| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2737 |
. . . . . 6
⊢
(Base‘𝐶) =
(Base‘𝐶) |
| 2 | | eqid 2737 |
. . . . . 6
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) |
| 3 | | eqid 2737 |
. . . . . 6
⊢
(comp‘𝐶) =
(comp‘𝐶) |
| 4 | | setcmon.h |
. . . . . 6
⊢ 𝑀 = (Mono‘𝐶) |
| 5 | | setcmon.u |
. . . . . . 7
⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| 6 | | setcmon.c |
. . . . . . . 8
⊢ 𝐶 = (SetCat‘𝑈) |
| 7 | 6 | setccat 18130 |
. . . . . . 7
⊢ (𝑈 ∈ 𝑉 → 𝐶 ∈ Cat) |
| 8 | 5, 7 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐶 ∈ Cat) |
| 9 | | setcmon.x |
. . . . . . 7
⊢ (𝜑 → 𝑋 ∈ 𝑈) |
| 10 | 6, 5 | setcbas 18123 |
. . . . . . 7
⊢ (𝜑 → 𝑈 = (Base‘𝐶)) |
| 11 | 9, 10 | eleqtrd 2843 |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) |
| 12 | | setcmon.y |
. . . . . . 7
⊢ (𝜑 → 𝑌 ∈ 𝑈) |
| 13 | 12, 10 | eleqtrd 2843 |
. . . . . 6
⊢ (𝜑 → 𝑌 ∈ (Base‘𝐶)) |
| 14 | 1, 2, 3, 4, 8, 11,
13 | monhom 17779 |
. . . . 5
⊢ (𝜑 → (𝑋𝑀𝑌) ⊆ (𝑋(Hom ‘𝐶)𝑌)) |
| 15 | 14 | sselda 3983 |
. . . 4
⊢ ((𝜑 ∧ 𝐹 ∈ (𝑋𝑀𝑌)) → 𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌)) |
| 16 | 6, 5, 2, 9, 12 | elsetchom 18126 |
. . . . 5
⊢ (𝜑 → (𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ↔ 𝐹:𝑋⟶𝑌)) |
| 17 | 16 | biimpa 476 |
. . . 4
⊢ ((𝜑 ∧ 𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌)) → 𝐹:𝑋⟶𝑌) |
| 18 | 15, 17 | syldan 591 |
. . 3
⊢ ((𝜑 ∧ 𝐹 ∈ (𝑋𝑀𝑌)) → 𝐹:𝑋⟶𝑌) |
| 19 | | simprr 773 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → (𝐹‘𝑥) = (𝐹‘𝑦)) |
| 20 | 19 | sneqd 4638 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → {(𝐹‘𝑥)} = {(𝐹‘𝑦)}) |
| 21 | 20 | xpeq2d 5715 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → (𝑋 × {(𝐹‘𝑥)}) = (𝑋 × {(𝐹‘𝑦)})) |
| 22 | 18 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → 𝐹:𝑋⟶𝑌) |
| 23 | 22 | ffnd 6737 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → 𝐹 Fn 𝑋) |
| 24 | | simprll 779 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → 𝑥 ∈ 𝑋) |
| 25 | | fcoconst 7154 |
. . . . . . . . . . 11
⊢ ((𝐹 Fn 𝑋 ∧ 𝑥 ∈ 𝑋) → (𝐹 ∘ (𝑋 × {𝑥})) = (𝑋 × {(𝐹‘𝑥)})) |
| 26 | 23, 24, 25 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → (𝐹 ∘ (𝑋 × {𝑥})) = (𝑋 × {(𝐹‘𝑥)})) |
| 27 | | simprlr 780 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → 𝑦 ∈ 𝑋) |
| 28 | | fcoconst 7154 |
. . . . . . . . . . 11
⊢ ((𝐹 Fn 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐹 ∘ (𝑋 × {𝑦})) = (𝑋 × {(𝐹‘𝑦)})) |
| 29 | 23, 27, 28 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → (𝐹 ∘ (𝑋 × {𝑦})) = (𝑋 × {(𝐹‘𝑦)})) |
| 30 | 21, 26, 29 | 3eqtr4d 2787 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → (𝐹 ∘ (𝑋 × {𝑥})) = (𝐹 ∘ (𝑋 × {𝑦}))) |
| 31 | 5 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → 𝑈 ∈ 𝑉) |
| 32 | 9 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → 𝑋 ∈ 𝑈) |
| 33 | 12 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → 𝑌 ∈ 𝑈) |
| 34 | | fconst6g 6797 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝑋 → (𝑋 × {𝑥}):𝑋⟶𝑋) |
| 35 | 24, 34 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → (𝑋 × {𝑥}):𝑋⟶𝑋) |
| 36 | 6, 31, 3, 32, 32, 33, 35, 22 | setcco 18128 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → (𝐹(〈𝑋, 𝑋〉(comp‘𝐶)𝑌)(𝑋 × {𝑥})) = (𝐹 ∘ (𝑋 × {𝑥}))) |
| 37 | | fconst6g 6797 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ 𝑋 → (𝑋 × {𝑦}):𝑋⟶𝑋) |
| 38 | 27, 37 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → (𝑋 × {𝑦}):𝑋⟶𝑋) |
| 39 | 6, 31, 3, 32, 32, 33, 38, 22 | setcco 18128 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → (𝐹(〈𝑋, 𝑋〉(comp‘𝐶)𝑌)(𝑋 × {𝑦})) = (𝐹 ∘ (𝑋 × {𝑦}))) |
| 40 | 30, 36, 39 | 3eqtr4d 2787 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → (𝐹(〈𝑋, 𝑋〉(comp‘𝐶)𝑌)(𝑋 × {𝑥})) = (𝐹(〈𝑋, 𝑋〉(comp‘𝐶)𝑌)(𝑋 × {𝑦}))) |
| 41 | 8 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → 𝐶 ∈ Cat) |
| 42 | 11 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → 𝑋 ∈ (Base‘𝐶)) |
| 43 | 13 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → 𝑌 ∈ (Base‘𝐶)) |
| 44 | | simplr 769 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → 𝐹 ∈ (𝑋𝑀𝑌)) |
| 45 | 6, 31, 2, 32, 32 | elsetchom 18126 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → ((𝑋 × {𝑥}) ∈ (𝑋(Hom ‘𝐶)𝑋) ↔ (𝑋 × {𝑥}):𝑋⟶𝑋)) |
| 46 | 35, 45 | mpbird 257 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → (𝑋 × {𝑥}) ∈ (𝑋(Hom ‘𝐶)𝑋)) |
| 47 | 6, 31, 2, 32, 32 | elsetchom 18126 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → ((𝑋 × {𝑦}) ∈ (𝑋(Hom ‘𝐶)𝑋) ↔ (𝑋 × {𝑦}):𝑋⟶𝑋)) |
| 48 | 38, 47 | mpbird 257 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → (𝑋 × {𝑦}) ∈ (𝑋(Hom ‘𝐶)𝑋)) |
| 49 | 1, 2, 3, 4, 41, 42, 43, 42, 44, 46, 48 | moni 17780 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → ((𝐹(〈𝑋, 𝑋〉(comp‘𝐶)𝑌)(𝑋 × {𝑥})) = (𝐹(〈𝑋, 𝑋〉(comp‘𝐶)𝑌)(𝑋 × {𝑦})) ↔ (𝑋 × {𝑥}) = (𝑋 × {𝑦}))) |
| 50 | 40, 49 | mpbid 232 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → (𝑋 × {𝑥}) = (𝑋 × {𝑦})) |
| 51 | 50 | fveq1d 6908 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → ((𝑋 × {𝑥})‘𝑥) = ((𝑋 × {𝑦})‘𝑥)) |
| 52 | | vex 3484 |
. . . . . . . 8
⊢ 𝑥 ∈ V |
| 53 | 52 | fvconst2 7224 |
. . . . . . 7
⊢ (𝑥 ∈ 𝑋 → ((𝑋 × {𝑥})‘𝑥) = 𝑥) |
| 54 | 24, 53 | syl 17 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → ((𝑋 × {𝑥})‘𝑥) = 𝑥) |
| 55 | | vex 3484 |
. . . . . . . 8
⊢ 𝑦 ∈ V |
| 56 | 55 | fvconst2 7224 |
. . . . . . 7
⊢ (𝑥 ∈ 𝑋 → ((𝑋 × {𝑦})‘𝑥) = 𝑦) |
| 57 | 24, 56 | syl 17 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → ((𝑋 × {𝑦})‘𝑥) = 𝑦) |
| 58 | 51, 54, 57 | 3eqtr3d 2785 |
. . . . 5
⊢ (((𝜑 ∧ 𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → 𝑥 = 𝑦) |
| 59 | 58 | expr 456 |
. . . 4
⊢ (((𝜑 ∧ 𝐹 ∈ (𝑋𝑀𝑌)) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) |
| 60 | 59 | ralrimivva 3202 |
. . 3
⊢ ((𝜑 ∧ 𝐹 ∈ (𝑋𝑀𝑌)) → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) |
| 61 | | dff13 7275 |
. . 3
⊢ (𝐹:𝑋–1-1→𝑌 ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) |
| 62 | 18, 60, 61 | sylanbrc 583 |
. 2
⊢ ((𝜑 ∧ 𝐹 ∈ (𝑋𝑀𝑌)) → 𝐹:𝑋–1-1→𝑌) |
| 63 | | f1f 6804 |
. . . 4
⊢ (𝐹:𝑋–1-1→𝑌 → 𝐹:𝑋⟶𝑌) |
| 64 | 16 | biimpar 477 |
. . . 4
⊢ ((𝜑 ∧ 𝐹:𝑋⟶𝑌) → 𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌)) |
| 65 | 63, 64 | sylan2 593 |
. . 3
⊢ ((𝜑 ∧ 𝐹:𝑋–1-1→𝑌) → 𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌)) |
| 66 | 10 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐹:𝑋–1-1→𝑌) → 𝑈 = (Base‘𝐶)) |
| 67 | 66 | eleq2d 2827 |
. . . . 5
⊢ ((𝜑 ∧ 𝐹:𝑋–1-1→𝑌) → (𝑧 ∈ 𝑈 ↔ 𝑧 ∈ (Base‘𝐶))) |
| 68 | 5 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐹:𝑋–1-1→𝑌) ∧ (𝑧 ∈ 𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ℎ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → 𝑈 ∈ 𝑉) |
| 69 | | simprl 771 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐹:𝑋–1-1→𝑌) ∧ (𝑧 ∈ 𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ℎ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → 𝑧 ∈ 𝑈) |
| 70 | 9 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐹:𝑋–1-1→𝑌) ∧ (𝑧 ∈ 𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ℎ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → 𝑋 ∈ 𝑈) |
| 71 | 12 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐹:𝑋–1-1→𝑌) ∧ (𝑧 ∈ 𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ℎ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → 𝑌 ∈ 𝑈) |
| 72 | | simprrl 781 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐹:𝑋–1-1→𝑌) ∧ (𝑧 ∈ 𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ℎ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋)) |
| 73 | 6, 68, 2, 69, 70 | elsetchom 18126 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐹:𝑋–1-1→𝑌) ∧ (𝑧 ∈ 𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ℎ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ↔ 𝑔:𝑧⟶𝑋)) |
| 74 | 72, 73 | mpbid 232 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐹:𝑋–1-1→𝑌) ∧ (𝑧 ∈ 𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ℎ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → 𝑔:𝑧⟶𝑋) |
| 75 | 63 | ad2antlr 727 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐹:𝑋–1-1→𝑌) ∧ (𝑧 ∈ 𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ℎ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → 𝐹:𝑋⟶𝑌) |
| 76 | 6, 68, 3, 69, 70, 71, 74, 75 | setcco 18128 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐹:𝑋–1-1→𝑌) ∧ (𝑧 ∈ 𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ℎ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → (𝐹(〈𝑧, 𝑋〉(comp‘𝐶)𝑌)𝑔) = (𝐹 ∘ 𝑔)) |
| 77 | | simprrr 782 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐹:𝑋–1-1→𝑌) ∧ (𝑧 ∈ 𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ℎ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → ℎ ∈ (𝑧(Hom ‘𝐶)𝑋)) |
| 78 | 6, 68, 2, 69, 70 | elsetchom 18126 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐹:𝑋–1-1→𝑌) ∧ (𝑧 ∈ 𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ℎ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → (ℎ ∈ (𝑧(Hom ‘𝐶)𝑋) ↔ ℎ:𝑧⟶𝑋)) |
| 79 | 77, 78 | mpbid 232 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐹:𝑋–1-1→𝑌) ∧ (𝑧 ∈ 𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ℎ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → ℎ:𝑧⟶𝑋) |
| 80 | 6, 68, 3, 69, 70, 71, 79, 75 | setcco 18128 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐹:𝑋–1-1→𝑌) ∧ (𝑧 ∈ 𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ℎ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → (𝐹(〈𝑧, 𝑋〉(comp‘𝐶)𝑌)ℎ) = (𝐹 ∘ ℎ)) |
| 81 | 76, 80 | eqeq12d 2753 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐹:𝑋–1-1→𝑌) ∧ (𝑧 ∈ 𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ℎ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → ((𝐹(〈𝑧, 𝑋〉(comp‘𝐶)𝑌)𝑔) = (𝐹(〈𝑧, 𝑋〉(comp‘𝐶)𝑌)ℎ) ↔ (𝐹 ∘ 𝑔) = (𝐹 ∘ ℎ))) |
| 82 | | simplr 769 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐹:𝑋–1-1→𝑌) ∧ (𝑧 ∈ 𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ℎ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → 𝐹:𝑋–1-1→𝑌) |
| 83 | | cocan1 7311 |
. . . . . . . . . . 11
⊢ ((𝐹:𝑋–1-1→𝑌 ∧ 𝑔:𝑧⟶𝑋 ∧ ℎ:𝑧⟶𝑋) → ((𝐹 ∘ 𝑔) = (𝐹 ∘ ℎ) ↔ 𝑔 = ℎ)) |
| 84 | 82, 74, 79, 83 | syl3anc 1373 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐹:𝑋–1-1→𝑌) ∧ (𝑧 ∈ 𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ℎ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → ((𝐹 ∘ 𝑔) = (𝐹 ∘ ℎ) ↔ 𝑔 = ℎ)) |
| 85 | 84 | biimpd 229 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐹:𝑋–1-1→𝑌) ∧ (𝑧 ∈ 𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ℎ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → ((𝐹 ∘ 𝑔) = (𝐹 ∘ ℎ) → 𝑔 = ℎ)) |
| 86 | 81, 85 | sylbid 240 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐹:𝑋–1-1→𝑌) ∧ (𝑧 ∈ 𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ℎ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → ((𝐹(〈𝑧, 𝑋〉(comp‘𝐶)𝑌)𝑔) = (𝐹(〈𝑧, 𝑋〉(comp‘𝐶)𝑌)ℎ) → 𝑔 = ℎ)) |
| 87 | 86 | anassrs 467 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐹:𝑋–1-1→𝑌) ∧ 𝑧 ∈ 𝑈) ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ℎ ∈ (𝑧(Hom ‘𝐶)𝑋))) → ((𝐹(〈𝑧, 𝑋〉(comp‘𝐶)𝑌)𝑔) = (𝐹(〈𝑧, 𝑋〉(comp‘𝐶)𝑌)ℎ) → 𝑔 = ℎ)) |
| 88 | 87 | ralrimivva 3202 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐹:𝑋–1-1→𝑌) ∧ 𝑧 ∈ 𝑈) → ∀𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑋)((𝐹(〈𝑧, 𝑋〉(comp‘𝐶)𝑌)𝑔) = (𝐹(〈𝑧, 𝑋〉(comp‘𝐶)𝑌)ℎ) → 𝑔 = ℎ)) |
| 89 | 88 | ex 412 |
. . . . 5
⊢ ((𝜑 ∧ 𝐹:𝑋–1-1→𝑌) → (𝑧 ∈ 𝑈 → ∀𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑋)((𝐹(〈𝑧, 𝑋〉(comp‘𝐶)𝑌)𝑔) = (𝐹(〈𝑧, 𝑋〉(comp‘𝐶)𝑌)ℎ) → 𝑔 = ℎ))) |
| 90 | 67, 89 | sylbird 260 |
. . . 4
⊢ ((𝜑 ∧ 𝐹:𝑋–1-1→𝑌) → (𝑧 ∈ (Base‘𝐶) → ∀𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑋)((𝐹(〈𝑧, 𝑋〉(comp‘𝐶)𝑌)𝑔) = (𝐹(〈𝑧, 𝑋〉(comp‘𝐶)𝑌)ℎ) → 𝑔 = ℎ))) |
| 91 | 90 | ralrimiv 3145 |
. . 3
⊢ ((𝜑 ∧ 𝐹:𝑋–1-1→𝑌) → ∀𝑧 ∈ (Base‘𝐶)∀𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑋)((𝐹(〈𝑧, 𝑋〉(comp‘𝐶)𝑌)𝑔) = (𝐹(〈𝑧, 𝑋〉(comp‘𝐶)𝑌)ℎ) → 𝑔 = ℎ)) |
| 92 | 1, 2, 3, 4, 8, 11,
13 | ismon2 17778 |
. . . 4
⊢ (𝜑 → (𝐹 ∈ (𝑋𝑀𝑌) ↔ (𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ ∀𝑧 ∈ (Base‘𝐶)∀𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑋)((𝐹(〈𝑧, 𝑋〉(comp‘𝐶)𝑌)𝑔) = (𝐹(〈𝑧, 𝑋〉(comp‘𝐶)𝑌)ℎ) → 𝑔 = ℎ)))) |
| 93 | 92 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝐹:𝑋–1-1→𝑌) → (𝐹 ∈ (𝑋𝑀𝑌) ↔ (𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ ∀𝑧 ∈ (Base‘𝐶)∀𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋)∀ℎ ∈ (𝑧(Hom ‘𝐶)𝑋)((𝐹(〈𝑧, 𝑋〉(comp‘𝐶)𝑌)𝑔) = (𝐹(〈𝑧, 𝑋〉(comp‘𝐶)𝑌)ℎ) → 𝑔 = ℎ)))) |
| 94 | 65, 91, 93 | mpbir2and 713 |
. 2
⊢ ((𝜑 ∧ 𝐹:𝑋–1-1→𝑌) → 𝐹 ∈ (𝑋𝑀𝑌)) |
| 95 | 62, 94 | impbida 801 |
1
⊢ (𝜑 → (𝐹 ∈ (𝑋𝑀𝑌) ↔ 𝐹:𝑋–1-1→𝑌)) |