MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rhmply1vsca Structured version   Visualization version   GIF version

Theorem rhmply1vsca 22413
Description: Apply a ring homomorphism between two univariate polynomial algebras to a scaled polynomial. (Contributed by SN, 20-May-2025.)
Hypotheses
Ref Expression
rhmply1vsca.p 𝑃 = (Poly1𝑅)
rhmply1vsca.q 𝑄 = (Poly1𝑆)
rhmply1vsca.b 𝐵 = (Base‘𝑃)
rhmply1vsca.k 𝐾 = (Base‘𝑅)
rhmply1vsca.f 𝐹 = (𝑝𝐵 ↦ (𝐻𝑝))
rhmply1vsca.t · = ( ·𝑠𝑃)
rhmply1vsca.u = ( ·𝑠𝑄)
rhmply1vsca.h (𝜑𝐻 ∈ (𝑅 RingHom 𝑆))
rhmply1vsca.c (𝜑𝐶𝐾)
rhmply1vsca.x (𝜑𝑋𝐵)
Assertion
Ref Expression
rhmply1vsca (𝜑 → (𝐹‘(𝐶 · 𝑋)) = ((𝐻𝐶) (𝐹𝑋)))
Distinct variable groups:   𝐶,𝑝   𝑋,𝑝   𝐻,𝑝   𝐵,𝑝   · ,𝑝
Allowed substitution hints:   𝜑(𝑝)   𝑃(𝑝)   𝑄(𝑝)   𝑅(𝑝)   𝑆(𝑝)   (𝑝)   𝐹(𝑝)   𝐾(𝑝)

Proof of Theorem rhmply1vsca
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rhmply1vsca.c . . . . . . . 8 (𝜑𝐶𝐾)
2 fconst6g 6810 . . . . . . . 8 (𝐶𝐾 → ({ ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} × {𝐶}):{ ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin}⟶𝐾)
31, 2syl 17 . . . . . . 7 (𝜑 → ({ ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} × {𝐶}):{ ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin}⟶𝐾)
4 psr1baslem 22207 . . . . . . . 8 (ℕ0m 1o) = { ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin}
54feq2i 6739 . . . . . . 7 (({ ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} × {𝐶}):(ℕ0m 1o)⟶𝐾 ↔ ({ ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} × {𝐶}):{ ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin}⟶𝐾)
63, 5sylibr 234 . . . . . 6 (𝜑 → ({ ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} × {𝐶}):(ℕ0m 1o)⟶𝐾)
7 rhmply1vsca.x . . . . . . 7 (𝜑𝑋𝐵)
8 rhmply1vsca.p . . . . . . . 8 𝑃 = (Poly1𝑅)
9 rhmply1vsca.b . . . . . . . 8 𝐵 = (Base‘𝑃)
10 rhmply1vsca.k . . . . . . . 8 𝐾 = (Base‘𝑅)
118, 9, 10ply1basf 22225 . . . . . . 7 (𝑋𝐵𝑋:(ℕ0m 1o)⟶𝐾)
127, 11syl 17 . . . . . 6 (𝜑𝑋:(ℕ0m 1o)⟶𝐾)
13 rhmply1vsca.h . . . . . . . 8 (𝜑𝐻 ∈ (𝑅 RingHom 𝑆))
14 eqid 2740 . . . . . . . . 9 (Base‘𝑆) = (Base‘𝑆)
1510, 14rhmf 20511 . . . . . . . 8 (𝐻 ∈ (𝑅 RingHom 𝑆) → 𝐻:𝐾⟶(Base‘𝑆))
1613, 15syl 17 . . . . . . 7 (𝜑𝐻:𝐾⟶(Base‘𝑆))
1716ffnd 6748 . . . . . 6 (𝜑𝐻 Fn 𝐾)
18 ovexd 7483 . . . . . 6 (𝜑 → (ℕ0m 1o) ∈ V)
19 rhmrcl1 20502 . . . . . . . . 9 (𝐻 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring)
2013, 19syl 17 . . . . . . . 8 (𝜑𝑅 ∈ Ring)
21 eqid 2740 . . . . . . . . 9 (.r𝑅) = (.r𝑅)
2210, 21ringcl 20277 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑎𝐾𝑏𝐾) → (𝑎(.r𝑅)𝑏) ∈ 𝐾)
2320, 22syl3an1 1163 . . . . . . 7 ((𝜑𝑎𝐾𝑏𝐾) → (𝑎(.r𝑅)𝑏) ∈ 𝐾)
24233expb 1120 . . . . . 6 ((𝜑 ∧ (𝑎𝐾𝑏𝐾)) → (𝑎(.r𝑅)𝑏) ∈ 𝐾)
25 eqid 2740 . . . . . . . . 9 (.r𝑆) = (.r𝑆)
2610, 21, 25rhmmul 20512 . . . . . . . 8 ((𝐻 ∈ (𝑅 RingHom 𝑆) ∧ 𝑎𝐾𝑏𝐾) → (𝐻‘(𝑎(.r𝑅)𝑏)) = ((𝐻𝑎)(.r𝑆)(𝐻𝑏)))
2713, 26syl3an1 1163 . . . . . . 7 ((𝜑𝑎𝐾𝑏𝐾) → (𝐻‘(𝑎(.r𝑅)𝑏)) = ((𝐻𝑎)(.r𝑆)(𝐻𝑏)))
28273expb 1120 . . . . . 6 ((𝜑 ∧ (𝑎𝐾𝑏𝐾)) → (𝐻‘(𝑎(.r𝑅)𝑏)) = ((𝐻𝑎)(.r𝑆)(𝐻𝑏)))
296, 12, 17, 18, 24, 28coof 7737 . . . . 5 (𝜑 → (𝐻 ∘ (({ ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} × {𝐶}) ∘f (.r𝑅)𝑋)) = ((𝐻 ∘ ({ ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} × {𝐶})) ∘f (.r𝑆)(𝐻𝑋)))
30 fcoconst 7168 . . . . . . 7 ((𝐻 Fn 𝐾𝐶𝐾) → (𝐻 ∘ ({ ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} × {𝐶})) = ({ ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} × {(𝐻𝐶)}))
3117, 1, 30syl2anc 583 . . . . . 6 (𝜑 → (𝐻 ∘ ({ ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} × {𝐶})) = ({ ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} × {(𝐻𝐶)}))
3231oveq1d 7463 . . . . 5 (𝜑 → ((𝐻 ∘ ({ ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} × {𝐶})) ∘f (.r𝑆)(𝐻𝑋)) = (({ ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} × {(𝐻𝐶)}) ∘f (.r𝑆)(𝐻𝑋)))
3329, 32eqtrd 2780 . . . 4 (𝜑 → (𝐻 ∘ (({ ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} × {𝐶}) ∘f (.r𝑅)𝑋)) = (({ ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} × {(𝐻𝐶)}) ∘f (.r𝑆)(𝐻𝑋)))
34 eqid 2740 . . . . . 6 (1o mPoly 𝑅) = (1o mPoly 𝑅)
35 eqid 2740 . . . . . 6 ( ·𝑠 ‘(1o mPoly 𝑅)) = ( ·𝑠 ‘(1o mPoly 𝑅))
368, 9ply1bas 22217 . . . . . 6 𝐵 = (Base‘(1o mPoly 𝑅))
37 eqid 2740 . . . . . 6 { ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin}
3834, 35, 10, 36, 21, 37, 1, 7mplvsca 22058 . . . . 5 (𝜑 → (𝐶( ·𝑠 ‘(1o mPoly 𝑅))𝑋) = (({ ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} × {𝐶}) ∘f (.r𝑅)𝑋))
3938coeq2d 5887 . . . 4 (𝜑 → (𝐻 ∘ (𝐶( ·𝑠 ‘(1o mPoly 𝑅))𝑋)) = (𝐻 ∘ (({ ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} × {𝐶}) ∘f (.r𝑅)𝑋)))
40 eqid 2740 . . . . 5 (1o mPoly 𝑆) = (1o mPoly 𝑆)
41 eqid 2740 . . . . 5 ( ·𝑠 ‘(1o mPoly 𝑆)) = ( ·𝑠 ‘(1o mPoly 𝑆))
42 rhmply1vsca.q . . . . . 6 𝑄 = (Poly1𝑆)
43 eqid 2740 . . . . . 6 (Base‘𝑄) = (Base‘𝑄)
4442, 43ply1bas 22217 . . . . 5 (Base‘𝑄) = (Base‘(1o mPoly 𝑆))
4516, 1ffvelcdmd 7119 . . . . 5 (𝜑 → (𝐻𝐶) ∈ (Base‘𝑆))
46 rhmghm 20510 . . . . . . 7 (𝐻 ∈ (𝑅 RingHom 𝑆) → 𝐻 ∈ (𝑅 GrpHom 𝑆))
47 ghmmhm 19266 . . . . . . 7 (𝐻 ∈ (𝑅 GrpHom 𝑆) → 𝐻 ∈ (𝑅 MndHom 𝑆))
4813, 46, 473syl 18 . . . . . 6 (𝜑𝐻 ∈ (𝑅 MndHom 𝑆))
498, 42, 9, 43, 48, 7mhmcoply1 22410 . . . . 5 (𝜑 → (𝐻𝑋) ∈ (Base‘𝑄))
5040, 41, 14, 44, 25, 37, 45, 49mplvsca 22058 . . . 4 (𝜑 → ((𝐻𝐶)( ·𝑠 ‘(1o mPoly 𝑆))(𝐻𝑋)) = (({ ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} × {(𝐻𝐶)}) ∘f (.r𝑆)(𝐻𝑋)))
5133, 39, 503eqtr4d 2790 . . 3 (𝜑 → (𝐻 ∘ (𝐶( ·𝑠 ‘(1o mPoly 𝑅))𝑋)) = ((𝐻𝐶)( ·𝑠 ‘(1o mPoly 𝑆))(𝐻𝑋)))
52 rhmply1vsca.t . . . . . 6 · = ( ·𝑠𝑃)
538, 34, 52ply1vsca 22247 . . . . 5 · = ( ·𝑠 ‘(1o mPoly 𝑅))
5453oveqi 7461 . . . 4 (𝐶 · 𝑋) = (𝐶( ·𝑠 ‘(1o mPoly 𝑅))𝑋)
5554coeq2i 5885 . . 3 (𝐻 ∘ (𝐶 · 𝑋)) = (𝐻 ∘ (𝐶( ·𝑠 ‘(1o mPoly 𝑅))𝑋))
56 rhmply1vsca.u . . . . 5 = ( ·𝑠𝑄)
5742, 40, 56ply1vsca 22247 . . . 4 = ( ·𝑠 ‘(1o mPoly 𝑆))
5857oveqi 7461 . . 3 ((𝐻𝐶) (𝐻𝑋)) = ((𝐻𝐶)( ·𝑠 ‘(1o mPoly 𝑆))(𝐻𝑋))
5951, 55, 583eqtr4g 2805 . 2 (𝜑 → (𝐻 ∘ (𝐶 · 𝑋)) = ((𝐻𝐶) (𝐻𝑋)))
60 rhmply1vsca.f . . 3 𝐹 = (𝑝𝐵 ↦ (𝐻𝑝))
61 coeq2 5883 . . 3 (𝑝 = (𝐶 · 𝑋) → (𝐻𝑝) = (𝐻 ∘ (𝐶 · 𝑋)))
628, 9, 10, 52, 20, 1, 7ply1vscl 22409 . . 3 (𝜑 → (𝐶 · 𝑋) ∈ 𝐵)
6313, 62coexd 7971 . . 3 (𝜑 → (𝐻 ∘ (𝐶 · 𝑋)) ∈ V)
6460, 61, 62, 63fvmptd3 7052 . 2 (𝜑 → (𝐹‘(𝐶 · 𝑋)) = (𝐻 ∘ (𝐶 · 𝑋)))
65 coeq2 5883 . . . 4 (𝑝 = 𝑋 → (𝐻𝑝) = (𝐻𝑋))
6613, 7coexd 7971 . . . 4 (𝜑 → (𝐻𝑋) ∈ V)
6760, 65, 7, 66fvmptd3 7052 . . 3 (𝜑 → (𝐹𝑋) = (𝐻𝑋))
6867oveq2d 7464 . 2 (𝜑 → ((𝐻𝐶) (𝐹𝑋)) = ((𝐻𝐶) (𝐻𝑋)))
6959, 64, 683eqtr4d 2790 1 (𝜑 → (𝐹‘(𝐶 · 𝑋)) = ((𝐻𝐶) (𝐹𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  {crab 3443  Vcvv 3488  {csn 4648  cmpt 5249   × cxp 5698  ccnv 5699  cima 5703  ccom 5704   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  f cof 7712  1oc1o 8515  m cmap 8884  Fincfn 9003  cn 12293  0cn0 12553  Basecbs 17258  .rcmulr 17312   ·𝑠 cvsca 17315   MndHom cmhm 18816   GrpHom cghm 19252  Ringcrg 20260   RingHom crh 20495   mPoly cmpl 21949  Poly1cpl1 22199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-hom 17335  df-cco 17336  df-0g 17501  df-prds 17507  df-pws 17509  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-grp 18976  df-minusg 18977  df-sbg 18978  df-subg 19163  df-ghm 19253  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-rhm 20498  df-lmod 20882  df-lss 20953  df-psr 21952  df-mpl 21954  df-opsr 21956  df-psr1 22202  df-ply1 22204
This theorem is referenced by:  rhmply1mon  22414
  Copyright terms: Public domain W3C validator