‘(𝑠𝐴1))))
11119, 50cnf 23133 . . . . . . . . . 10 (𝐻 ∈ (II Cn 𝐽) → 𝐻:(0[,]1)⟶ 𝐽)
11210, 111syl 17 . . . . . . . . 9 (𝜑𝐻:(0[,]1)⟶ 𝐽)
113112feqmptd 6929 . . . . . . . 8 (𝜑𝐻 = (𝑠 ∈ (0[,]1) ↦ (𝐻𝑠)))
114104, 110, 1133eqtr4d 2774 . . . . . . 7 (𝜑 → (𝐹 ∘ (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1))) = 𝐻)
115 iiconn 24780 . . . . . . . . . . . . 13 II ∈ Conn
116115a1i 11 . . . . . . . . . . . 12 (𝜑 → II ∈ Conn)
117 iinllyconn 35241 . . . . . . . . . . . . 13 II ∈ 𝑛-Locally Conn
118117a1i 11 . . . . . . . . . . . 12 (𝜑 → II ∈ 𝑛-Locally Conn)
11937, 63, 61, 17cnmpt12f 23553 . . . . . . . . . . . 12 (𝜑 → (𝑠 ∈ (0[,]1) ↦ (0𝐴𝑠)) ∈ (II Cn 𝐶))
120 cvmtop1 35247 . . . . . . . . . . . . . . 15 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐶 ∈ Top)
1213, 120syl 17 . . . . . . . . . . . . . 14 (𝜑𝐶 ∈ Top)
1221toptopon 22804 . . . . . . . . . . . . . 14 (𝐶 ∈ Top ↔ 𝐶 ∈ (TopOn‘𝐵))
123121, 122sylib 218 . . . . . . . . . . . . 13 (𝜑𝐶 ∈ (TopOn‘𝐵))
124 ffvelcdm 7053 . . . . . . . . . . . . . 14 ((𝑀:(0[,]1)⟶𝐵 ∧ 0 ∈ (0[,]1)) → (𝑀‘0) ∈ 𝐵)
12583, 23, 124sylancl 586 . . . . . . . . . . . . 13 (𝜑 → (𝑀‘0) ∈ 𝐵)
126 cnconst2 23170 . . . . . . . . . . . . 13 ((II ∈ (TopOn‘(0[,]1)) ∧ 𝐶 ∈ (TopOn‘𝐵) ∧ (𝑀‘0) ∈ 𝐵) → ((0[,]1) × {(𝑀‘0)}) ∈ (II Cn 𝐶))
12737, 123, 125, 126syl3anc 1373 . . . . . . . . . . . 12 (𝜑 → ((0[,]1) × {(𝑀‘0)}) ∈ (II Cn 𝐶))
1284, 10, 11phtpyi 24883 . . . . . . . . . . . . . . . . 17 ((𝜑𝑠 ∈ (0[,]1)) → ((0𝐾𝑠) = (𝐺‘0) ∧ (1𝐾𝑠) = (𝐺‘1)))
129128simpld 494 . . . . . . . . . . . . . . . 16 ((𝜑𝑠 ∈ (0[,]1)) → (0𝐾𝑠) = (𝐺‘0))
130 opelxpi 5675 . . . . . . . . . . . . . . . . . . . 20 ((0 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) → ⟨0, 𝑠⟩ ∈ ((0[,]1) × (0[,]1)))
13123, 130mpan 690 . . . . . . . . . . . . . . . . . . 19 (𝑠 ∈ (0[,]1) → ⟨0, 𝑠⟩ ∈ ((0[,]1) × (0[,]1)))
132 fvco3 6960 . . . . . . . . . . . . . . . . . . 19 ((𝐴:((0[,]1) × (0[,]1))⟶𝐵 ∧ ⟨0, 𝑠⟩ ∈ ((0[,]1) × (0[,]1))) → ((𝐹𝐴)‘⟨0, 𝑠⟩) = (𝐹‘(𝐴‘⟨0, 𝑠⟩)))
13322, 131, 132syl2an 596 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑠 ∈ (0[,]1)) → ((𝐹𝐴)‘⟨0, 𝑠⟩) = (𝐹‘(𝐴‘⟨0, 𝑠⟩)))
13429fveq1d 6860 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑠 ∈ (0[,]1)) → ((𝐹𝐴)‘⟨0, 𝑠⟩) = (𝐾‘⟨0, 𝑠⟩))
135133, 134eqtr3d 2766 . . . . . . . . . . . . . . . . 17 ((𝜑𝑠 ∈ (0[,]1)) → (𝐹‘(𝐴‘⟨0, 𝑠⟩)) = (𝐾‘⟨0, 𝑠⟩))
136 df-ov 7390 . . . . . . . . . . . . . . . . . 18 (0𝐴𝑠) = (𝐴‘⟨0, 𝑠⟩)
137136fveq2i 6861 . . . . . . . . . . . . . . . . 17 (𝐹‘(0𝐴𝑠)) = (𝐹‘(𝐴‘⟨0, 𝑠⟩))
138 df-ov 7390 . . . . . . . . . . . . . . . . 17 (0𝐾𝑠) = (𝐾‘⟨0, 𝑠⟩)
139135, 137, 1383eqtr4g 2789 . . . . . . . . . . . . . . . 16 ((𝜑𝑠 ∈ (0[,]1)) → (𝐹‘(0𝐴𝑠)) = (0𝐾𝑠))
1407simp3d 1144 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑀‘0) = 𝑃)
141140adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑠 ∈ (0[,]1)) → (𝑀‘0) = 𝑃)
142141fveq2d 6862 . . . . . . . . . . . . . . . . 17 ((𝜑𝑠 ∈ (0[,]1)) → (𝐹‘(𝑀‘0)) = (𝐹𝑃))
1436adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑠 ∈ (0[,]1)) → (𝐹𝑃) = (𝐺‘0))
144142, 143eqtrd 2764 . . . . . . . . . . . . . . . 16 ((𝜑𝑠 ∈ (0[,]1)) → (𝐹‘(𝑀‘0)) = (𝐺‘0))
145129, 139, 1443eqtr4d 2774 . . . . . . . . . . . . . . 15 ((𝜑𝑠 ∈ (0[,]1)) → (𝐹‘(0𝐴𝑠)) = (𝐹‘(𝑀‘0)))
146145mpteq2dva 5200 . . . . . . . . . . . . . 14 (𝜑 → (𝑠 ∈ (0[,]1) ↦ (𝐹‘(0𝐴𝑠))) = (𝑠 ∈ (0[,]1) ↦ (𝐹‘(𝑀‘0))))
147 fconstmpt 5700 . . . . . . . . . . . . . 14 ((0[,]1) × {(𝐹‘(𝑀‘0))}) = (𝑠 ∈ (0[,]1) ↦ (𝐹‘(𝑀‘0)))
148146, 147eqtr4di 2782 . . . . . . . . . . . . 13 (𝜑 → (𝑠 ∈ (0[,]1) ↦ (𝐹‘(0𝐴𝑠))) = ((0[,]1) × {(𝐹‘(𝑀‘0))}))
149 fovcdm 7559 . . . . . . . . . . . . . . . 16 ((𝐴:((0[,]1) × (0[,]1))⟶𝐵 ∧ 0 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) → (0𝐴𝑠) ∈ 𝐵)
15023, 149mp3an2 1451 . . . . . . . . . . . . . . 15 ((𝐴:((0[,]1) × (0[,]1))⟶𝐵𝑠 ∈ (0[,]1)) → (0𝐴𝑠) ∈ 𝐵)
15122, 150sylan 580 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ (0[,]1)) → (0𝐴𝑠) ∈ 𝐵)
152 eqidd 2730 . . . . . . . . . . . . . 14 (𝜑 → (𝑠 ∈ (0[,]1) ↦ (0𝐴𝑠)) = (𝑠 ∈ (0[,]1) ↦ (0𝐴𝑠)))
153 fveq2 6858 . . . . . . . . . . . . . 14 (𝑥 = (0𝐴𝑠) → (𝐹𝑥) = (𝐹‘(0𝐴𝑠)))
154151, 152, 53, 153fmptco 7101 . . . . . . . . . . . . 13 (𝜑 → (𝐹 ∘ (𝑠 ∈ (0[,]1) ↦ (0𝐴𝑠))) = (𝑠 ∈ (0[,]1) ↦ (𝐹‘(0𝐴𝑠))))
15552ffnd 6689 . . . . . . . . . . . . . 14 (𝜑𝐹 Fn 𝐵)
156 fcoconst 7106 . . . . . . . . . . . . . 14 ((𝐹 Fn 𝐵 ∧ (𝑀‘0) ∈ 𝐵) → (𝐹 ∘ ((0[,]1) × {(𝑀‘0)})) = ((0[,]1) × {(𝐹‘(𝑀‘0))}))
157155, 125, 156syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → (𝐹 ∘ ((0[,]1) × {(𝑀‘0)})) = ((0[,]1) × {(𝐹‘(𝑀‘0))}))
158148, 154, 1573eqtr4d 2774 . . . . . . . . . . . 12 (𝜑 → (𝐹 ∘ (𝑠 ∈ (0[,]1) ↦ (0𝐴𝑠))) = (𝐹 ∘ ((0[,]1) × {(𝑀‘0)})))
15960, 140eqtr4d 2767 . . . . . . . . . . . . 13 (𝜑 → (0𝐴0) = (𝑀‘0))
160 oveq2 7395 . . . . . . . . . . . . . . 15 (𝑠 = 0 → (0𝐴𝑠) = (0𝐴0))
161 eqid 2729 . . . . . . . . . . . . . . 15 (𝑠 ∈ (0[,]1) ↦ (0𝐴𝑠)) = (𝑠 ∈ (0[,]1) ↦ (0𝐴𝑠))
162160, 161, 72fvmpt 6968 . . . . . . . . . . . . . 14 (0 ∈ (0[,]1) → ((𝑠 ∈ (0[,]1) ↦ (0𝐴𝑠))‘0) = (0𝐴0))
16323, 162ax-mp 5 . . . . . . . . . . . . 13 ((𝑠 ∈ (0[,]1) ↦ (0𝐴𝑠))‘0) = (0𝐴0)
164 fvex 6871 . . . . . . . . . . . . . . 15 (𝑀‘0) ∈ V
165164fvconst2 7178 . . . . . . . . . . . . . 14 (0 ∈ (0[,]1) → (((0[,]1) × {(𝑀‘0)})‘0) = (𝑀‘0))
16623, 165ax-mp 5 . . . . . . . . . . . . 13 (((0[,]1) × {(𝑀‘0)})‘0) = (𝑀‘0)
167159, 163, 1663eqtr4g 2789 . . . . . . . . . . . 12 (𝜑 → ((𝑠 ∈ (0[,]1) ↦ (0𝐴𝑠))‘0) = (((0[,]1) × {(𝑀‘0)})‘0))
1681, 19, 3, 116, 118, 62, 119, 127, 158, 167cvmliftmoi 35270 . . . . . . . . . . 11 (𝜑 → (𝑠 ∈ (0[,]1) ↦ (0𝐴𝑠)) = ((0[,]1) × {(𝑀‘0)}))
169 fconstmpt 5700 . . . . . . . . . . 11 ((0[,]1) × {(𝑀‘0)}) = (𝑠 ∈ (0[,]1) ↦ (𝑀‘0))
170168, 169eqtrdi 2780 . . . . . . . . . 10 (𝜑 → (𝑠 ∈ (0[,]1) ↦ (0𝐴𝑠)) = (𝑠 ∈ (0[,]1) ↦ (𝑀‘0)))
171 mpteqb 6987 . . . . . . . . . . 11 (∀𝑠 ∈ (0[,]1)(0𝐴𝑠) ∈ V → ((𝑠 ∈ (0[,]1) ↦ (0𝐴𝑠)) = (𝑠 ∈ (0[,]1) ↦ (𝑀‘0)) ↔ ∀𝑠 ∈ (0[,]1)(0𝐴𝑠) = (𝑀‘0)))
172 ovexd 7422 . . . . . . . . . . 11 (𝑠 ∈ (0[,]1) → (0𝐴𝑠) ∈ V)
173171, 172mprg 3050 . . . . . . . . . 10 ((𝑠 ∈ (0[,]1) ↦ (0𝐴𝑠)) = (𝑠 ∈ (0[,]1) ↦ (𝑀‘0)) ↔ ∀𝑠 ∈ (0[,]1)(0𝐴𝑠) = (𝑀‘0))
174170, 173sylib 218 . . . . . . . . 9 (𝜑 → ∀𝑠 ∈ (0[,]1)(0𝐴𝑠) = (𝑀‘0))
175 oveq2 7395 . . . . . . . . . . 11 (𝑠 = 1 → (0𝐴𝑠) = (0𝐴1))
176175eqeq1d 2731 . . . . . . . . . 10 (𝑠 = 1 → ((0𝐴𝑠) = (𝑀‘0) ↔ (0𝐴1) = (𝑀‘0)))
177176rspcv 3584 . . . . . . . . 9 (1 ∈ (0[,]1) → (∀𝑠 ∈ (0[,]1)(0𝐴𝑠) = (𝑀‘0) → (0𝐴1) = (𝑀‘0)))
17891, 174, 177mpsyl 68 . . . . . . . 8 (𝜑 → (0𝐴1) = (𝑀‘0))
179178, 140eqtrd 2764 . . . . . . 7 (𝜑 → (0𝐴1) = 𝑃)
18091a1i 11 . . . . . . . . . 10 (𝜑 → 1 ∈ (0[,]1))
18137, 37, 180cnmptc 23549 . . . . . . . . 9 (𝜑 → (𝑠 ∈ (0[,]1) ↦ 1) ∈ (II Cn II))
18237, 61, 181, 17cnmpt12f 23553 . . . . . . . 8 (𝜑 → (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1)) ∈ (II Cn 𝐶))
1831cvmlift 35286 . . . . . . . . 9 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐻 ∈ (II Cn 𝐽)) ∧ (𝑃𝐵 ∧ (𝐹𝑃) = (𝐻‘0))) → ∃!𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐻 ∧ (𝑓‘0) = 𝑃))
1843, 10, 5, 14, 183syl22anc 838 . . . . . . . 8 (𝜑 → ∃!𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐻 ∧ (𝑓‘0) = 𝑃))
185 coeq2 5822 . . . . . . . . . . 11 (𝑓 = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1)) → (𝐹𝑓) = (𝐹 ∘ (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1))))
186185eqeq1d 2731 . . . . . . . . . 10 (𝑓 = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1)) → ((𝐹𝑓) = 𝐻 ↔ (𝐹 ∘ (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1))) = 𝐻))
187 fveq1 6857 . . . . . . . . . . . 12 (𝑓 = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1)) → (𝑓‘0) = ((𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1))‘0))
188 oveq1 7394 . . . . . . . . . . . . . 14 (𝑠 = 0 → (𝑠𝐴1) = (0𝐴1))
189 eqid 2729 . . . . . . . . . . . . . 14 (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1)) = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1))
190 ovex 7420 . . . . . . . . . . . . . 14 (0𝐴1) ∈ V
191188, 189, 190fvmpt 6968 . . . . . . . . . . . . 13 (0 ∈ (0[,]1) → ((𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1))‘0) = (0𝐴1))
19223, 191ax-mp 5 . . . . . . . . . . . 12 ((𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1))‘0) = (0𝐴1)
193187, 192eqtrdi 2780 . . . . . . . . . . 11 (𝑓 = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1)) → (𝑓‘0) = (0𝐴1))
194193eqeq1d 2731 . . . . . . . . . 10 (𝑓 = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1)) → ((𝑓‘0) = 𝑃 ↔ (0𝐴1) = 𝑃))
195186, 194anbi12d 632 . . . . . . . . 9 (𝑓 = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1)) → (((𝐹𝑓) = 𝐻 ∧ (𝑓‘0) = 𝑃) ↔ ((𝐹 ∘ (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1))) = 𝐻 ∧ (0𝐴1) = 𝑃)))
196195riota2 7369 . . . . . . . 8 (((𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1)) ∈ (II Cn 𝐶) ∧ ∃!𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐻 ∧ (𝑓‘0) = 𝑃)) → (((𝐹 ∘ (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1))) = 𝐻 ∧ (0𝐴1) = 𝑃) ↔ (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐻 ∧ (𝑓‘0) = 𝑃)) = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1))))
197182, 184, 196syl2anc 584 . . . . . . 7 (𝜑 → (((𝐹 ∘ (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1))) = 𝐻 ∧ (0𝐴1) = 𝑃) ↔ (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐻 ∧ (𝑓‘0) = 𝑃)) = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1))))
198114, 179, 197mpbi2and 712 . . . . . 6 (𝜑 → (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐻 ∧ (𝑓‘0) = 𝑃)) = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1)))
1999, 198eqtrid 2776 . . . . 5 (𝜑𝑁 = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1)))
20019, 1cnf 23133 . . . . . . 7 (𝑁 ∈ (II Cn 𝐶) → 𝑁:(0[,]1)⟶𝐵)
20116, 200syl 17 . . . . . 6 (𝜑𝑁:(0[,]1)⟶𝐵)
202201feqmptd 6929 . . . . 5 (𝜑𝑁 = (𝑠 ∈ (0[,]1) ↦ (𝑁𝑠)))
203199, 202eqtr3d 2766 . . . 4 (𝜑 → (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1)) = (𝑠 ∈ (0[,]1) ↦ (𝑁𝑠)))
204 mpteqb 6987 . . . . 5 (∀𝑠 ∈ (0[,]1)(𝑠𝐴1) ∈ V → ((𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1)) = (𝑠 ∈ (0[,]1) ↦ (𝑁𝑠)) ↔ ∀𝑠 ∈ (0[,]1)(𝑠𝐴1) = (𝑁𝑠)))
205 ovexd 7422 . . . . 5 (𝑠 ∈ (0[,]1) → (𝑠𝐴1) ∈ V)
206204, 205mprg 3050 . . . 4 ((𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1)) = (𝑠 ∈ (0[,]1) ↦ (𝑁𝑠)) ↔ ∀𝑠 ∈ (0[,]1)(𝑠𝐴1) = (𝑁𝑠))
207203, 206sylib 218 . . 3 (𝜑 → ∀𝑠 ∈ (0[,]1)(𝑠𝐴1) = (𝑁𝑠))
208207r19.21bi 3229 . 2 ((𝜑𝑠 ∈ (0[,]1)) → (𝑠𝐴1) = (𝑁𝑠))
209174r19.21bi 3229 . 2 ((𝜑𝑠 ∈ (0[,]1)) → (0𝐴𝑠) = (𝑀‘0))
21037, 181, 61, 17cnmpt12f 23553 . . . . . 6 (𝜑 → (𝑠 ∈ (0[,]1) ↦ (1𝐴𝑠)) ∈ (II Cn 𝐶))
211 ffvelcdm 7053 . . . . . . . 8 ((𝑀:(0[,]1)⟶𝐵 ∧ 1 ∈ (0[,]1)) → (𝑀‘1) ∈ 𝐵)
21283, 91, 211sylancl 586 . . . . . . 7 (𝜑 → (𝑀‘1) ∈ 𝐵)
213 cnconst2 23170 . . . . . . 7 ((II ∈ (TopOn‘(0[,]1)) ∧ 𝐶 ∈ (TopOn‘𝐵) ∧ (𝑀‘1) ∈ 𝐵) → ((0[,]1) × {(𝑀‘1)}) ∈ (II Cn 𝐶))
21437, 123, 212, 213syl3anc 1373 . . . . . 6 (𝜑 → ((0[,]1) × {(𝑀‘1)}) ∈ (II Cn 𝐶))
215 opelxpi 5675 . . . . . . . . . . . . . 14 ((1 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) → ⟨1, 𝑠⟩ ∈ ((0[,]1) × (0[,]1)))
21691, 215mpan 690 . . . . . . . . . . . . 13 (𝑠 ∈ (0[,]1) → ⟨1, 𝑠⟩ ∈ ((0[,]1) × (0[,]1)))
217 fvco3 6960 . . . . . . . . . . . . 13 ((𝐴:((0[,]1) × (0[,]1))⟶𝐵 ∧ ⟨1, 𝑠⟩ ∈ ((0[,]1) × (0[,]1))) → ((𝐹𝐴)‘⟨1, 𝑠⟩) = (𝐹‘(𝐴‘⟨1, 𝑠⟩)))
21822, 216, 217syl2an 596 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (0[,]1)) → ((𝐹𝐴)‘⟨1, 𝑠⟩) = (𝐹‘(𝐴‘⟨1, 𝑠⟩)))
21929fveq1d 6860 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (0[,]1)) → ((𝐹𝐴)‘⟨1, 𝑠⟩) = (𝐾‘⟨1, 𝑠⟩))
220218, 219eqtr3d 2766 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (0[,]1)) → (𝐹‘(𝐴‘⟨1, 𝑠⟩)) = (𝐾‘⟨1, 𝑠⟩))
221 df-ov 7390 . . . . . . . . . . . 12 (1𝐴𝑠) = (𝐴‘⟨1, 𝑠⟩)
222221fveq2i 6861 . . . . . . . . . . 11 (𝐹‘(1𝐴𝑠)) = (𝐹‘(𝐴‘⟨1, 𝑠⟩))
223 df-ov 7390 . . . . . . . . . . 11 (1𝐾𝑠) = (𝐾‘⟨1, 𝑠⟩)
224220, 222, 2233eqtr4g 2789 . . . . . . . . . 10 ((𝜑𝑠 ∈ (0[,]1)) → (𝐹‘(1𝐴𝑠)) = (1𝐾𝑠))
225128simprd 495 . . . . . . . . . 10 ((𝜑𝑠 ∈ (0[,]1)) → (1𝐾𝑠) = (𝐺‘1))
2267simp2d 1143 . . . . . . . . . . . . 13 (𝜑 → (𝐹𝑀) = 𝐺)
227226adantr 480 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (0[,]1)) → (𝐹𝑀) = 𝐺)
228227fveq1d 6860 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (0[,]1)) → ((𝐹𝑀)‘1) = (𝐺‘1))
22983adantr 480 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (0[,]1)) → 𝑀:(0[,]1)⟶𝐵)
230 fvco3 6960 . . . . . . . . . . . 12 ((𝑀:(0[,]1)⟶𝐵 ∧ 1 ∈ (0[,]1)) → ((𝐹𝑀)‘1) = (𝐹‘(𝑀‘1)))
231229, 91, 230sylancl 586 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (0[,]1)) → ((𝐹𝑀)‘1) = (𝐹‘(𝑀‘1)))
232228, 231eqtr3d 2766 . . . . . . . . . 10 ((𝜑𝑠 ∈ (0[,]1)) → (𝐺‘1) = (𝐹‘(𝑀‘1)))
233224, 225, 2323eqtrd 2768 . . . . . . . . 9 ((𝜑𝑠 ∈ (0[,]1)) → (𝐹‘(1𝐴𝑠)) = (𝐹‘(𝑀‘1)))
234233mpteq2dva 5200 . . . . . . . 8 (𝜑 → (𝑠 ∈ (0[,]1) ↦ (𝐹‘(1𝐴𝑠))) = (𝑠 ∈ (0[,]1) ↦ (𝐹‘(𝑀‘1))))
235 fconstmpt 5700 . . . . . . . 8 ((0[,]1) × {(𝐹‘(𝑀‘1))}) = (𝑠 ∈ (0[,]1) ↦ (𝐹‘(𝑀‘1)))
236234, 235eqtr4di 2782 . . . . . . 7 (𝜑 → (𝑠 ∈ (0[,]1) ↦ (𝐹‘(1𝐴𝑠))) = ((0[,]1) × {(𝐹‘(𝑀‘1))}))
237 fovcdm 7559 . . . . . . . . . 10 ((𝐴:((0[,]1) × (0[,]1))⟶𝐵 ∧ 1 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) → (1𝐴𝑠) ∈ 𝐵)
23891, 237mp3an2 1451 . . . . . . . . 9 ((𝐴:((0[,]1) × (0[,]1))⟶𝐵𝑠 ∈ (0[,]1)) → (1𝐴𝑠) ∈ 𝐵)
23922, 238sylan 580 . . . . . . . 8 ((𝜑𝑠 ∈ (0[,]1)) → (1𝐴𝑠) ∈ 𝐵)
240 eqidd 2730 . . . . . . . 8 (𝜑 → (𝑠 ∈ (0[,]1) ↦ (1𝐴𝑠)) = (𝑠 ∈ (0[,]1) ↦ (1𝐴𝑠)))
241 fveq2 6858 . . . . . . . 8 (𝑥 = (1𝐴𝑠) → (𝐹𝑥) = (𝐹‘(1𝐴𝑠)))
242239, 240, 53, 241fmptco 7101 . . . . . . 7 (𝜑 → (𝐹 ∘ (𝑠 ∈ (0[,]1) ↦ (1𝐴𝑠))) = (𝑠 ∈ (0[,]1) ↦ (𝐹‘(1𝐴𝑠))))
243 fcoconst 7106 . . . . . . . 8 ((𝐹 Fn 𝐵 ∧ (𝑀‘1) ∈ 𝐵) → (𝐹 ∘ ((0[,]1) × {(𝑀‘1)})) = ((0[,]1) × {(𝐹‘(𝑀‘1))}))
244155, 212, 243syl2anc 584 . . . . . . 7 (𝜑 → (𝐹 ∘ ((0[,]1) × {(𝑀‘1)})) = ((0[,]1) × {(𝐹‘(𝑀‘1))}))
245236, 242, 2443eqtr4d 2774 . . . . . 6 (𝜑 → (𝐹 ∘ (𝑠 ∈ (0[,]1) ↦ (1𝐴𝑠))) = (𝐹 ∘ ((0[,]1) × {(𝑀‘1)})))
246 oveq1 7394 . . . . . . . . . 10 (𝑠 = 1 → (𝑠𝐴0) = (1𝐴0))
247 fveq2 6858 . . . . . . . . . 10 (𝑠 = 1 → (𝑀𝑠) = (𝑀‘1))
248246, 247eqeq12d 2745 . . . . . . . . 9 (𝑠 = 1 → ((𝑠𝐴0) = (𝑀𝑠) ↔ (1𝐴0) = (𝑀‘1)))
249248rspcv 3584 . . . . . . . 8 (1 ∈ (0[,]1) → (∀𝑠 ∈ (0[,]1)(𝑠𝐴0) = (𝑀𝑠) → (1𝐴0) = (𝑀‘1)))
25091, 89, 249mpsyl 68 . . . . . . 7 (𝜑 → (1𝐴0) = (𝑀‘1))
251 oveq2 7395 . . . . . . . . 9 (𝑠 = 0 → (1𝐴𝑠) = (1𝐴0))
252 eqid 2729 . . . . . . . . 9 (𝑠 ∈ (0[,]1) ↦ (1𝐴𝑠)) = (𝑠 ∈ (0[,]1) ↦ (1𝐴𝑠))
253 ovex 7420 . . . . . . . . 9 (1𝐴0) ∈ V
254251, 252, 253fvmpt 6968 . . . . . . . 8 (0 ∈ (0[,]1) → ((𝑠 ∈ (0[,]1) ↦ (1𝐴𝑠))‘0) = (1𝐴0))
25523, 254ax-mp 5 . . . . . . 7 ((𝑠 ∈ (0[,]1) ↦ (1𝐴𝑠))‘0) = (1𝐴0)
256 fvex 6871 . . . . . . . . 9 (𝑀‘1) ∈ V
257256fvconst2 7178 . . . . . . . 8 (0 ∈ (0[,]1) → (((0[,]1) × {(𝑀‘1)})‘0) = (𝑀‘1))
25823, 257ax-mp 5 . . . . . . 7 (((0[,]1) × {(𝑀‘1)})‘0) = (𝑀‘1)
259250, 255, 2583eqtr4g 2789 . . . . . 6 (𝜑 → ((𝑠 ∈ (0[,]1) ↦ (1𝐴𝑠))‘0) = (((0[,]1) × {(𝑀‘1)})‘0))
2601, 19, 3, 116, 118, 62, 210, 214, 245, 259cvmliftmoi 35270 . . . . 5 (𝜑 → (𝑠 ∈ (0[,]1) ↦ (1𝐴𝑠)) = ((0[,]1) × {(𝑀‘1)}))
261 fconstmpt 5700 . . . . 5 ((0[,]1) × {(𝑀‘1)}) = (𝑠 ∈ (0[,]1) ↦ (𝑀‘1))
262260, 261eqtrdi 2780 . . . 4 (𝜑 → (𝑠 ∈ (0[,]1) ↦ (1𝐴𝑠)) = (𝑠 ∈ (0[,]1) ↦ (𝑀‘1)))
263 mpteqb 6987 . . . . 5 (∀𝑠 ∈ (0[,]1)(1𝐴𝑠) ∈ V → ((𝑠 ∈ (0[,]1) ↦ (1𝐴𝑠)) = (𝑠 ∈ (0[,]1) ↦ (𝑀‘1)) ↔ ∀𝑠 ∈ (0[,]1)(1𝐴𝑠) = (𝑀‘1)))
264 ovexd 7422 . . . . 5 (𝑠 ∈ (0[,]1) → (1𝐴𝑠) ∈ V)
265263, 264mprg 3050 . . . 4 ((𝑠 ∈ (0[,]1) ↦ (1𝐴𝑠)) = (𝑠 ∈ (0[,]1) ↦ (𝑀‘1)) ↔ ∀𝑠 ∈ (0[,]1)(1𝐴𝑠) = (𝑀‘1))
266262, 265sylib 218 . . 3 (𝜑 → ∀𝑠 ∈ (0[,]1)(1𝐴𝑠) = (𝑀‘1))
267266r19.21bi 3229 . 2 ((𝜑𝑠 ∈ (0[,]1)) → (1𝐴𝑠) = (𝑀‘1))
2688, 16, 17, 90, 208, 209, 267isphtpy2d 24886 1 (𝜑𝐴 ∈ (𝑀(PHtpy‘𝐶)𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  ∃!wreu 3352  Vcvv 3447  {csn 4589  cop 4595   cuni 4871  cmpt 5188   × cxp 5636  ccom 5642   Fn wfn 6506  wf 6507  cfv 6511  crio 7343  (class class class)co 7387  0cc0 11068  1c1 11069  [,]cicc 13309  Topctop 22780  TopOnctopon 22797   Cn ccn 23111  Conncconn 23298  𝑛-Locally cnlly 23352   ×t ctx 23447  IIcii 24768   Htpy chtpy 24866  PHtpycphtpy 24867   CovMap ccvm 35242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-ec 8673  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-sum 15653  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-cn 23114  df-cnp 23115  df-cmp 23274  df-conn 23299  df-lly 23353  df-nlly 23354  df-tx 23449  df-hmeo 23642  df-xms 24208  df-ms 24209  df-tms 24210  df-ii 24770  df-cncf 24771  df-htpy 24869  df-phtpy 24870  df-phtpc 24891  df-pconn 35208  df-sconn 35209  df-cvm 35243
This theorem is referenced by:  cvmliftpht  35305
  Copyright terms: Public domain W3C validator