MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rhmply1vsca Structured version   Visualization version   GIF version

Theorem rhmply1vsca 22273
Description: Apply a ring homomorphism between two univariate polynomial algebras to a scaled polynomial. (Contributed by SN, 20-May-2025.)
Hypotheses
Ref Expression
rhmply1vsca.p 𝑃 = (Poly1𝑅)
rhmply1vsca.q 𝑄 = (Poly1𝑆)
rhmply1vsca.b 𝐵 = (Base‘𝑃)
rhmply1vsca.k 𝐾 = (Base‘𝑅)
rhmply1vsca.f 𝐹 = (𝑝𝐵 ↦ (𝐻𝑝))
rhmply1vsca.t · = ( ·𝑠𝑃)
rhmply1vsca.u = ( ·𝑠𝑄)
rhmply1vsca.h (𝜑𝐻 ∈ (𝑅 RingHom 𝑆))
rhmply1vsca.c (𝜑𝐶𝐾)
rhmply1vsca.x (𝜑𝑋𝐵)
Assertion
Ref Expression
rhmply1vsca (𝜑 → (𝐹‘(𝐶 · 𝑋)) = ((𝐻𝐶) (𝐹𝑋)))
Distinct variable groups:   𝐶,𝑝   𝑋,𝑝   𝐻,𝑝   𝐵,𝑝   · ,𝑝
Allowed substitution hints:   𝜑(𝑝)   𝑃(𝑝)   𝑄(𝑝)   𝑅(𝑝)   𝑆(𝑝)   (𝑝)   𝐹(𝑝)   𝐾(𝑝)

Proof of Theorem rhmply1vsca
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rhmply1vsca.c . . . . . . . 8 (𝜑𝐶𝐾)
2 fconst6g 6713 . . . . . . . 8 (𝐶𝐾 → ({ ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} × {𝐶}):{ ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin}⟶𝐾)
31, 2syl 17 . . . . . . 7 (𝜑 → ({ ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} × {𝐶}):{ ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin}⟶𝐾)
4 psr1baslem 22067 . . . . . . . 8 (ℕ0m 1o) = { ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin}
54feq2i 6644 . . . . . . 7 (({ ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} × {𝐶}):(ℕ0m 1o)⟶𝐾 ↔ ({ ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} × {𝐶}):{ ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin}⟶𝐾)
63, 5sylibr 234 . . . . . 6 (𝜑 → ({ ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} × {𝐶}):(ℕ0m 1o)⟶𝐾)
7 rhmply1vsca.x . . . . . . 7 (𝜑𝑋𝐵)
8 rhmply1vsca.p . . . . . . . 8 𝑃 = (Poly1𝑅)
9 rhmply1vsca.b . . . . . . . 8 𝐵 = (Base‘𝑃)
10 rhmply1vsca.k . . . . . . . 8 𝐾 = (Base‘𝑅)
118, 9, 10ply1basf 22085 . . . . . . 7 (𝑋𝐵𝑋:(ℕ0m 1o)⟶𝐾)
127, 11syl 17 . . . . . 6 (𝜑𝑋:(ℕ0m 1o)⟶𝐾)
13 rhmply1vsca.h . . . . . . . 8 (𝜑𝐻 ∈ (𝑅 RingHom 𝑆))
14 eqid 2729 . . . . . . . . 9 (Base‘𝑆) = (Base‘𝑆)
1510, 14rhmf 20370 . . . . . . . 8 (𝐻 ∈ (𝑅 RingHom 𝑆) → 𝐻:𝐾⟶(Base‘𝑆))
1613, 15syl 17 . . . . . . 7 (𝜑𝐻:𝐾⟶(Base‘𝑆))
1716ffnd 6653 . . . . . 6 (𝜑𝐻 Fn 𝐾)
18 ovexd 7384 . . . . . 6 (𝜑 → (ℕ0m 1o) ∈ V)
19 rhmrcl1 20361 . . . . . . . . 9 (𝐻 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring)
2013, 19syl 17 . . . . . . . 8 (𝜑𝑅 ∈ Ring)
21 eqid 2729 . . . . . . . . 9 (.r𝑅) = (.r𝑅)
2210, 21ringcl 20135 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑎𝐾𝑏𝐾) → (𝑎(.r𝑅)𝑏) ∈ 𝐾)
2320, 22syl3an1 1163 . . . . . . 7 ((𝜑𝑎𝐾𝑏𝐾) → (𝑎(.r𝑅)𝑏) ∈ 𝐾)
24233expb 1120 . . . . . 6 ((𝜑 ∧ (𝑎𝐾𝑏𝐾)) → (𝑎(.r𝑅)𝑏) ∈ 𝐾)
25 eqid 2729 . . . . . . . . 9 (.r𝑆) = (.r𝑆)
2610, 21, 25rhmmul 20371 . . . . . . . 8 ((𝐻 ∈ (𝑅 RingHom 𝑆) ∧ 𝑎𝐾𝑏𝐾) → (𝐻‘(𝑎(.r𝑅)𝑏)) = ((𝐻𝑎)(.r𝑆)(𝐻𝑏)))
2713, 26syl3an1 1163 . . . . . . 7 ((𝜑𝑎𝐾𝑏𝐾) → (𝐻‘(𝑎(.r𝑅)𝑏)) = ((𝐻𝑎)(.r𝑆)(𝐻𝑏)))
28273expb 1120 . . . . . 6 ((𝜑 ∧ (𝑎𝐾𝑏𝐾)) → (𝐻‘(𝑎(.r𝑅)𝑏)) = ((𝐻𝑎)(.r𝑆)(𝐻𝑏)))
296, 12, 17, 18, 24, 28coof 7637 . . . . 5 (𝜑 → (𝐻 ∘ (({ ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} × {𝐶}) ∘f (.r𝑅)𝑋)) = ((𝐻 ∘ ({ ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} × {𝐶})) ∘f (.r𝑆)(𝐻𝑋)))
30 fcoconst 7068 . . . . . . 7 ((𝐻 Fn 𝐾𝐶𝐾) → (𝐻 ∘ ({ ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} × {𝐶})) = ({ ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} × {(𝐻𝐶)}))
3117, 1, 30syl2anc 584 . . . . . 6 (𝜑 → (𝐻 ∘ ({ ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} × {𝐶})) = ({ ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} × {(𝐻𝐶)}))
3231oveq1d 7364 . . . . 5 (𝜑 → ((𝐻 ∘ ({ ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} × {𝐶})) ∘f (.r𝑆)(𝐻𝑋)) = (({ ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} × {(𝐻𝐶)}) ∘f (.r𝑆)(𝐻𝑋)))
3329, 32eqtrd 2764 . . . 4 (𝜑 → (𝐻 ∘ (({ ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} × {𝐶}) ∘f (.r𝑅)𝑋)) = (({ ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} × {(𝐻𝐶)}) ∘f (.r𝑆)(𝐻𝑋)))
34 eqid 2729 . . . . . 6 (1o mPoly 𝑅) = (1o mPoly 𝑅)
35 eqid 2729 . . . . . 6 ( ·𝑠 ‘(1o mPoly 𝑅)) = ( ·𝑠 ‘(1o mPoly 𝑅))
368, 9ply1bas 22077 . . . . . 6 𝐵 = (Base‘(1o mPoly 𝑅))
37 eqid 2729 . . . . . 6 { ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin}
3834, 35, 10, 36, 21, 37, 1, 7mplvsca 21922 . . . . 5 (𝜑 → (𝐶( ·𝑠 ‘(1o mPoly 𝑅))𝑋) = (({ ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} × {𝐶}) ∘f (.r𝑅)𝑋))
3938coeq2d 5805 . . . 4 (𝜑 → (𝐻 ∘ (𝐶( ·𝑠 ‘(1o mPoly 𝑅))𝑋)) = (𝐻 ∘ (({ ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} × {𝐶}) ∘f (.r𝑅)𝑋)))
40 eqid 2729 . . . . 5 (1o mPoly 𝑆) = (1o mPoly 𝑆)
41 eqid 2729 . . . . 5 ( ·𝑠 ‘(1o mPoly 𝑆)) = ( ·𝑠 ‘(1o mPoly 𝑆))
42 rhmply1vsca.q . . . . . 6 𝑄 = (Poly1𝑆)
43 eqid 2729 . . . . . 6 (Base‘𝑄) = (Base‘𝑄)
4442, 43ply1bas 22077 . . . . 5 (Base‘𝑄) = (Base‘(1o mPoly 𝑆))
4516, 1ffvelcdmd 7019 . . . . 5 (𝜑 → (𝐻𝐶) ∈ (Base‘𝑆))
46 rhmghm 20369 . . . . . . 7 (𝐻 ∈ (𝑅 RingHom 𝑆) → 𝐻 ∈ (𝑅 GrpHom 𝑆))
47 ghmmhm 19105 . . . . . . 7 (𝐻 ∈ (𝑅 GrpHom 𝑆) → 𝐻 ∈ (𝑅 MndHom 𝑆))
4813, 46, 473syl 18 . . . . . 6 (𝜑𝐻 ∈ (𝑅 MndHom 𝑆))
498, 42, 9, 43, 48, 7mhmcoply1 22270 . . . . 5 (𝜑 → (𝐻𝑋) ∈ (Base‘𝑄))
5040, 41, 14, 44, 25, 37, 45, 49mplvsca 21922 . . . 4 (𝜑 → ((𝐻𝐶)( ·𝑠 ‘(1o mPoly 𝑆))(𝐻𝑋)) = (({ ∈ (ℕ0m 1o) ∣ ( “ ℕ) ∈ Fin} × {(𝐻𝐶)}) ∘f (.r𝑆)(𝐻𝑋)))
5133, 39, 503eqtr4d 2774 . . 3 (𝜑 → (𝐻 ∘ (𝐶( ·𝑠 ‘(1o mPoly 𝑅))𝑋)) = ((𝐻𝐶)( ·𝑠 ‘(1o mPoly 𝑆))(𝐻𝑋)))
52 rhmply1vsca.t . . . . . 6 · = ( ·𝑠𝑃)
538, 34, 52ply1vsca 22107 . . . . 5 · = ( ·𝑠 ‘(1o mPoly 𝑅))
5453oveqi 7362 . . . 4 (𝐶 · 𝑋) = (𝐶( ·𝑠 ‘(1o mPoly 𝑅))𝑋)
5554coeq2i 5803 . . 3 (𝐻 ∘ (𝐶 · 𝑋)) = (𝐻 ∘ (𝐶( ·𝑠 ‘(1o mPoly 𝑅))𝑋))
56 rhmply1vsca.u . . . . 5 = ( ·𝑠𝑄)
5742, 40, 56ply1vsca 22107 . . . 4 = ( ·𝑠 ‘(1o mPoly 𝑆))
5857oveqi 7362 . . 3 ((𝐻𝐶) (𝐻𝑋)) = ((𝐻𝐶)( ·𝑠 ‘(1o mPoly 𝑆))(𝐻𝑋))
5951, 55, 583eqtr4g 2789 . 2 (𝜑 → (𝐻 ∘ (𝐶 · 𝑋)) = ((𝐻𝐶) (𝐻𝑋)))
60 rhmply1vsca.f . . 3 𝐹 = (𝑝𝐵 ↦ (𝐻𝑝))
61 coeq2 5801 . . 3 (𝑝 = (𝐶 · 𝑋) → (𝐻𝑝) = (𝐻 ∘ (𝐶 · 𝑋)))
628, 9, 10, 52, 20, 1, 7ply1vscl 22269 . . 3 (𝜑 → (𝐶 · 𝑋) ∈ 𝐵)
6313, 62coexd 7864 . . 3 (𝜑 → (𝐻 ∘ (𝐶 · 𝑋)) ∈ V)
6460, 61, 62, 63fvmptd3 6953 . 2 (𝜑 → (𝐹‘(𝐶 · 𝑋)) = (𝐻 ∘ (𝐶 · 𝑋)))
65 coeq2 5801 . . . 4 (𝑝 = 𝑋 → (𝐻𝑝) = (𝐻𝑋))
6613, 7coexd 7864 . . . 4 (𝜑 → (𝐻𝑋) ∈ V)
6760, 65, 7, 66fvmptd3 6953 . . 3 (𝜑 → (𝐹𝑋) = (𝐻𝑋))
6867oveq2d 7365 . 2 (𝜑 → ((𝐻𝐶) (𝐹𝑋)) = ((𝐻𝐶) (𝐻𝑋)))
6959, 64, 683eqtr4d 2774 1 (𝜑 → (𝐹‘(𝐶 · 𝑋)) = ((𝐻𝐶) (𝐹𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {crab 3394  Vcvv 3436  {csn 4577  cmpt 5173   × cxp 5617  ccnv 5618  cima 5622  ccom 5623   Fn wfn 6477  wf 6478  cfv 6482  (class class class)co 7349  f cof 7611  1oc1o 8381  m cmap 8753  Fincfn 8872  cn 12128  0cn0 12384  Basecbs 17120  .rcmulr 17162   ·𝑠 cvsca 17165   MndHom cmhm 18655   GrpHom cghm 19091  Ringcrg 20118   RingHom crh 20354   mPoly cmpl 21813  Poly1cpl1 22059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-map 8755  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-sup 9332  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-fz 13411  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-hom 17185  df-cco 17186  df-0g 17345  df-prds 17351  df-pws 17353  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-mhm 18657  df-grp 18815  df-minusg 18816  df-sbg 18817  df-subg 19002  df-ghm 19092  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-rhm 20357  df-lmod 20765  df-lss 20835  df-psr 21816  df-mpl 21818  df-opsr 21820  df-psr1 22062  df-ply1 22064
This theorem is referenced by:  rhmply1mon  22274
  Copyright terms: Public domain W3C validator