MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setcmon Structured version   Visualization version   GIF version

Theorem setcmon 17413
Description: A monomorphism of sets is an injection. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
setcmon.c 𝐶 = (SetCat‘𝑈)
setcmon.u (𝜑𝑈𝑉)
setcmon.x (𝜑𝑋𝑈)
setcmon.y (𝜑𝑌𝑈)
setcmon.h 𝑀 = (Mono‘𝐶)
Assertion
Ref Expression
setcmon (𝜑 → (𝐹 ∈ (𝑋𝑀𝑌) ↔ 𝐹:𝑋1-1𝑌))

Proof of Theorem setcmon
Dummy variables 𝑥 𝑔 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2758 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
2 eqid 2758 . . . . . 6 (Hom ‘𝐶) = (Hom ‘𝐶)
3 eqid 2758 . . . . . 6 (comp‘𝐶) = (comp‘𝐶)
4 setcmon.h . . . . . 6 𝑀 = (Mono‘𝐶)
5 setcmon.u . . . . . . 7 (𝜑𝑈𝑉)
6 setcmon.c . . . . . . . 8 𝐶 = (SetCat‘𝑈)
76setccat 17411 . . . . . . 7 (𝑈𝑉𝐶 ∈ Cat)
85, 7syl 17 . . . . . 6 (𝜑𝐶 ∈ Cat)
9 setcmon.x . . . . . . 7 (𝜑𝑋𝑈)
106, 5setcbas 17404 . . . . . . 7 (𝜑𝑈 = (Base‘𝐶))
119, 10eleqtrd 2854 . . . . . 6 (𝜑𝑋 ∈ (Base‘𝐶))
12 setcmon.y . . . . . . 7 (𝜑𝑌𝑈)
1312, 10eleqtrd 2854 . . . . . 6 (𝜑𝑌 ∈ (Base‘𝐶))
141, 2, 3, 4, 8, 11, 13monhom 17064 . . . . 5 (𝜑 → (𝑋𝑀𝑌) ⊆ (𝑋(Hom ‘𝐶)𝑌))
1514sselda 3892 . . . 4 ((𝜑𝐹 ∈ (𝑋𝑀𝑌)) → 𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌))
166, 5, 2, 9, 12elsetchom 17407 . . . . 5 (𝜑 → (𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ↔ 𝐹:𝑋𝑌))
1716biimpa 480 . . . 4 ((𝜑𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌)) → 𝐹:𝑋𝑌)
1815, 17syldan 594 . . 3 ((𝜑𝐹 ∈ (𝑋𝑀𝑌)) → 𝐹:𝑋𝑌)
19 simprr 772 . . . . . . . . . . . 12 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝐹𝑥) = (𝐹𝑦))
2019sneqd 4534 . . . . . . . . . . 11 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → {(𝐹𝑥)} = {(𝐹𝑦)})
2120xpeq2d 5554 . . . . . . . . . 10 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝑋 × {(𝐹𝑥)}) = (𝑋 × {(𝐹𝑦)}))
2218adantr 484 . . . . . . . . . . . 12 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → 𝐹:𝑋𝑌)
2322ffnd 6499 . . . . . . . . . . 11 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → 𝐹 Fn 𝑋)
24 simprll 778 . . . . . . . . . . 11 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → 𝑥𝑋)
25 fcoconst 6887 . . . . . . . . . . 11 ((𝐹 Fn 𝑋𝑥𝑋) → (𝐹 ∘ (𝑋 × {𝑥})) = (𝑋 × {(𝐹𝑥)}))
2623, 24, 25syl2anc 587 . . . . . . . . . 10 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝐹 ∘ (𝑋 × {𝑥})) = (𝑋 × {(𝐹𝑥)}))
27 simprlr 779 . . . . . . . . . . 11 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → 𝑦𝑋)
28 fcoconst 6887 . . . . . . . . . . 11 ((𝐹 Fn 𝑋𝑦𝑋) → (𝐹 ∘ (𝑋 × {𝑦})) = (𝑋 × {(𝐹𝑦)}))
2923, 27, 28syl2anc 587 . . . . . . . . . 10 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝐹 ∘ (𝑋 × {𝑦})) = (𝑋 × {(𝐹𝑦)}))
3021, 26, 293eqtr4d 2803 . . . . . . . . 9 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝐹 ∘ (𝑋 × {𝑥})) = (𝐹 ∘ (𝑋 × {𝑦})))
315ad2antrr 725 . . . . . . . . . 10 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → 𝑈𝑉)
329ad2antrr 725 . . . . . . . . . 10 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → 𝑋𝑈)
3312ad2antrr 725 . . . . . . . . . 10 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → 𝑌𝑈)
34 fconst6g 6553 . . . . . . . . . . 11 (𝑥𝑋 → (𝑋 × {𝑥}):𝑋𝑋)
3524, 34syl 17 . . . . . . . . . 10 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝑋 × {𝑥}):𝑋𝑋)
366, 31, 3, 32, 32, 33, 35, 22setcco 17409 . . . . . . . . 9 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝐹(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)(𝑋 × {𝑥})) = (𝐹 ∘ (𝑋 × {𝑥})))
37 fconst6g 6553 . . . . . . . . . . 11 (𝑦𝑋 → (𝑋 × {𝑦}):𝑋𝑋)
3827, 37syl 17 . . . . . . . . . 10 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝑋 × {𝑦}):𝑋𝑋)
396, 31, 3, 32, 32, 33, 38, 22setcco 17409 . . . . . . . . 9 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝐹(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)(𝑋 × {𝑦})) = (𝐹 ∘ (𝑋 × {𝑦})))
4030, 36, 393eqtr4d 2803 . . . . . . . 8 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝐹(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)(𝑋 × {𝑥})) = (𝐹(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)(𝑋 × {𝑦})))
418ad2antrr 725 . . . . . . . . 9 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → 𝐶 ∈ Cat)
4211ad2antrr 725 . . . . . . . . 9 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → 𝑋 ∈ (Base‘𝐶))
4313ad2antrr 725 . . . . . . . . 9 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → 𝑌 ∈ (Base‘𝐶))
44 simplr 768 . . . . . . . . 9 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → 𝐹 ∈ (𝑋𝑀𝑌))
456, 31, 2, 32, 32elsetchom 17407 . . . . . . . . . 10 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → ((𝑋 × {𝑥}) ∈ (𝑋(Hom ‘𝐶)𝑋) ↔ (𝑋 × {𝑥}):𝑋𝑋))
4635, 45mpbird 260 . . . . . . . . 9 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝑋 × {𝑥}) ∈ (𝑋(Hom ‘𝐶)𝑋))
476, 31, 2, 32, 32elsetchom 17407 . . . . . . . . . 10 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → ((𝑋 × {𝑦}) ∈ (𝑋(Hom ‘𝐶)𝑋) ↔ (𝑋 × {𝑦}):𝑋𝑋))
4838, 47mpbird 260 . . . . . . . . 9 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝑋 × {𝑦}) ∈ (𝑋(Hom ‘𝐶)𝑋))
491, 2, 3, 4, 41, 42, 43, 42, 44, 46, 48moni 17065 . . . . . . . 8 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → ((𝐹(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)(𝑋 × {𝑥})) = (𝐹(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)(𝑋 × {𝑦})) ↔ (𝑋 × {𝑥}) = (𝑋 × {𝑦})))
5040, 49mpbid 235 . . . . . . 7 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝑋 × {𝑥}) = (𝑋 × {𝑦}))
5150fveq1d 6660 . . . . . 6 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → ((𝑋 × {𝑥})‘𝑥) = ((𝑋 × {𝑦})‘𝑥))
52 vex 3413 . . . . . . . 8 𝑥 ∈ V
5352fvconst2 6957 . . . . . . 7 (𝑥𝑋 → ((𝑋 × {𝑥})‘𝑥) = 𝑥)
5424, 53syl 17 . . . . . 6 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → ((𝑋 × {𝑥})‘𝑥) = 𝑥)
55 vex 3413 . . . . . . . 8 𝑦 ∈ V
5655fvconst2 6957 . . . . . . 7 (𝑥𝑋 → ((𝑋 × {𝑦})‘𝑥) = 𝑦)
5724, 56syl 17 . . . . . 6 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → ((𝑋 × {𝑦})‘𝑥) = 𝑦)
5851, 54, 573eqtr3d 2801 . . . . 5 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → 𝑥 = 𝑦)
5958expr 460 . . . 4 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ (𝑥𝑋𝑦𝑋)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
6059ralrimivva 3120 . . 3 ((𝜑𝐹 ∈ (𝑋𝑀𝑌)) → ∀𝑥𝑋𝑦𝑋 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
61 dff13 7005 . . 3 (𝐹:𝑋1-1𝑌 ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥𝑋𝑦𝑋 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
6218, 60, 61sylanbrc 586 . 2 ((𝜑𝐹 ∈ (𝑋𝑀𝑌)) → 𝐹:𝑋1-1𝑌)
63 f1f 6560 . . . 4 (𝐹:𝑋1-1𝑌𝐹:𝑋𝑌)
6416biimpar 481 . . . 4 ((𝜑𝐹:𝑋𝑌) → 𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌))
6563, 64sylan2 595 . . 3 ((𝜑𝐹:𝑋1-1𝑌) → 𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌))
6610adantr 484 . . . . . 6 ((𝜑𝐹:𝑋1-1𝑌) → 𝑈 = (Base‘𝐶))
6766eleq2d 2837 . . . . 5 ((𝜑𝐹:𝑋1-1𝑌) → (𝑧𝑈𝑧 ∈ (Base‘𝐶)))
685ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝐹:𝑋1-1𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → 𝑈𝑉)
69 simprl 770 . . . . . . . . . . 11 (((𝜑𝐹:𝑋1-1𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → 𝑧𝑈)
709ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝐹:𝑋1-1𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → 𝑋𝑈)
7112ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝐹:𝑋1-1𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → 𝑌𝑈)
72 simprrl 780 . . . . . . . . . . . 12 (((𝜑𝐹:𝑋1-1𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋))
736, 68, 2, 69, 70elsetchom 17407 . . . . . . . . . . . 12 (((𝜑𝐹:𝑋1-1𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ↔ 𝑔:𝑧𝑋))
7472, 73mpbid 235 . . . . . . . . . . 11 (((𝜑𝐹:𝑋1-1𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → 𝑔:𝑧𝑋)
7563ad2antlr 726 . . . . . . . . . . 11 (((𝜑𝐹:𝑋1-1𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → 𝐹:𝑋𝑌)
766, 68, 3, 69, 70, 71, 74, 75setcco 17409 . . . . . . . . . 10 (((𝜑𝐹:𝑋1-1𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → (𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = (𝐹𝑔))
77 simprrr 781 . . . . . . . . . . . 12 (((𝜑𝐹:𝑋1-1𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → ∈ (𝑧(Hom ‘𝐶)𝑋))
786, 68, 2, 69, 70elsetchom 17407 . . . . . . . . . . . 12 (((𝜑𝐹:𝑋1-1𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → ( ∈ (𝑧(Hom ‘𝐶)𝑋) ↔ :𝑧𝑋))
7977, 78mpbid 235 . . . . . . . . . . 11 (((𝜑𝐹:𝑋1-1𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → :𝑧𝑋)
806, 68, 3, 69, 70, 71, 79, 75setcco 17409 . . . . . . . . . 10 (((𝜑𝐹:𝑋1-1𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → (𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)) = (𝐹))
8176, 80eqeq12d 2774 . . . . . . . . 9 (((𝜑𝐹:𝑋1-1𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → ((𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)) ↔ (𝐹𝑔) = (𝐹)))
82 simplr 768 . . . . . . . . . . 11 (((𝜑𝐹:𝑋1-1𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → 𝐹:𝑋1-1𝑌)
83 cocan1 7039 . . . . . . . . . . 11 ((𝐹:𝑋1-1𝑌𝑔:𝑧𝑋:𝑧𝑋) → ((𝐹𝑔) = (𝐹) ↔ 𝑔 = ))
8482, 74, 79, 83syl3anc 1368 . . . . . . . . . 10 (((𝜑𝐹:𝑋1-1𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → ((𝐹𝑔) = (𝐹) ↔ 𝑔 = ))
8584biimpd 232 . . . . . . . . 9 (((𝜑𝐹:𝑋1-1𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → ((𝐹𝑔) = (𝐹) → 𝑔 = ))
8681, 85sylbid 243 . . . . . . . 8 (((𝜑𝐹:𝑋1-1𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → ((𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)) → 𝑔 = ))
8786anassrs 471 . . . . . . 7 ((((𝜑𝐹:𝑋1-1𝑌) ∧ 𝑧𝑈) ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋))) → ((𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)) → 𝑔 = ))
8887ralrimivva 3120 . . . . . 6 (((𝜑𝐹:𝑋1-1𝑌) ∧ 𝑧𝑈) → ∀𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋)∀ ∈ (𝑧(Hom ‘𝐶)𝑋)((𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)) → 𝑔 = ))
8988ex 416 . . . . 5 ((𝜑𝐹:𝑋1-1𝑌) → (𝑧𝑈 → ∀𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋)∀ ∈ (𝑧(Hom ‘𝐶)𝑋)((𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)) → 𝑔 = )))
9067, 89sylbird 263 . . . 4 ((𝜑𝐹:𝑋1-1𝑌) → (𝑧 ∈ (Base‘𝐶) → ∀𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋)∀ ∈ (𝑧(Hom ‘𝐶)𝑋)((𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)) → 𝑔 = )))
9190ralrimiv 3112 . . 3 ((𝜑𝐹:𝑋1-1𝑌) → ∀𝑧 ∈ (Base‘𝐶)∀𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋)∀ ∈ (𝑧(Hom ‘𝐶)𝑋)((𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)) → 𝑔 = ))
921, 2, 3, 4, 8, 11, 13ismon2 17063 . . . 4 (𝜑 → (𝐹 ∈ (𝑋𝑀𝑌) ↔ (𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ ∀𝑧 ∈ (Base‘𝐶)∀𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋)∀ ∈ (𝑧(Hom ‘𝐶)𝑋)((𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)) → 𝑔 = ))))
9392adantr 484 . . 3 ((𝜑𝐹:𝑋1-1𝑌) → (𝐹 ∈ (𝑋𝑀𝑌) ↔ (𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ ∀𝑧 ∈ (Base‘𝐶)∀𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋)∀ ∈ (𝑧(Hom ‘𝐶)𝑋)((𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)) → 𝑔 = ))))
9465, 91, 93mpbir2and 712 . 2 ((𝜑𝐹:𝑋1-1𝑌) → 𝐹 ∈ (𝑋𝑀𝑌))
9562, 94impbida 800 1 (𝜑 → (𝐹 ∈ (𝑋𝑀𝑌) ↔ 𝐹:𝑋1-1𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wral 3070  {csn 4522  cop 4528   × cxp 5522  ccom 5528   Fn wfn 6330  wf 6331  1-1wf1 6332  cfv 6335  (class class class)co 7150  Basecbs 16541  Hom chom 16634  compcco 16635  Catccat 16993  Monocmon 17057  SetCatcsetc 17401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7580  df-1st 7693  df-2nd 7694  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-1o 8112  df-er 8299  df-map 8418  df-en 8528  df-dom 8529  df-sdom 8530  df-fin 8531  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-nn 11675  df-2 11737  df-3 11738  df-4 11739  df-5 11740  df-6 11741  df-7 11742  df-8 11743  df-9 11744  df-n0 11935  df-z 12021  df-dec 12138  df-uz 12283  df-fz 12940  df-struct 16543  df-ndx 16544  df-slot 16545  df-base 16547  df-hom 16647  df-cco 16648  df-cat 16997  df-cid 16998  df-mon 17059  df-setc 17402
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator