Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. . . . . 6
⊢
(Base‘𝐶) =
(Base‘𝐶) |
2 | | eqid 2738 |
. . . . . 6
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) |
3 | | eqid 2738 |
. . . . . 6
⊢
(comp‘𝐶) =
(comp‘𝐶) |
4 | | setcmon.h |
. . . . . 6
⊢ 𝑀 = (Mono‘𝐶) |
5 | | setcmon.u |
. . . . . . 7
⊢ (𝜑 → 𝑈 ∈ 𝑉) |
6 | | setcmon.c |
. . . . . . . 8
⊢ 𝐶 = (SetCat‘𝑈) |
7 | 6 | setccat 17800 |
. . . . . . 7
⊢ (𝑈 ∈ 𝑉 → 𝐶 ∈ Cat) |
8 | 5, 7 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐶 ∈ Cat) |
9 | | setcmon.x |
. . . . . . 7
⊢ (𝜑 → 𝑋 ∈ 𝑈) |
10 | 6, 5 | setcbas 17793 |
. . . . . . 7
⊢ (𝜑 → 𝑈 = (Base‘𝐶)) |
11 | 9, 10 | eleqtrd 2841 |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) |
12 | | setcmon.y |
. . . . . . 7
⊢ (𝜑 → 𝑌 ∈ 𝑈) |
13 | 12, 10 | eleqtrd 2841 |
. . . . . 6
⊢ (𝜑 → 𝑌 ∈ (Base‘𝐶)) |
14 | 1, 2, 3, 4, 8, 11,
13 | monhom 17447 |
. . . . 5
⊢ (𝜑 → (𝑋𝑀𝑌) ⊆ (𝑋(Hom ‘𝐶)𝑌)) |
15 | 14 | sselda 3921 |
. . . 4
⊢ ((𝜑 ∧ 𝐹 ∈ (𝑋𝑀𝑌)) → 𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌)) |
16 | 6, 5, 2, 9, 12 | elsetchom 17796 |
. . . . 5
⊢ (𝜑 → (𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ↔ 𝐹:𝑋⟶𝑌)) |
17 | 16 | biimpa 477 |
. . . 4
⊢ ((𝜑 ∧ 𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌)) → 𝐹:𝑋⟶𝑌) |
18 | 15, 17 | syldan 591 |
. . 3
⊢ ((𝜑 ∧ 𝐹 ∈ (𝑋𝑀𝑌)) → 𝐹:𝑋⟶𝑌) |
19 | | simprr 770 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → (𝐹‘𝑥) = (𝐹‘𝑦)) |
20 | 19 | sneqd 4573 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → {(𝐹‘𝑥)} = {(𝐹‘𝑦)}) |
21 | 20 | xpeq2d 5619 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → (𝑋 × {(𝐹‘𝑥)}) = (𝑋 × {(𝐹‘𝑦)})) |
22 | 18 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → 𝐹:𝑋⟶𝑌) |
23 | 22 | ffnd 6601 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → 𝐹 Fn 𝑋) |
24 | | simprll 776 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → 𝑥 ∈ 𝑋) |
25 | | fcoconst 7006 |
. . . . . . . . . . 11
⊢ ((𝐹 Fn 𝑋 ∧ 𝑥 ∈ 𝑋) → (𝐹 ∘ (𝑋 × {𝑥})) = (𝑋 × {(𝐹‘𝑥)})) |
26 | 23, 24, 25 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → (𝐹 ∘ (𝑋 × {𝑥})) = (𝑋 × {(𝐹‘𝑥)})) |
27 | | simprlr 777 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → 𝑦 ∈ 𝑋) |
28 | | fcoconst 7006 |
. . . . . . . . . . 11
⊢ ((𝐹 Fn 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐹 ∘ (𝑋 × {𝑦})) = (𝑋 × {(𝐹‘𝑦)})) |
29 | 23, 27, 28 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → (𝐹 ∘ (𝑋 × {𝑦})) = (𝑋 × {(𝐹‘𝑦)})) |
30 | 21, 26, 29 | 3eqtr4d 2788 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → (𝐹 ∘ (𝑋 × {𝑥})) = (𝐹 ∘ (𝑋 × {𝑦}))) |
31 | 5 | ad2antrr 723 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → 𝑈 ∈ 𝑉) |
32 | 9 | ad2antrr 723 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → 𝑋 ∈ 𝑈) |
33 | 12 | ad2antrr 723 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → 𝑌 ∈ 𝑈) |
34 | | fconst6g 6663 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝑋 → (𝑋 × {𝑥}):𝑋⟶𝑋) |
35 | 24, 34 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → (𝑋 × {𝑥}):𝑋⟶𝑋) |
36 | 6, 31, 3, 32, 32, 33, 35, 22 | setcco 17798 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → (𝐹(〈𝑋, 𝑋〉(comp‘𝐶)𝑌)(𝑋 × {𝑥})) = (𝐹 ∘ (𝑋 × {𝑥}))) |
37 | | fconst6g 6663 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ 𝑋 → (𝑋 × {𝑦}):𝑋⟶𝑋) |
38 | 27, 37 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → (𝑋 × {𝑦}):𝑋⟶𝑋) |
39 | 6, 31, 3, 32, 32, 33, 38, 22 | setcco 17798 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → (𝐹(〈𝑋, 𝑋〉(comp‘𝐶)𝑌)(𝑋 × {𝑦})) = (𝐹 ∘ (𝑋 × {𝑦}))) |
40 | 30, 36, 39 | 3eqtr4d 2788 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → (𝐹(〈𝑋, 𝑋〉(comp‘𝐶)𝑌)(𝑋 × {𝑥})) = (𝐹(〈𝑋, 𝑋〉(comp‘𝐶)𝑌)(𝑋 × {𝑦}))) |
41 | 8 | ad2antrr 723 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → 𝐶 ∈ Cat) |
42 | 11 | ad2antrr 723 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → 𝑋 ∈ (Base‘𝐶)) |
43 | 13 | ad2antrr 723 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → 𝑌 ∈ (Base‘𝐶)) |
44 | | simplr 766 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → 𝐹 ∈ (𝑋𝑀𝑌)) |
45 | 6, 31, 2, 32, 32 | elsetchom 17796 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → ((𝑋 × {𝑥}) ∈ (𝑋(Hom ‘𝐶)𝑋) ↔ (𝑋 × {𝑥}):𝑋⟶𝑋)) |
46 | 35, 45 | mpbird 256 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → (𝑋 × {𝑥}) ∈ (𝑋(Hom ‘𝐶)𝑋)) |
47 | 6, 31, 2, 32, 32 | elsetchom 17796 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → ((𝑋 × {𝑦}) ∈ (𝑋(Hom ‘𝐶)𝑋) ↔ (𝑋 × {𝑦}):𝑋⟶𝑋)) |
48 | 38, 47 | mpbird 256 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → (𝑋 × {𝑦}) ∈ (𝑋(Hom ‘𝐶)𝑋)) |
49 | 1, 2, 3, 4, 41, 42, 43, 42, 44, 46, 48 | moni 17448 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → ((𝐹(〈𝑋, 𝑋〉(comp‘𝐶)𝑌)(𝑋 × {𝑥})) = (𝐹(〈𝑋, 𝑋〉(comp‘𝐶)𝑌)(𝑋 × {𝑦})) ↔ (𝑋 × {𝑥}) = (𝑋 × {𝑦}))) |
50 | 40, 49 | mpbid 231 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → (𝑋 × {𝑥}) = (𝑋 × {𝑦})) |
51 | 50 | fveq1d 6776 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → ((𝑋 × {𝑥})‘𝑥) = ((𝑋 × {𝑦})‘𝑥)) |
52 | | vex 3436 |
. . . . . . . 8
⊢ 𝑥 ∈ V |
53 | 52 | fvconst2 7079 |
. . . . . . 7
⊢ (𝑥 ∈ 𝑋 → ((𝑋 × {𝑥})‘𝑥) = 𝑥) |
54 | 24, 53 | syl 17 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → ((𝑋 × {𝑥})‘𝑥) = 𝑥) |
55 | | vex 3436 |
. . . . . . . 8
⊢ 𝑦 ∈ V |
56 | 55 | fvconst2 7079 |
. . . . . . 7
⊢ (𝑥 ∈ 𝑋 → ((𝑋 × {𝑦})‘𝑥) = 𝑦) |
57 | 24, 56 | syl 17 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → ((𝑋 × {𝑦})‘𝑥) = 𝑦) |
58 | 51, 54, 57 | 3eqtr3d 2786 |
. . . . 5
⊢ (((𝜑 ∧ 𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → 𝑥 = 𝑦) |
59 | 58 | expr 457 |
. . . 4
⊢ (((𝜑 ∧ 𝐹 ∈ (𝑋𝑀𝑌)) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) |
60 | 59 | ralrimivva 3123 |
. . 3
⊢ ((𝜑 ∧ 𝐹 ∈ (𝑋𝑀𝑌)) → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) |
61 | | dff13 7128 |
. . 3
⊢ (𝐹:𝑋–1-1→𝑌 ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) |
62 | 18, 60, 61 | sylanbrc 583 |
. 2
⊢ ((𝜑 ∧ 𝐹 ∈ (𝑋𝑀𝑌)) → 𝐹:𝑋–1-1→𝑌) |
63 | | f1f 6670 |
. . . 4
⊢ (𝐹:𝑋–1-1→𝑌 → 𝐹:𝑋⟶𝑌) |
64 | 16 | biimpar 478 |
. . . 4
⊢ ((𝜑 ∧ 𝐹:𝑋⟶𝑌) → 𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌)) |
65 | 63, 64 | sylan2 593 |
. . 3
⊢ ((𝜑 ∧ 𝐹:𝑋–1-1→𝑌) → 𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌)) |
66 | 10 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐹:𝑋–1-1→𝑌) → 𝑈 = (Base‘𝐶)) |
67 | 66 | eleq2d 2824 |
. . . . 5
⊢ ((𝜑 ∧ 𝐹:𝑋–1-1→𝑌) → (𝑧 ∈ 𝑈 ↔ 𝑧 ∈ (Base‘𝐶))) |
68 | 5 | ad2antrr 723 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐹:𝑋–1-1→𝑌) ∧ (𝑧 ∈ 𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ℎ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → 𝑈 ∈ 𝑉) |
69 | | simprl 768 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐹:𝑋–1-1→𝑌) ∧ (𝑧 ∈ 𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ℎ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → 𝑧 ∈ 𝑈) |
70 | 9 | ad2antrr 723 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐹:𝑋–1-1→𝑌) ∧ (𝑧 ∈ 𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ℎ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → 𝑋 ∈ 𝑈) |
71 | 12 | ad2antrr 723 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐹:𝑋–1-1→𝑌) ∧ (𝑧 ∈ 𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ℎ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → 𝑌 ∈ 𝑈) |
72 | | simprrl 778 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐹:𝑋–1-1→𝑌) ∧ (𝑧 ∈ 𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ℎ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋)) |
73 | 6, 68, 2, 69, 70 | elsetchom 17796 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐹:𝑋–1-1→𝑌) ∧ (𝑧 ∈ 𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ℎ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ↔ 𝑔:𝑧⟶𝑋)) |
74 | 72, 73 | mpbid 231 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐹:𝑋–1-1→𝑌) ∧ (𝑧 ∈ 𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ℎ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → 𝑔:𝑧⟶𝑋) |
75 | 63 | ad2antlr 724 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐹:𝑋–1-1→𝑌) ∧ (𝑧 ∈ 𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ℎ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → 𝐹:𝑋⟶𝑌) |
76 | 6, 68, 3, 69, 70, 71, 74, 75 | setcco 17798 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐹:𝑋–1-1→𝑌) ∧ (𝑧 ∈ 𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ℎ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → (𝐹(〈𝑧, 𝑋〉(comp‘𝐶)𝑌)𝑔) = (𝐹 ∘ 𝑔)) |
77 | | simprrr 779 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐹:𝑋–1-1→𝑌) ∧ (𝑧 ∈ 𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ℎ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → ℎ ∈ (𝑧(Hom ‘𝐶)𝑋)) |
78 | 6, 68, 2, 69, 70 | elsetchom 17796 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐹:𝑋–1-1→𝑌) ∧ (𝑧 ∈ 𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ℎ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → (ℎ ∈ (𝑧(Hom ‘𝐶)𝑋) ↔ ℎ:𝑧⟶𝑋)) |
79 | 77, 78 | mpbid 231 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐹:𝑋–1-1→𝑌) ∧ (𝑧 ∈ 𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ℎ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → ℎ:𝑧⟶𝑋) |
80 | 6, 68, 3, 69, 70, 71, 79, 75 | setcco 17798 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐹:𝑋–1-1→𝑌) ∧ (𝑧 ∈ 𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ℎ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → (𝐹(〈𝑧, 𝑋〉(comp‘𝐶)𝑌)ℎ) = (𝐹 ∘ ℎ)) |
81 | 76, 80 | eqeq12d 2754 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐹:𝑋–1-1→𝑌) ∧ (𝑧 ∈ 𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ℎ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → ((𝐹(〈𝑧, 𝑋〉(comp‘𝐶)𝑌)𝑔) = (𝐹(〈𝑧, 𝑋〉(comp‘𝐶)𝑌)ℎ) ↔ (𝐹 ∘ 𝑔) = (𝐹 ∘ ℎ))) |
82 | | simplr 766 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐹:𝑋–1-1→𝑌) ∧ (𝑧 ∈ 𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ℎ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → 𝐹:𝑋–1-1→𝑌) |
83 | | cocan1 7163 |
. . . . . . . . . . 11
⊢ ((𝐹:𝑋–1-1→𝑌 ∧ 𝑔:𝑧⟶𝑋 ∧ ℎ:𝑧⟶𝑋) → ((𝐹 ∘ 𝑔) = (𝐹 ∘ ℎ) ↔ 𝑔 = ℎ)) |
84 | 82, 74, 79, 83 | syl3anc 1370 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐹:𝑋–1-1→𝑌) ∧ (𝑧 ∈ 𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ℎ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → ((𝐹 ∘ 𝑔) = (𝐹 ∘ ℎ) ↔ 𝑔 = ℎ)) |
85 | 84 | biimpd 228 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐹:𝑋–1-1→𝑌) ∧ (𝑧 ∈ 𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ℎ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → ((𝐹 ∘ 𝑔) = (𝐹 ∘ ℎ) → 𝑔 = ℎ)) |
86 | 81, 85 | sylbid 239 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐹:𝑋–1-1→𝑌) ∧ (𝑧 ∈ 𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ℎ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → ((𝐹(〈𝑧, 𝑋〉(comp‘𝐶)𝑌)𝑔) = (𝐹(〈𝑧, 𝑋〉(comp‘𝐶)𝑌)ℎ) → 𝑔 = ℎ)) |
87 | 86 | anassrs 468 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐹:𝑋–1-1→𝑌) ∧ 𝑧 ∈ 𝑈) ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ℎ ∈ (𝑧(Hom ‘𝐶)𝑋))) → ((𝐹(〈𝑧, 𝑋〉(comp‘𝐶)𝑌)𝑔) = (𝐹(〈𝑧, 𝑋〉(comp‘𝐶)𝑌)ℎ) → 𝑔 = ℎ)) |
88 | 87 | ralrimivva 3123 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐹:𝑋–1-1→𝑌) ∧ 𝑧 ∈ 𝑈) → ∀𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑋)((𝐹(〈𝑧, 𝑋〉(comp‘𝐶)𝑌)𝑔) = (𝐹(〈𝑧, 𝑋〉(comp‘𝐶)𝑌)ℎ) → 𝑔 = ℎ)) |
89 | 88 | ex 413 |
. . . . 5
⊢ ((𝜑 ∧ 𝐹:𝑋–1-1→𝑌) → (𝑧 ∈ 𝑈 → ∀𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑋)((𝐹(〈𝑧, 𝑋〉(comp‘𝐶)𝑌)𝑔) = (𝐹(〈𝑧, 𝑋〉(comp‘𝐶)𝑌)ℎ) → 𝑔 = ℎ))) |
90 | 67, 89 | sylbird 259 |
. . . 4
⊢ ((𝜑 ∧ 𝐹:𝑋–1-1→𝑌) → (𝑧 ∈ (Base‘𝐶) → ∀𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑋)((𝐹(〈𝑧, 𝑋〉(comp‘𝐶)𝑌)𝑔) = (𝐹(〈𝑧, 𝑋〉(comp‘𝐶)𝑌)ℎ) → 𝑔 = ℎ))) |
91 | 90 | ralrimiv 3102 |
. . 3
⊢ ((𝜑 ∧ 𝐹:𝑋–1-1→𝑌) → ∀𝑧 ∈ (Base‘𝐶)∀𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑋)((𝐹(〈𝑧, 𝑋〉(comp‘𝐶)𝑌)𝑔) = (𝐹(〈𝑧, 𝑋〉(comp‘𝐶)𝑌)ℎ) → 𝑔 = ℎ)) |
92 | 1, 2, 3, 4, 8, 11,
13 | ismon2 17446 |
. . . 4
⊢ (𝜑 → (𝐹 ∈ (𝑋𝑀𝑌) ↔ (𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ ∀𝑧 ∈ (Base‘𝐶)∀𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑋)((𝐹(〈𝑧, 𝑋〉(comp‘𝐶)𝑌)𝑔) = (𝐹(〈𝑧, 𝑋〉(comp‘𝐶)𝑌)ℎ) → 𝑔 = ℎ)))) |
93 | 92 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝐹:𝑋–1-1→𝑌) → (𝐹 ∈ (𝑋𝑀𝑌) ↔ (𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ ∀𝑧 ∈ (Base‘𝐶)∀𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑋)((𝐹(〈𝑧, 𝑋〉(comp‘𝐶)𝑌)𝑔) = (𝐹(〈𝑧, 𝑋〉(comp‘𝐶)𝑌)ℎ) → 𝑔 = ℎ)))) |
94 | 65, 91, 93 | mpbir2and 710 |
. 2
⊢ ((𝜑 ∧ 𝐹:𝑋–1-1→𝑌) → 𝐹 ∈ (𝑋𝑀𝑌)) |
95 | 62, 94 | impbida 798 |
1
⊢ (𝜑 → (𝐹 ∈ (𝑋𝑀𝑌) ↔ 𝐹:𝑋–1-1→𝑌)) |