MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setcmon Structured version   Visualization version   GIF version

Theorem setcmon 17718
Description: A monomorphism of sets is an injection. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
setcmon.c 𝐶 = (SetCat‘𝑈)
setcmon.u (𝜑𝑈𝑉)
setcmon.x (𝜑𝑋𝑈)
setcmon.y (𝜑𝑌𝑈)
setcmon.h 𝑀 = (Mono‘𝐶)
Assertion
Ref Expression
setcmon (𝜑 → (𝐹 ∈ (𝑋𝑀𝑌) ↔ 𝐹:𝑋1-1𝑌))

Proof of Theorem setcmon
Dummy variables 𝑥 𝑔 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
2 eqid 2738 . . . . . 6 (Hom ‘𝐶) = (Hom ‘𝐶)
3 eqid 2738 . . . . . 6 (comp‘𝐶) = (comp‘𝐶)
4 setcmon.h . . . . . 6 𝑀 = (Mono‘𝐶)
5 setcmon.u . . . . . . 7 (𝜑𝑈𝑉)
6 setcmon.c . . . . . . . 8 𝐶 = (SetCat‘𝑈)
76setccat 17716 . . . . . . 7 (𝑈𝑉𝐶 ∈ Cat)
85, 7syl 17 . . . . . 6 (𝜑𝐶 ∈ Cat)
9 setcmon.x . . . . . . 7 (𝜑𝑋𝑈)
106, 5setcbas 17709 . . . . . . 7 (𝜑𝑈 = (Base‘𝐶))
119, 10eleqtrd 2841 . . . . . 6 (𝜑𝑋 ∈ (Base‘𝐶))
12 setcmon.y . . . . . . 7 (𝜑𝑌𝑈)
1312, 10eleqtrd 2841 . . . . . 6 (𝜑𝑌 ∈ (Base‘𝐶))
141, 2, 3, 4, 8, 11, 13monhom 17364 . . . . 5 (𝜑 → (𝑋𝑀𝑌) ⊆ (𝑋(Hom ‘𝐶)𝑌))
1514sselda 3917 . . . 4 ((𝜑𝐹 ∈ (𝑋𝑀𝑌)) → 𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌))
166, 5, 2, 9, 12elsetchom 17712 . . . . 5 (𝜑 → (𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ↔ 𝐹:𝑋𝑌))
1716biimpa 476 . . . 4 ((𝜑𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌)) → 𝐹:𝑋𝑌)
1815, 17syldan 590 . . 3 ((𝜑𝐹 ∈ (𝑋𝑀𝑌)) → 𝐹:𝑋𝑌)
19 simprr 769 . . . . . . . . . . . 12 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝐹𝑥) = (𝐹𝑦))
2019sneqd 4570 . . . . . . . . . . 11 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → {(𝐹𝑥)} = {(𝐹𝑦)})
2120xpeq2d 5610 . . . . . . . . . 10 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝑋 × {(𝐹𝑥)}) = (𝑋 × {(𝐹𝑦)}))
2218adantr 480 . . . . . . . . . . . 12 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → 𝐹:𝑋𝑌)
2322ffnd 6585 . . . . . . . . . . 11 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → 𝐹 Fn 𝑋)
24 simprll 775 . . . . . . . . . . 11 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → 𝑥𝑋)
25 fcoconst 6988 . . . . . . . . . . 11 ((𝐹 Fn 𝑋𝑥𝑋) → (𝐹 ∘ (𝑋 × {𝑥})) = (𝑋 × {(𝐹𝑥)}))
2623, 24, 25syl2anc 583 . . . . . . . . . 10 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝐹 ∘ (𝑋 × {𝑥})) = (𝑋 × {(𝐹𝑥)}))
27 simprlr 776 . . . . . . . . . . 11 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → 𝑦𝑋)
28 fcoconst 6988 . . . . . . . . . . 11 ((𝐹 Fn 𝑋𝑦𝑋) → (𝐹 ∘ (𝑋 × {𝑦})) = (𝑋 × {(𝐹𝑦)}))
2923, 27, 28syl2anc 583 . . . . . . . . . 10 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝐹 ∘ (𝑋 × {𝑦})) = (𝑋 × {(𝐹𝑦)}))
3021, 26, 293eqtr4d 2788 . . . . . . . . 9 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝐹 ∘ (𝑋 × {𝑥})) = (𝐹 ∘ (𝑋 × {𝑦})))
315ad2antrr 722 . . . . . . . . . 10 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → 𝑈𝑉)
329ad2antrr 722 . . . . . . . . . 10 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → 𝑋𝑈)
3312ad2antrr 722 . . . . . . . . . 10 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → 𝑌𝑈)
34 fconst6g 6647 . . . . . . . . . . 11 (𝑥𝑋 → (𝑋 × {𝑥}):𝑋𝑋)
3524, 34syl 17 . . . . . . . . . 10 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝑋 × {𝑥}):𝑋𝑋)
366, 31, 3, 32, 32, 33, 35, 22setcco 17714 . . . . . . . . 9 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝐹(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)(𝑋 × {𝑥})) = (𝐹 ∘ (𝑋 × {𝑥})))
37 fconst6g 6647 . . . . . . . . . . 11 (𝑦𝑋 → (𝑋 × {𝑦}):𝑋𝑋)
3827, 37syl 17 . . . . . . . . . 10 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝑋 × {𝑦}):𝑋𝑋)
396, 31, 3, 32, 32, 33, 38, 22setcco 17714 . . . . . . . . 9 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝐹(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)(𝑋 × {𝑦})) = (𝐹 ∘ (𝑋 × {𝑦})))
4030, 36, 393eqtr4d 2788 . . . . . . . 8 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝐹(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)(𝑋 × {𝑥})) = (𝐹(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)(𝑋 × {𝑦})))
418ad2antrr 722 . . . . . . . . 9 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → 𝐶 ∈ Cat)
4211ad2antrr 722 . . . . . . . . 9 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → 𝑋 ∈ (Base‘𝐶))
4313ad2antrr 722 . . . . . . . . 9 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → 𝑌 ∈ (Base‘𝐶))
44 simplr 765 . . . . . . . . 9 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → 𝐹 ∈ (𝑋𝑀𝑌))
456, 31, 2, 32, 32elsetchom 17712 . . . . . . . . . 10 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → ((𝑋 × {𝑥}) ∈ (𝑋(Hom ‘𝐶)𝑋) ↔ (𝑋 × {𝑥}):𝑋𝑋))
4635, 45mpbird 256 . . . . . . . . 9 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝑋 × {𝑥}) ∈ (𝑋(Hom ‘𝐶)𝑋))
476, 31, 2, 32, 32elsetchom 17712 . . . . . . . . . 10 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → ((𝑋 × {𝑦}) ∈ (𝑋(Hom ‘𝐶)𝑋) ↔ (𝑋 × {𝑦}):𝑋𝑋))
4838, 47mpbird 256 . . . . . . . . 9 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝑋 × {𝑦}) ∈ (𝑋(Hom ‘𝐶)𝑋))
491, 2, 3, 4, 41, 42, 43, 42, 44, 46, 48moni 17365 . . . . . . . 8 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → ((𝐹(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)(𝑋 × {𝑥})) = (𝐹(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)(𝑋 × {𝑦})) ↔ (𝑋 × {𝑥}) = (𝑋 × {𝑦})))
5040, 49mpbid 231 . . . . . . 7 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝑋 × {𝑥}) = (𝑋 × {𝑦}))
5150fveq1d 6758 . . . . . 6 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → ((𝑋 × {𝑥})‘𝑥) = ((𝑋 × {𝑦})‘𝑥))
52 vex 3426 . . . . . . . 8 𝑥 ∈ V
5352fvconst2 7061 . . . . . . 7 (𝑥𝑋 → ((𝑋 × {𝑥})‘𝑥) = 𝑥)
5424, 53syl 17 . . . . . 6 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → ((𝑋 × {𝑥})‘𝑥) = 𝑥)
55 vex 3426 . . . . . . . 8 𝑦 ∈ V
5655fvconst2 7061 . . . . . . 7 (𝑥𝑋 → ((𝑋 × {𝑦})‘𝑥) = 𝑦)
5724, 56syl 17 . . . . . 6 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → ((𝑋 × {𝑦})‘𝑥) = 𝑦)
5851, 54, 573eqtr3d 2786 . . . . 5 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → 𝑥 = 𝑦)
5958expr 456 . . . 4 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ (𝑥𝑋𝑦𝑋)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
6059ralrimivva 3114 . . 3 ((𝜑𝐹 ∈ (𝑋𝑀𝑌)) → ∀𝑥𝑋𝑦𝑋 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
61 dff13 7109 . . 3 (𝐹:𝑋1-1𝑌 ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥𝑋𝑦𝑋 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
6218, 60, 61sylanbrc 582 . 2 ((𝜑𝐹 ∈ (𝑋𝑀𝑌)) → 𝐹:𝑋1-1𝑌)
63 f1f 6654 . . . 4 (𝐹:𝑋1-1𝑌𝐹:𝑋𝑌)
6416biimpar 477 . . . 4 ((𝜑𝐹:𝑋𝑌) → 𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌))
6563, 64sylan2 592 . . 3 ((𝜑𝐹:𝑋1-1𝑌) → 𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌))
6610adantr 480 . . . . . 6 ((𝜑𝐹:𝑋1-1𝑌) → 𝑈 = (Base‘𝐶))
6766eleq2d 2824 . . . . 5 ((𝜑𝐹:𝑋1-1𝑌) → (𝑧𝑈𝑧 ∈ (Base‘𝐶)))
685ad2antrr 722 . . . . . . . . . . 11 (((𝜑𝐹:𝑋1-1𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → 𝑈𝑉)
69 simprl 767 . . . . . . . . . . 11 (((𝜑𝐹:𝑋1-1𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → 𝑧𝑈)
709ad2antrr 722 . . . . . . . . . . 11 (((𝜑𝐹:𝑋1-1𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → 𝑋𝑈)
7112ad2antrr 722 . . . . . . . . . . 11 (((𝜑𝐹:𝑋1-1𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → 𝑌𝑈)
72 simprrl 777 . . . . . . . . . . . 12 (((𝜑𝐹:𝑋1-1𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋))
736, 68, 2, 69, 70elsetchom 17712 . . . . . . . . . . . 12 (((𝜑𝐹:𝑋1-1𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ↔ 𝑔:𝑧𝑋))
7472, 73mpbid 231 . . . . . . . . . . 11 (((𝜑𝐹:𝑋1-1𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → 𝑔:𝑧𝑋)
7563ad2antlr 723 . . . . . . . . . . 11 (((𝜑𝐹:𝑋1-1𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → 𝐹:𝑋𝑌)
766, 68, 3, 69, 70, 71, 74, 75setcco 17714 . . . . . . . . . 10 (((𝜑𝐹:𝑋1-1𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → (𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = (𝐹𝑔))
77 simprrr 778 . . . . . . . . . . . 12 (((𝜑𝐹:𝑋1-1𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → ∈ (𝑧(Hom ‘𝐶)𝑋))
786, 68, 2, 69, 70elsetchom 17712 . . . . . . . . . . . 12 (((𝜑𝐹:𝑋1-1𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → ( ∈ (𝑧(Hom ‘𝐶)𝑋) ↔ :𝑧𝑋))
7977, 78mpbid 231 . . . . . . . . . . 11 (((𝜑𝐹:𝑋1-1𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → :𝑧𝑋)
806, 68, 3, 69, 70, 71, 79, 75setcco 17714 . . . . . . . . . 10 (((𝜑𝐹:𝑋1-1𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → (𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)) = (𝐹))
8176, 80eqeq12d 2754 . . . . . . . . 9 (((𝜑𝐹:𝑋1-1𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → ((𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)) ↔ (𝐹𝑔) = (𝐹)))
82 simplr 765 . . . . . . . . . . 11 (((𝜑𝐹:𝑋1-1𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → 𝐹:𝑋1-1𝑌)
83 cocan1 7143 . . . . . . . . . . 11 ((𝐹:𝑋1-1𝑌𝑔:𝑧𝑋:𝑧𝑋) → ((𝐹𝑔) = (𝐹) ↔ 𝑔 = ))
8482, 74, 79, 83syl3anc 1369 . . . . . . . . . 10 (((𝜑𝐹:𝑋1-1𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → ((𝐹𝑔) = (𝐹) ↔ 𝑔 = ))
8584biimpd 228 . . . . . . . . 9 (((𝜑𝐹:𝑋1-1𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → ((𝐹𝑔) = (𝐹) → 𝑔 = ))
8681, 85sylbid 239 . . . . . . . 8 (((𝜑𝐹:𝑋1-1𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → ((𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)) → 𝑔 = ))
8786anassrs 467 . . . . . . 7 ((((𝜑𝐹:𝑋1-1𝑌) ∧ 𝑧𝑈) ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋))) → ((𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)) → 𝑔 = ))
8887ralrimivva 3114 . . . . . 6 (((𝜑𝐹:𝑋1-1𝑌) ∧ 𝑧𝑈) → ∀𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋)∀ ∈ (𝑧(Hom ‘𝐶)𝑋)((𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)) → 𝑔 = ))
8988ex 412 . . . . 5 ((𝜑𝐹:𝑋1-1𝑌) → (𝑧𝑈 → ∀𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋)∀ ∈ (𝑧(Hom ‘𝐶)𝑋)((𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)) → 𝑔 = )))
9067, 89sylbird 259 . . . 4 ((𝜑𝐹:𝑋1-1𝑌) → (𝑧 ∈ (Base‘𝐶) → ∀𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋)∀ ∈ (𝑧(Hom ‘𝐶)𝑋)((𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)) → 𝑔 = )))
9190ralrimiv 3106 . . 3 ((𝜑𝐹:𝑋1-1𝑌) → ∀𝑧 ∈ (Base‘𝐶)∀𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋)∀ ∈ (𝑧(Hom ‘𝐶)𝑋)((𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)) → 𝑔 = ))
921, 2, 3, 4, 8, 11, 13ismon2 17363 . . . 4 (𝜑 → (𝐹 ∈ (𝑋𝑀𝑌) ↔ (𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ ∀𝑧 ∈ (Base‘𝐶)∀𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋)∀ ∈ (𝑧(Hom ‘𝐶)𝑋)((𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)) → 𝑔 = ))))
9392adantr 480 . . 3 ((𝜑𝐹:𝑋1-1𝑌) → (𝐹 ∈ (𝑋𝑀𝑌) ↔ (𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ ∀𝑧 ∈ (Base‘𝐶)∀𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋)∀ ∈ (𝑧(Hom ‘𝐶)𝑋)((𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)) → 𝑔 = ))))
9465, 91, 93mpbir2and 709 . 2 ((𝜑𝐹:𝑋1-1𝑌) → 𝐹 ∈ (𝑋𝑀𝑌))
9562, 94impbida 797 1 (𝜑 → (𝐹 ∈ (𝑋𝑀𝑌) ↔ 𝐹:𝑋1-1𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  {csn 4558  cop 4564   × cxp 5578  ccom 5584   Fn wfn 6413  wf 6414  1-1wf1 6415  cfv 6418  (class class class)co 7255  Basecbs 16840  Hom chom 16899  compcco 16900  Catccat 17290  Monocmon 17357  SetCatcsetc 17706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-struct 16776  df-slot 16811  df-ndx 16823  df-base 16841  df-hom 16912  df-cco 16913  df-cat 17294  df-cid 17295  df-mon 17359  df-setc 17707
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator