MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rhmply1vsca Structured version   Visualization version   GIF version

Theorem rhmply1vsca 22275
Description: Apply a ring homomorphism between two univariate polynomial algebras to a scaled polynomial. (Contributed by SN, 20-May-2025.)
Hypotheses
Ref Expression
rhmply1vsca.p 𝑃 = (Poly1𝑅)
rhmply1vsca.q 𝑄 = (Poly1𝑆)
rhmply1vsca.b 𝐵 = (Base‘𝑃)
rhmply1vsca.k 𝐾 = (Base‘𝑅)
rhmply1vsca.f 𝐹 = (𝑝𝐵 ↦ (𝐻𝑝))
rhmply1vsca.t · = ( ·𝑠𝑃)
rhmply1vsca.u = ( ·𝑠𝑄)
rhmply1vsca.h (𝜑𝐻 ∈ (𝑅 RingHom 𝑆))
rhmply1vsca.c (𝜑𝐶𝐾)
rhmply1vsca.x (𝜑𝑋𝐵)
Assertion
Ref Expression
rhmply1vsca (𝜑 → (𝐹‘(𝐶 · 𝑋)) = ((𝐻𝐶) (𝐹𝑋)))
Distinct variable groups:   𝐶,𝑝   𝑋,𝑝   𝐻,𝑝   𝐵,𝑝   · ,𝑝
Allowed substitution hints:   𝜑(𝑝)   𝑃(𝑝)   𝑄(𝑝)   𝑅(𝑝)   𝑆(𝑝)   (𝑝)   𝐹(𝑝)   𝐾(𝑝)

Proof of Theorem rhmply1vsca
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rhmply1vsca.c . . . . . . . 8 (𝜑𝐶𝐾)
2 fconst6g 6749 . . . . . . . 8 (𝐶𝐾 → ({ ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} × {𝐶}):{ ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin}⟶𝐾)
31, 2syl 17 . . . . . . 7 (𝜑 → ({ ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} × {𝐶}):{ ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin}⟶𝐾)
4 psr1baslem 22069 . . . . . . . 8 (ℕ0m 1o) = { ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin}
54feq2i 6680 . . . . . . 7 (({ ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} × {𝐶}):(ℕ0m 1o)⟶𝐾 ↔ ({ ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} × {𝐶}):{ ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin}⟶𝐾)
63, 5sylibr 234 . . . . . 6 (𝜑 → ({ ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} × {𝐶}):(ℕ0m 1o)⟶𝐾)
7 rhmply1vsca.x . . . . . . 7 (𝜑𝑋𝐵)
8 rhmply1vsca.p . . . . . . . 8 𝑃 = (Poly1𝑅)
9 rhmply1vsca.b . . . . . . . 8 𝐵 = (Base‘𝑃)
10 rhmply1vsca.k . . . . . . . 8 𝐾 = (Base‘𝑅)
118, 9, 10ply1basf 22087 . . . . . . 7 (𝑋𝐵𝑋:(ℕ0m 1o)⟶𝐾)
127, 11syl 17 . . . . . 6 (𝜑𝑋:(ℕ0m 1o)⟶𝐾)
13 rhmply1vsca.h . . . . . . . 8 (𝜑𝐻 ∈ (𝑅 RingHom 𝑆))
14 eqid 2729 . . . . . . . . 9 (Base‘𝑆) = (Base‘𝑆)
1510, 14rhmf 20394 . . . . . . . 8 (𝐻 ∈ (𝑅 RingHom 𝑆) → 𝐻:𝐾⟶(Base‘𝑆))
1613, 15syl 17 . . . . . . 7 (𝜑𝐻:𝐾⟶(Base‘𝑆))
1716ffnd 6689 . . . . . 6 (𝜑𝐻 Fn 𝐾)
18 ovexd 7422 . . . . . 6 (𝜑 → (ℕ0m 1o) ∈ V)
19 rhmrcl1 20385 . . . . . . . . 9 (𝐻 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring)
2013, 19syl 17 . . . . . . . 8 (𝜑𝑅 ∈ Ring)
21 eqid 2729 . . . . . . . . 9 (.r𝑅) = (.r𝑅)
2210, 21ringcl 20159 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑎𝐾𝑏𝐾) → (𝑎(.r𝑅)𝑏) ∈ 𝐾)
2320, 22syl3an1 1163 . . . . . . 7 ((𝜑𝑎𝐾𝑏𝐾) → (𝑎(.r𝑅)𝑏) ∈ 𝐾)
24233expb 1120 . . . . . 6 ((𝜑 ∧ (𝑎𝐾𝑏𝐾)) → (𝑎(.r𝑅)𝑏) ∈ 𝐾)
25 eqid 2729 . . . . . . . . 9 (.r𝑆) = (.r𝑆)
2610, 21, 25rhmmul 20395 . . . . . . . 8 ((𝐻 ∈ (𝑅 RingHom 𝑆) ∧ 𝑎𝐾𝑏𝐾) → (𝐻‘(𝑎(.r𝑅)𝑏)) = ((𝐻𝑎)(.r𝑆)(𝐻𝑏)))
2713, 26syl3an1 1163 . . . . . . 7 ((𝜑𝑎𝐾𝑏𝐾) → (𝐻‘(𝑎(.r𝑅)𝑏)) = ((𝐻𝑎)(.r𝑆)(𝐻𝑏)))
28273expb 1120 . . . . . 6 ((𝜑 ∧ (𝑎𝐾𝑏𝐾)) → (𝐻‘(𝑎(.r𝑅)𝑏)) = ((𝐻𝑎)(.r𝑆)(𝐻𝑏)))
296, 12, 17, 18, 24, 28coof 7677 . . . . 5 (𝜑 → (𝐻 ∘ (({ ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} × {𝐶}) ∘f (.r𝑅)𝑋)) = ((𝐻 ∘ ({ ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} × {𝐶})) ∘f (.r𝑆)(𝐻𝑋)))
30 fcoconst 7106 . . . . . . 7 ((𝐻 Fn 𝐾𝐶𝐾) → (𝐻 ∘ ({ ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} × {𝐶})) = ({ ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} × {(𝐻𝐶)}))
3117, 1, 30syl2anc 584 . . . . . 6 (𝜑 → (𝐻 ∘ ({ ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} × {𝐶})) = ({ ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} × {(𝐻𝐶)}))
3231oveq1d 7402 . . . . 5 (𝜑 → ((𝐻 ∘ ({ ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} × {𝐶})) ∘f (.r𝑆)(𝐻𝑋)) = (({ ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} × {(𝐻𝐶)}) ∘f (.r𝑆)(𝐻𝑋)))
3329, 32eqtrd 2764 . . . 4 (𝜑 → (𝐻 ∘ (({ ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} × {𝐶}) ∘f (.r𝑅)𝑋)) = (({ ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} × {(𝐻𝐶)}) ∘f (.r𝑆)(𝐻𝑋)))
34 eqid 2729 . . . . . 6 (1o mPoly 𝑅) = (1o mPoly 𝑅)
35 eqid 2729 . . . . . 6 ( ·𝑠 ‘(1o mPoly 𝑅)) = ( ·𝑠 ‘(1o mPoly 𝑅))
368, 9ply1bas 22079 . . . . . 6 𝐵 = (Base‘(1o mPoly 𝑅))
37 eqid 2729 . . . . . 6 { ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin}
3834, 35, 10, 36, 21, 37, 1, 7mplvsca 21924 . . . . 5 (𝜑 → (𝐶( ·𝑠 ‘(1o mPoly 𝑅))𝑋) = (({ ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} × {𝐶}) ∘f (.r𝑅)𝑋))
3938coeq2d 5826 . . . 4 (𝜑 → (𝐻 ∘ (𝐶( ·𝑠 ‘(1o mPoly 𝑅))𝑋)) = (𝐻 ∘ (({ ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} × {𝐶}) ∘f (.r𝑅)𝑋)))
40 eqid 2729 . . . . 5 (1o mPoly 𝑆) = (1o mPoly 𝑆)
41 eqid 2729 . . . . 5 ( ·𝑠 ‘(1o mPoly 𝑆)) = ( ·𝑠 ‘(1o mPoly 𝑆))
42 rhmply1vsca.q . . . . . 6 𝑄 = (Poly1𝑆)
43 eqid 2729 . . . . . 6 (Base‘𝑄) = (Base‘𝑄)
4442, 43ply1bas 22079 . . . . 5 (Base‘𝑄) = (Base‘(1o mPoly 𝑆))
4516, 1ffvelcdmd 7057 . . . . 5 (𝜑 → (𝐻𝐶) ∈ (Base‘𝑆))
46 rhmghm 20393 . . . . . . 7 (𝐻 ∈ (𝑅 RingHom 𝑆) → 𝐻 ∈ (𝑅 GrpHom 𝑆))
47 ghmmhm 19158 . . . . . . 7 (𝐻 ∈ (𝑅 GrpHom 𝑆) → 𝐻 ∈ (𝑅 MndHom 𝑆))
4813, 46, 473syl 18 . . . . . 6 (𝜑𝐻 ∈ (𝑅 MndHom 𝑆))
498, 42, 9, 43, 48, 7mhmcoply1 22272 . . . . 5 (𝜑 → (𝐻𝑋) ∈ (Base‘𝑄))
5040, 41, 14, 44, 25, 37, 45, 49mplvsca 21924 . . . 4 (𝜑 → ((𝐻𝐶)( ·𝑠 ‘(1o mPoly 𝑆))(𝐻𝑋)) = (({ ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} × {(𝐻𝐶)}) ∘f (.r𝑆)(𝐻𝑋)))
5133, 39, 503eqtr4d 2774 . . 3 (𝜑 → (𝐻 ∘ (𝐶( ·𝑠 ‘(1o mPoly 𝑅))𝑋)) = ((𝐻𝐶)( ·𝑠 ‘(1o mPoly 𝑆))(𝐻𝑋)))
52 rhmply1vsca.t . . . . . 6 · = ( ·𝑠𝑃)
538, 34, 52ply1vsca 22109 . . . . 5 · = ( ·𝑠 ‘(1o mPoly 𝑅))
5453oveqi 7400 . . . 4 (𝐶 · 𝑋) = (𝐶( ·𝑠 ‘(1o mPoly 𝑅))𝑋)
5554coeq2i 5824 . . 3 (𝐻 ∘ (𝐶 · 𝑋)) = (𝐻 ∘ (𝐶( ·𝑠 ‘(1o mPoly 𝑅))𝑋))
56 rhmply1vsca.u . . . . 5 = ( ·𝑠𝑄)
5742, 40, 56ply1vsca 22109 . . . 4 = ( ·𝑠 ‘(1o mPoly 𝑆))
5857oveqi 7400 . . 3 ((𝐻𝐶) (𝐻𝑋)) = ((𝐻𝐶)( ·𝑠 ‘(1o mPoly 𝑆))(𝐻𝑋))
5951, 55, 583eqtr4g 2789 . 2 (𝜑 → (𝐻 ∘ (𝐶 · 𝑋)) = ((𝐻𝐶) (𝐻𝑋)))
60 rhmply1vsca.f . . 3 𝐹 = (𝑝𝐵 ↦ (𝐻𝑝))
61 coeq2 5822 . . 3 (𝑝 = (𝐶 · 𝑋) → (𝐻𝑝) = (𝐻 ∘ (𝐶 · 𝑋)))
628, 9, 10, 52, 20, 1, 7ply1vscl 22271 . . 3 (𝜑 → (𝐶 · 𝑋) ∈ 𝐵)
6313, 62coexd 7907 . . 3 (𝜑 → (𝐻 ∘ (𝐶 · 𝑋)) ∈ V)
6460, 61, 62, 63fvmptd3 6991 . 2 (𝜑 → (𝐹‘(𝐶 · 𝑋)) = (𝐻 ∘ (𝐶 · 𝑋)))
65 coeq2 5822 . . . 4 (𝑝 = 𝑋 → (𝐻𝑝) = (𝐻𝑋))
6613, 7coexd 7907 . . . 4 (𝜑 → (𝐻𝑋) ∈ V)
6760, 65, 7, 66fvmptd3 6991 . . 3 (𝜑 → (𝐹𝑋) = (𝐻𝑋))
6867oveq2d 7403 . 2 (𝜑 → ((𝐻𝐶) (𝐹𝑋)) = ((𝐻𝐶) (𝐻𝑋)))
6959, 64, 683eqtr4d 2774 1 (𝜑 → (𝐹‘(𝐶 · 𝑋)) = ((𝐻𝐶) (𝐹𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {crab 3405  Vcvv 3447  {csn 4589  cmpt 5188   × cxp 5636  ccnv 5637  cima 5641  ccom 5642   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  f cof 7651  1oc1o 8427  m cmap 8799  Fincfn 8918  cn 12186  0cn0 12442  Basecbs 17179  .rcmulr 17221   ·𝑠 cvsca 17224   MndHom cmhm 18708   GrpHom cghm 19144  Ringcrg 20142   RingHom crh 20378   mPoly cmpl 21815  Poly1cpl1 22061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-sup 9393  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-hom 17244  df-cco 17245  df-0g 17404  df-prds 17410  df-pws 17412  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-grp 18868  df-minusg 18869  df-sbg 18870  df-subg 19055  df-ghm 19145  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-rhm 20381  df-lmod 20768  df-lss 20838  df-psr 21818  df-mpl 21820  df-opsr 21822  df-psr1 22064  df-ply1 22066
This theorem is referenced by:  rhmply1mon  22276
  Copyright terms: Public domain W3C validator