MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setcmon Structured version   Visualization version   GIF version

Theorem setcmon 18012
Description: A monomorphism of sets is an injection. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
setcmon.c 𝐶 = (SetCat‘𝑈)
setcmon.u (𝜑𝑈𝑉)
setcmon.x (𝜑𝑋𝑈)
setcmon.y (𝜑𝑌𝑈)
setcmon.h 𝑀 = (Mono‘𝐶)
Assertion
Ref Expression
setcmon (𝜑 → (𝐹 ∈ (𝑋𝑀𝑌) ↔ 𝐹:𝑋1-1𝑌))

Proof of Theorem setcmon
Dummy variables 𝑥 𝑔 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
2 eqid 2729 . . . . . 6 (Hom ‘𝐶) = (Hom ‘𝐶)
3 eqid 2729 . . . . . 6 (comp‘𝐶) = (comp‘𝐶)
4 setcmon.h . . . . . 6 𝑀 = (Mono‘𝐶)
5 setcmon.u . . . . . . 7 (𝜑𝑈𝑉)
6 setcmon.c . . . . . . . 8 𝐶 = (SetCat‘𝑈)
76setccat 18010 . . . . . . 7 (𝑈𝑉𝐶 ∈ Cat)
85, 7syl 17 . . . . . 6 (𝜑𝐶 ∈ Cat)
9 setcmon.x . . . . . . 7 (𝜑𝑋𝑈)
106, 5setcbas 18003 . . . . . . 7 (𝜑𝑈 = (Base‘𝐶))
119, 10eleqtrd 2830 . . . . . 6 (𝜑𝑋 ∈ (Base‘𝐶))
12 setcmon.y . . . . . . 7 (𝜑𝑌𝑈)
1312, 10eleqtrd 2830 . . . . . 6 (𝜑𝑌 ∈ (Base‘𝐶))
141, 2, 3, 4, 8, 11, 13monhom 17660 . . . . 5 (𝜑 → (𝑋𝑀𝑌) ⊆ (𝑋(Hom ‘𝐶)𝑌))
1514sselda 3937 . . . 4 ((𝜑𝐹 ∈ (𝑋𝑀𝑌)) → 𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌))
166, 5, 2, 9, 12elsetchom 18006 . . . . 5 (𝜑 → (𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ↔ 𝐹:𝑋𝑌))
1716biimpa 476 . . . 4 ((𝜑𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌)) → 𝐹:𝑋𝑌)
1815, 17syldan 591 . . 3 ((𝜑𝐹 ∈ (𝑋𝑀𝑌)) → 𝐹:𝑋𝑌)
19 simprr 772 . . . . . . . . . . . 12 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝐹𝑥) = (𝐹𝑦))
2019sneqd 4591 . . . . . . . . . . 11 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → {(𝐹𝑥)} = {(𝐹𝑦)})
2120xpeq2d 5653 . . . . . . . . . 10 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝑋 × {(𝐹𝑥)}) = (𝑋 × {(𝐹𝑦)}))
2218adantr 480 . . . . . . . . . . . 12 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → 𝐹:𝑋𝑌)
2322ffnd 6657 . . . . . . . . . . 11 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → 𝐹 Fn 𝑋)
24 simprll 778 . . . . . . . . . . 11 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → 𝑥𝑋)
25 fcoconst 7072 . . . . . . . . . . 11 ((𝐹 Fn 𝑋𝑥𝑋) → (𝐹 ∘ (𝑋 × {𝑥})) = (𝑋 × {(𝐹𝑥)}))
2623, 24, 25syl2anc 584 . . . . . . . . . 10 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝐹 ∘ (𝑋 × {𝑥})) = (𝑋 × {(𝐹𝑥)}))
27 simprlr 779 . . . . . . . . . . 11 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → 𝑦𝑋)
28 fcoconst 7072 . . . . . . . . . . 11 ((𝐹 Fn 𝑋𝑦𝑋) → (𝐹 ∘ (𝑋 × {𝑦})) = (𝑋 × {(𝐹𝑦)}))
2923, 27, 28syl2anc 584 . . . . . . . . . 10 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝐹 ∘ (𝑋 × {𝑦})) = (𝑋 × {(𝐹𝑦)}))
3021, 26, 293eqtr4d 2774 . . . . . . . . 9 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝐹 ∘ (𝑋 × {𝑥})) = (𝐹 ∘ (𝑋 × {𝑦})))
315ad2antrr 726 . . . . . . . . . 10 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → 𝑈𝑉)
329ad2antrr 726 . . . . . . . . . 10 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → 𝑋𝑈)
3312ad2antrr 726 . . . . . . . . . 10 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → 𝑌𝑈)
34 fconst6g 6717 . . . . . . . . . . 11 (𝑥𝑋 → (𝑋 × {𝑥}):𝑋𝑋)
3524, 34syl 17 . . . . . . . . . 10 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝑋 × {𝑥}):𝑋𝑋)
366, 31, 3, 32, 32, 33, 35, 22setcco 18008 . . . . . . . . 9 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝐹(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)(𝑋 × {𝑥})) = (𝐹 ∘ (𝑋 × {𝑥})))
37 fconst6g 6717 . . . . . . . . . . 11 (𝑦𝑋 → (𝑋 × {𝑦}):𝑋𝑋)
3827, 37syl 17 . . . . . . . . . 10 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝑋 × {𝑦}):𝑋𝑋)
396, 31, 3, 32, 32, 33, 38, 22setcco 18008 . . . . . . . . 9 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝐹(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)(𝑋 × {𝑦})) = (𝐹 ∘ (𝑋 × {𝑦})))
4030, 36, 393eqtr4d 2774 . . . . . . . 8 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝐹(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)(𝑋 × {𝑥})) = (𝐹(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)(𝑋 × {𝑦})))
418ad2antrr 726 . . . . . . . . 9 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → 𝐶 ∈ Cat)
4211ad2antrr 726 . . . . . . . . 9 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → 𝑋 ∈ (Base‘𝐶))
4313ad2antrr 726 . . . . . . . . 9 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → 𝑌 ∈ (Base‘𝐶))
44 simplr 768 . . . . . . . . 9 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → 𝐹 ∈ (𝑋𝑀𝑌))
456, 31, 2, 32, 32elsetchom 18006 . . . . . . . . . 10 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → ((𝑋 × {𝑥}) ∈ (𝑋(Hom ‘𝐶)𝑋) ↔ (𝑋 × {𝑥}):𝑋𝑋))
4635, 45mpbird 257 . . . . . . . . 9 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝑋 × {𝑥}) ∈ (𝑋(Hom ‘𝐶)𝑋))
476, 31, 2, 32, 32elsetchom 18006 . . . . . . . . . 10 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → ((𝑋 × {𝑦}) ∈ (𝑋(Hom ‘𝐶)𝑋) ↔ (𝑋 × {𝑦}):𝑋𝑋))
4838, 47mpbird 257 . . . . . . . . 9 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝑋 × {𝑦}) ∈ (𝑋(Hom ‘𝐶)𝑋))
491, 2, 3, 4, 41, 42, 43, 42, 44, 46, 48moni 17661 . . . . . . . 8 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → ((𝐹(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)(𝑋 × {𝑥})) = (𝐹(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)(𝑋 × {𝑦})) ↔ (𝑋 × {𝑥}) = (𝑋 × {𝑦})))
5040, 49mpbid 232 . . . . . . 7 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝑋 × {𝑥}) = (𝑋 × {𝑦}))
5150fveq1d 6828 . . . . . 6 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → ((𝑋 × {𝑥})‘𝑥) = ((𝑋 × {𝑦})‘𝑥))
52 vex 3442 . . . . . . . 8 𝑥 ∈ V
5352fvconst2 7144 . . . . . . 7 (𝑥𝑋 → ((𝑋 × {𝑥})‘𝑥) = 𝑥)
5424, 53syl 17 . . . . . 6 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → ((𝑋 × {𝑥})‘𝑥) = 𝑥)
55 vex 3442 . . . . . . . 8 𝑦 ∈ V
5655fvconst2 7144 . . . . . . 7 (𝑥𝑋 → ((𝑋 × {𝑦})‘𝑥) = 𝑦)
5724, 56syl 17 . . . . . 6 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → ((𝑋 × {𝑦})‘𝑥) = 𝑦)
5851, 54, 573eqtr3d 2772 . . . . 5 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → 𝑥 = 𝑦)
5958expr 456 . . . 4 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ (𝑥𝑋𝑦𝑋)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
6059ralrimivva 3172 . . 3 ((𝜑𝐹 ∈ (𝑋𝑀𝑌)) → ∀𝑥𝑋𝑦𝑋 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
61 dff13 7195 . . 3 (𝐹:𝑋1-1𝑌 ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥𝑋𝑦𝑋 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
6218, 60, 61sylanbrc 583 . 2 ((𝜑𝐹 ∈ (𝑋𝑀𝑌)) → 𝐹:𝑋1-1𝑌)
63 f1f 6724 . . . 4 (𝐹:𝑋1-1𝑌𝐹:𝑋𝑌)
6416biimpar 477 . . . 4 ((𝜑𝐹:𝑋𝑌) → 𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌))
6563, 64sylan2 593 . . 3 ((𝜑𝐹:𝑋1-1𝑌) → 𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌))
6610adantr 480 . . . . . 6 ((𝜑𝐹:𝑋1-1𝑌) → 𝑈 = (Base‘𝐶))
6766eleq2d 2814 . . . . 5 ((𝜑𝐹:𝑋1-1𝑌) → (𝑧𝑈𝑧 ∈ (Base‘𝐶)))
685ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝐹:𝑋1-1𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → 𝑈𝑉)
69 simprl 770 . . . . . . . . . . 11 (((𝜑𝐹:𝑋1-1𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → 𝑧𝑈)
709ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝐹:𝑋1-1𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → 𝑋𝑈)
7112ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝐹:𝑋1-1𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → 𝑌𝑈)
72 simprrl 780 . . . . . . . . . . . 12 (((𝜑𝐹:𝑋1-1𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋))
736, 68, 2, 69, 70elsetchom 18006 . . . . . . . . . . . 12 (((𝜑𝐹:𝑋1-1𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ↔ 𝑔:𝑧𝑋))
7472, 73mpbid 232 . . . . . . . . . . 11 (((𝜑𝐹:𝑋1-1𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → 𝑔:𝑧𝑋)
7563ad2antlr 727 . . . . . . . . . . 11 (((𝜑𝐹:𝑋1-1𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → 𝐹:𝑋𝑌)
766, 68, 3, 69, 70, 71, 74, 75setcco 18008 . . . . . . . . . 10 (((𝜑𝐹:𝑋1-1𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → (𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = (𝐹𝑔))
77 simprrr 781 . . . . . . . . . . . 12 (((𝜑𝐹:𝑋1-1𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → ∈ (𝑧(Hom ‘𝐶)𝑋))
786, 68, 2, 69, 70elsetchom 18006 . . . . . . . . . . . 12 (((𝜑𝐹:𝑋1-1𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → ( ∈ (𝑧(Hom ‘𝐶)𝑋) ↔ :𝑧𝑋))
7977, 78mpbid 232 . . . . . . . . . . 11 (((𝜑𝐹:𝑋1-1𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → :𝑧𝑋)
806, 68, 3, 69, 70, 71, 79, 75setcco 18008 . . . . . . . . . 10 (((𝜑𝐹:𝑋1-1𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → (𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)) = (𝐹))
8176, 80eqeq12d 2745 . . . . . . . . 9 (((𝜑𝐹:𝑋1-1𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → ((𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)) ↔ (𝐹𝑔) = (𝐹)))
82 simplr 768 . . . . . . . . . . 11 (((𝜑𝐹:𝑋1-1𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → 𝐹:𝑋1-1𝑌)
83 cocan1 7232 . . . . . . . . . . 11 ((𝐹:𝑋1-1𝑌𝑔:𝑧𝑋:𝑧𝑋) → ((𝐹𝑔) = (𝐹) ↔ 𝑔 = ))
8482, 74, 79, 83syl3anc 1373 . . . . . . . . . 10 (((𝜑𝐹:𝑋1-1𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → ((𝐹𝑔) = (𝐹) ↔ 𝑔 = ))
8584biimpd 229 . . . . . . . . 9 (((𝜑𝐹:𝑋1-1𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → ((𝐹𝑔) = (𝐹) → 𝑔 = ))
8681, 85sylbid 240 . . . . . . . 8 (((𝜑𝐹:𝑋1-1𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → ((𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)) → 𝑔 = ))
8786anassrs 467 . . . . . . 7 ((((𝜑𝐹:𝑋1-1𝑌) ∧ 𝑧𝑈) ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋))) → ((𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)) → 𝑔 = ))
8887ralrimivva 3172 . . . . . 6 (((𝜑𝐹:𝑋1-1𝑌) ∧ 𝑧𝑈) → ∀𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋)∀ ∈ (𝑧(Hom ‘𝐶)𝑋)((𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)) → 𝑔 = ))
8988ex 412 . . . . 5 ((𝜑𝐹:𝑋1-1𝑌) → (𝑧𝑈 → ∀𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋)∀ ∈ (𝑧(Hom ‘𝐶)𝑋)((𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)) → 𝑔 = )))
9067, 89sylbird 260 . . . 4 ((𝜑𝐹:𝑋1-1𝑌) → (𝑧 ∈ (Base‘𝐶) → ∀𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋)∀ ∈ (𝑧(Hom ‘𝐶)𝑋)((𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)) → 𝑔 = )))
9190ralrimiv 3120 . . 3 ((𝜑𝐹:𝑋1-1𝑌) → ∀𝑧 ∈ (Base‘𝐶)∀𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋)∀ ∈ (𝑧(Hom ‘𝐶)𝑋)((𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)) → 𝑔 = ))
921, 2, 3, 4, 8, 11, 13ismon2 17659 . . . 4 (𝜑 → (𝐹 ∈ (𝑋𝑀𝑌) ↔ (𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ ∀𝑧 ∈ (Base‘𝐶)∀𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋)∀ ∈ (𝑧(Hom ‘𝐶)𝑋)((𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)) → 𝑔 = ))))
9392adantr 480 . . 3 ((𝜑𝐹:𝑋1-1𝑌) → (𝐹 ∈ (𝑋𝑀𝑌) ↔ (𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ ∀𝑧 ∈ (Base‘𝐶)∀𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋)∀ ∈ (𝑧(Hom ‘𝐶)𝑋)((𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)) → 𝑔 = ))))
9465, 91, 93mpbir2and 713 . 2 ((𝜑𝐹:𝑋1-1𝑌) → 𝐹 ∈ (𝑋𝑀𝑌))
9562, 94impbida 800 1 (𝜑 → (𝐹 ∈ (𝑋𝑀𝑌) ↔ 𝐹:𝑋1-1𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  {csn 4579  cop 4585   × cxp 5621  ccom 5627   Fn wfn 6481  wf 6482  1-1wf1 6483  cfv 6486  (class class class)co 7353  Basecbs 17138  Hom chom 17190  compcco 17191  Catccat 17588  Monocmon 17653  SetCatcsetc 18000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-fz 13429  df-struct 17076  df-slot 17111  df-ndx 17123  df-base 17139  df-hom 17203  df-cco 17204  df-cat 17592  df-cid 17593  df-mon 17655  df-setc 18001
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator