Step | Hyp | Ref
| Expression |
1 | | eqid 2732 |
. . . . . 6
β’
(BaseβπΆ) =
(BaseβπΆ) |
2 | | eqid 2732 |
. . . . . 6
β’ (Hom
βπΆ) = (Hom
βπΆ) |
3 | | eqid 2732 |
. . . . . 6
β’
(compβπΆ) =
(compβπΆ) |
4 | | setcmon.h |
. . . . . 6
β’ π = (MonoβπΆ) |
5 | | setcmon.u |
. . . . . . 7
β’ (π β π β π) |
6 | | setcmon.c |
. . . . . . . 8
β’ πΆ = (SetCatβπ) |
7 | 6 | setccat 18031 |
. . . . . . 7
β’ (π β π β πΆ β Cat) |
8 | 5, 7 | syl 17 |
. . . . . 6
β’ (π β πΆ β Cat) |
9 | | setcmon.x |
. . . . . . 7
β’ (π β π β π) |
10 | 6, 5 | setcbas 18024 |
. . . . . . 7
β’ (π β π = (BaseβπΆ)) |
11 | 9, 10 | eleqtrd 2835 |
. . . . . 6
β’ (π β π β (BaseβπΆ)) |
12 | | setcmon.y |
. . . . . . 7
β’ (π β π β π) |
13 | 12, 10 | eleqtrd 2835 |
. . . . . 6
β’ (π β π β (BaseβπΆ)) |
14 | 1, 2, 3, 4, 8, 11,
13 | monhom 17678 |
. . . . 5
β’ (π β (πππ) β (π(Hom βπΆ)π)) |
15 | 14 | sselda 3981 |
. . . 4
β’ ((π β§ πΉ β (πππ)) β πΉ β (π(Hom βπΆ)π)) |
16 | 6, 5, 2, 9, 12 | elsetchom 18027 |
. . . . 5
β’ (π β (πΉ β (π(Hom βπΆ)π) β πΉ:πβΆπ)) |
17 | 16 | biimpa 477 |
. . . 4
β’ ((π β§ πΉ β (π(Hom βπΆ)π)) β πΉ:πβΆπ) |
18 | 15, 17 | syldan 591 |
. . 3
β’ ((π β§ πΉ β (πππ)) β πΉ:πβΆπ) |
19 | | simprr 771 |
. . . . . . . . . . . 12
β’ (((π β§ πΉ β (πππ)) β§ ((π₯ β π β§ π¦ β π) β§ (πΉβπ₯) = (πΉβπ¦))) β (πΉβπ₯) = (πΉβπ¦)) |
20 | 19 | sneqd 4639 |
. . . . . . . . . . 11
β’ (((π β§ πΉ β (πππ)) β§ ((π₯ β π β§ π¦ β π) β§ (πΉβπ₯) = (πΉβπ¦))) β {(πΉβπ₯)} = {(πΉβπ¦)}) |
21 | 20 | xpeq2d 5705 |
. . . . . . . . . 10
β’ (((π β§ πΉ β (πππ)) β§ ((π₯ β π β§ π¦ β π) β§ (πΉβπ₯) = (πΉβπ¦))) β (π Γ {(πΉβπ₯)}) = (π Γ {(πΉβπ¦)})) |
22 | 18 | adantr 481 |
. . . . . . . . . . . 12
β’ (((π β§ πΉ β (πππ)) β§ ((π₯ β π β§ π¦ β π) β§ (πΉβπ₯) = (πΉβπ¦))) β πΉ:πβΆπ) |
23 | 22 | ffnd 6715 |
. . . . . . . . . . 11
β’ (((π β§ πΉ β (πππ)) β§ ((π₯ β π β§ π¦ β π) β§ (πΉβπ₯) = (πΉβπ¦))) β πΉ Fn π) |
24 | | simprll 777 |
. . . . . . . . . . 11
β’ (((π β§ πΉ β (πππ)) β§ ((π₯ β π β§ π¦ β π) β§ (πΉβπ₯) = (πΉβπ¦))) β π₯ β π) |
25 | | fcoconst 7128 |
. . . . . . . . . . 11
β’ ((πΉ Fn π β§ π₯ β π) β (πΉ β (π Γ {π₯})) = (π Γ {(πΉβπ₯)})) |
26 | 23, 24, 25 | syl2anc 584 |
. . . . . . . . . 10
β’ (((π β§ πΉ β (πππ)) β§ ((π₯ β π β§ π¦ β π) β§ (πΉβπ₯) = (πΉβπ¦))) β (πΉ β (π Γ {π₯})) = (π Γ {(πΉβπ₯)})) |
27 | | simprlr 778 |
. . . . . . . . . . 11
β’ (((π β§ πΉ β (πππ)) β§ ((π₯ β π β§ π¦ β π) β§ (πΉβπ₯) = (πΉβπ¦))) β π¦ β π) |
28 | | fcoconst 7128 |
. . . . . . . . . . 11
β’ ((πΉ Fn π β§ π¦ β π) β (πΉ β (π Γ {π¦})) = (π Γ {(πΉβπ¦)})) |
29 | 23, 27, 28 | syl2anc 584 |
. . . . . . . . . 10
β’ (((π β§ πΉ β (πππ)) β§ ((π₯ β π β§ π¦ β π) β§ (πΉβπ₯) = (πΉβπ¦))) β (πΉ β (π Γ {π¦})) = (π Γ {(πΉβπ¦)})) |
30 | 21, 26, 29 | 3eqtr4d 2782 |
. . . . . . . . 9
β’ (((π β§ πΉ β (πππ)) β§ ((π₯ β π β§ π¦ β π) β§ (πΉβπ₯) = (πΉβπ¦))) β (πΉ β (π Γ {π₯})) = (πΉ β (π Γ {π¦}))) |
31 | 5 | ad2antrr 724 |
. . . . . . . . . 10
β’ (((π β§ πΉ β (πππ)) β§ ((π₯ β π β§ π¦ β π) β§ (πΉβπ₯) = (πΉβπ¦))) β π β π) |
32 | 9 | ad2antrr 724 |
. . . . . . . . . 10
β’ (((π β§ πΉ β (πππ)) β§ ((π₯ β π β§ π¦ β π) β§ (πΉβπ₯) = (πΉβπ¦))) β π β π) |
33 | 12 | ad2antrr 724 |
. . . . . . . . . 10
β’ (((π β§ πΉ β (πππ)) β§ ((π₯ β π β§ π¦ β π) β§ (πΉβπ₯) = (πΉβπ¦))) β π β π) |
34 | | fconst6g 6777 |
. . . . . . . . . . 11
β’ (π₯ β π β (π Γ {π₯}):πβΆπ) |
35 | 24, 34 | syl 17 |
. . . . . . . . . 10
β’ (((π β§ πΉ β (πππ)) β§ ((π₯ β π β§ π¦ β π) β§ (πΉβπ₯) = (πΉβπ¦))) β (π Γ {π₯}):πβΆπ) |
36 | 6, 31, 3, 32, 32, 33, 35, 22 | setcco 18029 |
. . . . . . . . 9
β’ (((π β§ πΉ β (πππ)) β§ ((π₯ β π β§ π¦ β π) β§ (πΉβπ₯) = (πΉβπ¦))) β (πΉ(β¨π, πβ©(compβπΆ)π)(π Γ {π₯})) = (πΉ β (π Γ {π₯}))) |
37 | | fconst6g 6777 |
. . . . . . . . . . 11
β’ (π¦ β π β (π Γ {π¦}):πβΆπ) |
38 | 27, 37 | syl 17 |
. . . . . . . . . 10
β’ (((π β§ πΉ β (πππ)) β§ ((π₯ β π β§ π¦ β π) β§ (πΉβπ₯) = (πΉβπ¦))) β (π Γ {π¦}):πβΆπ) |
39 | 6, 31, 3, 32, 32, 33, 38, 22 | setcco 18029 |
. . . . . . . . 9
β’ (((π β§ πΉ β (πππ)) β§ ((π₯ β π β§ π¦ β π) β§ (πΉβπ₯) = (πΉβπ¦))) β (πΉ(β¨π, πβ©(compβπΆ)π)(π Γ {π¦})) = (πΉ β (π Γ {π¦}))) |
40 | 30, 36, 39 | 3eqtr4d 2782 |
. . . . . . . 8
β’ (((π β§ πΉ β (πππ)) β§ ((π₯ β π β§ π¦ β π) β§ (πΉβπ₯) = (πΉβπ¦))) β (πΉ(β¨π, πβ©(compβπΆ)π)(π Γ {π₯})) = (πΉ(β¨π, πβ©(compβπΆ)π)(π Γ {π¦}))) |
41 | 8 | ad2antrr 724 |
. . . . . . . . 9
β’ (((π β§ πΉ β (πππ)) β§ ((π₯ β π β§ π¦ β π) β§ (πΉβπ₯) = (πΉβπ¦))) β πΆ β Cat) |
42 | 11 | ad2antrr 724 |
. . . . . . . . 9
β’ (((π β§ πΉ β (πππ)) β§ ((π₯ β π β§ π¦ β π) β§ (πΉβπ₯) = (πΉβπ¦))) β π β (BaseβπΆ)) |
43 | 13 | ad2antrr 724 |
. . . . . . . . 9
β’ (((π β§ πΉ β (πππ)) β§ ((π₯ β π β§ π¦ β π) β§ (πΉβπ₯) = (πΉβπ¦))) β π β (BaseβπΆ)) |
44 | | simplr 767 |
. . . . . . . . 9
β’ (((π β§ πΉ β (πππ)) β§ ((π₯ β π β§ π¦ β π) β§ (πΉβπ₯) = (πΉβπ¦))) β πΉ β (πππ)) |
45 | 6, 31, 2, 32, 32 | elsetchom 18027 |
. . . . . . . . . 10
β’ (((π β§ πΉ β (πππ)) β§ ((π₯ β π β§ π¦ β π) β§ (πΉβπ₯) = (πΉβπ¦))) β ((π Γ {π₯}) β (π(Hom βπΆ)π) β (π Γ {π₯}):πβΆπ)) |
46 | 35, 45 | mpbird 256 |
. . . . . . . . 9
β’ (((π β§ πΉ β (πππ)) β§ ((π₯ β π β§ π¦ β π) β§ (πΉβπ₯) = (πΉβπ¦))) β (π Γ {π₯}) β (π(Hom βπΆ)π)) |
47 | 6, 31, 2, 32, 32 | elsetchom 18027 |
. . . . . . . . . 10
β’ (((π β§ πΉ β (πππ)) β§ ((π₯ β π β§ π¦ β π) β§ (πΉβπ₯) = (πΉβπ¦))) β ((π Γ {π¦}) β (π(Hom βπΆ)π) β (π Γ {π¦}):πβΆπ)) |
48 | 38, 47 | mpbird 256 |
. . . . . . . . 9
β’ (((π β§ πΉ β (πππ)) β§ ((π₯ β π β§ π¦ β π) β§ (πΉβπ₯) = (πΉβπ¦))) β (π Γ {π¦}) β (π(Hom βπΆ)π)) |
49 | 1, 2, 3, 4, 41, 42, 43, 42, 44, 46, 48 | moni 17679 |
. . . . . . . 8
β’ (((π β§ πΉ β (πππ)) β§ ((π₯ β π β§ π¦ β π) β§ (πΉβπ₯) = (πΉβπ¦))) β ((πΉ(β¨π, πβ©(compβπΆ)π)(π Γ {π₯})) = (πΉ(β¨π, πβ©(compβπΆ)π)(π Γ {π¦})) β (π Γ {π₯}) = (π Γ {π¦}))) |
50 | 40, 49 | mpbid 231 |
. . . . . . 7
β’ (((π β§ πΉ β (πππ)) β§ ((π₯ β π β§ π¦ β π) β§ (πΉβπ₯) = (πΉβπ¦))) β (π Γ {π₯}) = (π Γ {π¦})) |
51 | 50 | fveq1d 6890 |
. . . . . 6
β’ (((π β§ πΉ β (πππ)) β§ ((π₯ β π β§ π¦ β π) β§ (πΉβπ₯) = (πΉβπ¦))) β ((π Γ {π₯})βπ₯) = ((π Γ {π¦})βπ₯)) |
52 | | vex 3478 |
. . . . . . . 8
β’ π₯ β V |
53 | 52 | fvconst2 7201 |
. . . . . . 7
β’ (π₯ β π β ((π Γ {π₯})βπ₯) = π₯) |
54 | 24, 53 | syl 17 |
. . . . . 6
β’ (((π β§ πΉ β (πππ)) β§ ((π₯ β π β§ π¦ β π) β§ (πΉβπ₯) = (πΉβπ¦))) β ((π Γ {π₯})βπ₯) = π₯) |
55 | | vex 3478 |
. . . . . . . 8
β’ π¦ β V |
56 | 55 | fvconst2 7201 |
. . . . . . 7
β’ (π₯ β π β ((π Γ {π¦})βπ₯) = π¦) |
57 | 24, 56 | syl 17 |
. . . . . 6
β’ (((π β§ πΉ β (πππ)) β§ ((π₯ β π β§ π¦ β π) β§ (πΉβπ₯) = (πΉβπ¦))) β ((π Γ {π¦})βπ₯) = π¦) |
58 | 51, 54, 57 | 3eqtr3d 2780 |
. . . . 5
β’ (((π β§ πΉ β (πππ)) β§ ((π₯ β π β§ π¦ β π) β§ (πΉβπ₯) = (πΉβπ¦))) β π₯ = π¦) |
59 | 58 | expr 457 |
. . . 4
β’ (((π β§ πΉ β (πππ)) β§ (π₯ β π β§ π¦ β π)) β ((πΉβπ₯) = (πΉβπ¦) β π₯ = π¦)) |
60 | 59 | ralrimivva 3200 |
. . 3
β’ ((π β§ πΉ β (πππ)) β βπ₯ β π βπ¦ β π ((πΉβπ₯) = (πΉβπ¦) β π₯ = π¦)) |
61 | | dff13 7250 |
. . 3
β’ (πΉ:πβ1-1βπ β (πΉ:πβΆπ β§ βπ₯ β π βπ¦ β π ((πΉβπ₯) = (πΉβπ¦) β π₯ = π¦))) |
62 | 18, 60, 61 | sylanbrc 583 |
. 2
β’ ((π β§ πΉ β (πππ)) β πΉ:πβ1-1βπ) |
63 | | f1f 6784 |
. . . 4
β’ (πΉ:πβ1-1βπ β πΉ:πβΆπ) |
64 | 16 | biimpar 478 |
. . . 4
β’ ((π β§ πΉ:πβΆπ) β πΉ β (π(Hom βπΆ)π)) |
65 | 63, 64 | sylan2 593 |
. . 3
β’ ((π β§ πΉ:πβ1-1βπ) β πΉ β (π(Hom βπΆ)π)) |
66 | 10 | adantr 481 |
. . . . . 6
β’ ((π β§ πΉ:πβ1-1βπ) β π = (BaseβπΆ)) |
67 | 66 | eleq2d 2819 |
. . . . 5
β’ ((π β§ πΉ:πβ1-1βπ) β (π§ β π β π§ β (BaseβπΆ))) |
68 | 5 | ad2antrr 724 |
. . . . . . . . . . 11
β’ (((π β§ πΉ:πβ1-1βπ) β§ (π§ β π β§ (π β (π§(Hom βπΆ)π) β§ β β (π§(Hom βπΆ)π)))) β π β π) |
69 | | simprl 769 |
. . . . . . . . . . 11
β’ (((π β§ πΉ:πβ1-1βπ) β§ (π§ β π β§ (π β (π§(Hom βπΆ)π) β§ β β (π§(Hom βπΆ)π)))) β π§ β π) |
70 | 9 | ad2antrr 724 |
. . . . . . . . . . 11
β’ (((π β§ πΉ:πβ1-1βπ) β§ (π§ β π β§ (π β (π§(Hom βπΆ)π) β§ β β (π§(Hom βπΆ)π)))) β π β π) |
71 | 12 | ad2antrr 724 |
. . . . . . . . . . 11
β’ (((π β§ πΉ:πβ1-1βπ) β§ (π§ β π β§ (π β (π§(Hom βπΆ)π) β§ β β (π§(Hom βπΆ)π)))) β π β π) |
72 | | simprrl 779 |
. . . . . . . . . . . 12
β’ (((π β§ πΉ:πβ1-1βπ) β§ (π§ β π β§ (π β (π§(Hom βπΆ)π) β§ β β (π§(Hom βπΆ)π)))) β π β (π§(Hom βπΆ)π)) |
73 | 6, 68, 2, 69, 70 | elsetchom 18027 |
. . . . . . . . . . . 12
β’ (((π β§ πΉ:πβ1-1βπ) β§ (π§ β π β§ (π β (π§(Hom βπΆ)π) β§ β β (π§(Hom βπΆ)π)))) β (π β (π§(Hom βπΆ)π) β π:π§βΆπ)) |
74 | 72, 73 | mpbid 231 |
. . . . . . . . . . 11
β’ (((π β§ πΉ:πβ1-1βπ) β§ (π§ β π β§ (π β (π§(Hom βπΆ)π) β§ β β (π§(Hom βπΆ)π)))) β π:π§βΆπ) |
75 | 63 | ad2antlr 725 |
. . . . . . . . . . 11
β’ (((π β§ πΉ:πβ1-1βπ) β§ (π§ β π β§ (π β (π§(Hom βπΆ)π) β§ β β (π§(Hom βπΆ)π)))) β πΉ:πβΆπ) |
76 | 6, 68, 3, 69, 70, 71, 74, 75 | setcco 18029 |
. . . . . . . . . 10
β’ (((π β§ πΉ:πβ1-1βπ) β§ (π§ β π β§ (π β (π§(Hom βπΆ)π) β§ β β (π§(Hom βπΆ)π)))) β (πΉ(β¨π§, πβ©(compβπΆ)π)π) = (πΉ β π)) |
77 | | simprrr 780 |
. . . . . . . . . . . 12
β’ (((π β§ πΉ:πβ1-1βπ) β§ (π§ β π β§ (π β (π§(Hom βπΆ)π) β§ β β (π§(Hom βπΆ)π)))) β β β (π§(Hom βπΆ)π)) |
78 | 6, 68, 2, 69, 70 | elsetchom 18027 |
. . . . . . . . . . . 12
β’ (((π β§ πΉ:πβ1-1βπ) β§ (π§ β π β§ (π β (π§(Hom βπΆ)π) β§ β β (π§(Hom βπΆ)π)))) β (β β (π§(Hom βπΆ)π) β β:π§βΆπ)) |
79 | 77, 78 | mpbid 231 |
. . . . . . . . . . 11
β’ (((π β§ πΉ:πβ1-1βπ) β§ (π§ β π β§ (π β (π§(Hom βπΆ)π) β§ β β (π§(Hom βπΆ)π)))) β β:π§βΆπ) |
80 | 6, 68, 3, 69, 70, 71, 79, 75 | setcco 18029 |
. . . . . . . . . 10
β’ (((π β§ πΉ:πβ1-1βπ) β§ (π§ β π β§ (π β (π§(Hom βπΆ)π) β§ β β (π§(Hom βπΆ)π)))) β (πΉ(β¨π§, πβ©(compβπΆ)π)β) = (πΉ β β)) |
81 | 76, 80 | eqeq12d 2748 |
. . . . . . . . 9
β’ (((π β§ πΉ:πβ1-1βπ) β§ (π§ β π β§ (π β (π§(Hom βπΆ)π) β§ β β (π§(Hom βπΆ)π)))) β ((πΉ(β¨π§, πβ©(compβπΆ)π)π) = (πΉ(β¨π§, πβ©(compβπΆ)π)β) β (πΉ β π) = (πΉ β β))) |
82 | | simplr 767 |
. . . . . . . . . . 11
β’ (((π β§ πΉ:πβ1-1βπ) β§ (π§ β π β§ (π β (π§(Hom βπΆ)π) β§ β β (π§(Hom βπΆ)π)))) β πΉ:πβ1-1βπ) |
83 | | cocan1 7285 |
. . . . . . . . . . 11
β’ ((πΉ:πβ1-1βπ β§ π:π§βΆπ β§ β:π§βΆπ) β ((πΉ β π) = (πΉ β β) β π = β)) |
84 | 82, 74, 79, 83 | syl3anc 1371 |
. . . . . . . . . 10
β’ (((π β§ πΉ:πβ1-1βπ) β§ (π§ β π β§ (π β (π§(Hom βπΆ)π) β§ β β (π§(Hom βπΆ)π)))) β ((πΉ β π) = (πΉ β β) β π = β)) |
85 | 84 | biimpd 228 |
. . . . . . . . 9
β’ (((π β§ πΉ:πβ1-1βπ) β§ (π§ β π β§ (π β (π§(Hom βπΆ)π) β§ β β (π§(Hom βπΆ)π)))) β ((πΉ β π) = (πΉ β β) β π = β)) |
86 | 81, 85 | sylbid 239 |
. . . . . . . 8
β’ (((π β§ πΉ:πβ1-1βπ) β§ (π§ β π β§ (π β (π§(Hom βπΆ)π) β§ β β (π§(Hom βπΆ)π)))) β ((πΉ(β¨π§, πβ©(compβπΆ)π)π) = (πΉ(β¨π§, πβ©(compβπΆ)π)β) β π = β)) |
87 | 86 | anassrs 468 |
. . . . . . 7
β’ ((((π β§ πΉ:πβ1-1βπ) β§ π§ β π) β§ (π β (π§(Hom βπΆ)π) β§ β β (π§(Hom βπΆ)π))) β ((πΉ(β¨π§, πβ©(compβπΆ)π)π) = (πΉ(β¨π§, πβ©(compβπΆ)π)β) β π = β)) |
88 | 87 | ralrimivva 3200 |
. . . . . 6
β’ (((π β§ πΉ:πβ1-1βπ) β§ π§ β π) β βπ β (π§(Hom βπΆ)π)ββ β (π§(Hom βπΆ)π)((πΉ(β¨π§, πβ©(compβπΆ)π)π) = (πΉ(β¨π§, πβ©(compβπΆ)π)β) β π = β)) |
89 | 88 | ex 413 |
. . . . 5
β’ ((π β§ πΉ:πβ1-1βπ) β (π§ β π β βπ β (π§(Hom βπΆ)π)ββ β (π§(Hom βπΆ)π)((πΉ(β¨π§, πβ©(compβπΆ)π)π) = (πΉ(β¨π§, πβ©(compβπΆ)π)β) β π = β))) |
90 | 67, 89 | sylbird 259 |
. . . 4
β’ ((π β§ πΉ:πβ1-1βπ) β (π§ β (BaseβπΆ) β βπ β (π§(Hom βπΆ)π)ββ β (π§(Hom βπΆ)π)((πΉ(β¨π§, πβ©(compβπΆ)π)π) = (πΉ(β¨π§, πβ©(compβπΆ)π)β) β π = β))) |
91 | 90 | ralrimiv 3145 |
. . 3
β’ ((π β§ πΉ:πβ1-1βπ) β βπ§ β (BaseβπΆ)βπ β (π§(Hom βπΆ)π)ββ β (π§(Hom βπΆ)π)((πΉ(β¨π§, πβ©(compβπΆ)π)π) = (πΉ(β¨π§, πβ©(compβπΆ)π)β) β π = β)) |
92 | 1, 2, 3, 4, 8, 11,
13 | ismon2 17677 |
. . . 4
β’ (π β (πΉ β (πππ) β (πΉ β (π(Hom βπΆ)π) β§ βπ§ β (BaseβπΆ)βπ β (π§(Hom βπΆ)π)ββ β (π§(Hom βπΆ)π)((πΉ(β¨π§, πβ©(compβπΆ)π)π) = (πΉ(β¨π§, πβ©(compβπΆ)π)β) β π = β)))) |
93 | 92 | adantr 481 |
. . 3
β’ ((π β§ πΉ:πβ1-1βπ) β (πΉ β (πππ) β (πΉ β (π(Hom βπΆ)π) β§ βπ§ β (BaseβπΆ)βπ β (π§(Hom βπΆ)π)ββ β (π§(Hom βπΆ)π)((πΉ(β¨π§, πβ©(compβπΆ)π)π) = (πΉ(β¨π§, πβ©(compβπΆ)π)β) β π = β)))) |
94 | 65, 91, 93 | mpbir2and 711 |
. 2
β’ ((π β§ πΉ:πβ1-1βπ) β πΉ β (πππ)) |
95 | 62, 94 | impbida 799 |
1
β’ (π β (πΉ β (πππ) β πΉ:πβ1-1βπ)) |