MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  i1fmulclem Structured version   Visualization version   GIF version

Theorem i1fmulclem 25752
Description: Decompose the preimage of a constant times a function. (Contributed by Mario Carneiro, 25-Jun-2014.)
Hypotheses
Ref Expression
i1fmulc.2 (𝜑𝐹 ∈ dom ∫1)
i1fmulc.3 (𝜑𝐴 ∈ ℝ)
Assertion
Ref Expression
i1fmulclem (((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) → (((ℝ × {𝐴}) ∘f · 𝐹) “ {𝐵}) = (𝐹 “ {(𝐵 / 𝐴)}))

Proof of Theorem i1fmulclem
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reex 11244 . . . . . . . . 9 ℝ ∈ V
21a1i 11 . . . . . . . 8 (𝜑 → ℝ ∈ V)
3 i1fmulc.3 . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
4 i1fmulc.2 . . . . . . . . . 10 (𝜑𝐹 ∈ dom ∫1)
5 i1ff 25725 . . . . . . . . . 10 (𝐹 ∈ dom ∫1𝐹:ℝ⟶ℝ)
64, 5syl 17 . . . . . . . . 9 (𝜑𝐹:ℝ⟶ℝ)
76ffnd 6738 . . . . . . . 8 (𝜑𝐹 Fn ℝ)
8 eqidd 2736 . . . . . . . 8 ((𝜑𝑧 ∈ ℝ) → (𝐹𝑧) = (𝐹𝑧))
92, 3, 7, 8ofc1 7725 . . . . . . 7 ((𝜑𝑧 ∈ ℝ) → (((ℝ × {𝐴}) ∘f · 𝐹)‘𝑧) = (𝐴 · (𝐹𝑧)))
109ad4ant14 752 . . . . . 6 ((((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (((ℝ × {𝐴}) ∘f · 𝐹)‘𝑧) = (𝐴 · (𝐹𝑧)))
1110eqeq1d 2737 . . . . 5 ((((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → ((((ℝ × {𝐴}) ∘f · 𝐹)‘𝑧) = 𝐵 ↔ (𝐴 · (𝐹𝑧)) = 𝐵))
12 eqcom 2742 . . . . . 6 ((𝐹𝑧) = (𝐵 / 𝐴) ↔ (𝐵 / 𝐴) = (𝐹𝑧))
13 simplr 769 . . . . . . . 8 ((((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → 𝐵 ∈ ℝ)
1413recnd 11287 . . . . . . 7 ((((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → 𝐵 ∈ ℂ)
153ad3antrrr 730 . . . . . . . 8 ((((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → 𝐴 ∈ ℝ)
1615recnd 11287 . . . . . . 7 ((((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → 𝐴 ∈ ℂ)
176ad2antrr 726 . . . . . . . . 9 (((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) → 𝐹:ℝ⟶ℝ)
1817ffvelcdmda 7104 . . . . . . . 8 ((((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (𝐹𝑧) ∈ ℝ)
1918recnd 11287 . . . . . . 7 ((((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (𝐹𝑧) ∈ ℂ)
20 simpllr 776 . . . . . . 7 ((((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → 𝐴 ≠ 0)
2114, 16, 19, 20divmuld 12063 . . . . . 6 ((((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → ((𝐵 / 𝐴) = (𝐹𝑧) ↔ (𝐴 · (𝐹𝑧)) = 𝐵))
2212, 21bitrid 283 . . . . 5 ((((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → ((𝐹𝑧) = (𝐵 / 𝐴) ↔ (𝐴 · (𝐹𝑧)) = 𝐵))
2311, 22bitr4d 282 . . . 4 ((((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → ((((ℝ × {𝐴}) ∘f · 𝐹)‘𝑧) = 𝐵 ↔ (𝐹𝑧) = (𝐵 / 𝐴)))
2423pm5.32da 579 . . 3 (((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) → ((𝑧 ∈ ℝ ∧ (((ℝ × {𝐴}) ∘f · 𝐹)‘𝑧) = 𝐵) ↔ (𝑧 ∈ ℝ ∧ (𝐹𝑧) = (𝐵 / 𝐴))))
25 remulcl 11238 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 · 𝑦) ∈ ℝ)
2625adantl 481 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 · 𝑦) ∈ ℝ)
27 fconstg 6796 . . . . . . . . 9 (𝐴 ∈ ℝ → (ℝ × {𝐴}):ℝ⟶{𝐴})
283, 27syl 17 . . . . . . . 8 (𝜑 → (ℝ × {𝐴}):ℝ⟶{𝐴})
293snssd 4814 . . . . . . . 8 (𝜑 → {𝐴} ⊆ ℝ)
3028, 29fssd 6754 . . . . . . 7 (𝜑 → (ℝ × {𝐴}):ℝ⟶ℝ)
31 inidm 4235 . . . . . . 7 (ℝ ∩ ℝ) = ℝ
3226, 30, 6, 2, 2, 31off 7715 . . . . . 6 (𝜑 → ((ℝ × {𝐴}) ∘f · 𝐹):ℝ⟶ℝ)
3332ad2antrr 726 . . . . 5 (((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) → ((ℝ × {𝐴}) ∘f · 𝐹):ℝ⟶ℝ)
3433ffnd 6738 . . . 4 (((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) → ((ℝ × {𝐴}) ∘f · 𝐹) Fn ℝ)
35 fniniseg 7080 . . . 4 (((ℝ × {𝐴}) ∘f · 𝐹) Fn ℝ → (𝑧 ∈ (((ℝ × {𝐴}) ∘f · 𝐹) “ {𝐵}) ↔ (𝑧 ∈ ℝ ∧ (((ℝ × {𝐴}) ∘f · 𝐹)‘𝑧) = 𝐵)))
3634, 35syl 17 . . 3 (((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) → (𝑧 ∈ (((ℝ × {𝐴}) ∘f · 𝐹) “ {𝐵}) ↔ (𝑧 ∈ ℝ ∧ (((ℝ × {𝐴}) ∘f · 𝐹)‘𝑧) = 𝐵)))
3717ffnd 6738 . . . 4 (((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) → 𝐹 Fn ℝ)
38 fniniseg 7080 . . . 4 (𝐹 Fn ℝ → (𝑧 ∈ (𝐹 “ {(𝐵 / 𝐴)}) ↔ (𝑧 ∈ ℝ ∧ (𝐹𝑧) = (𝐵 / 𝐴))))
3937, 38syl 17 . . 3 (((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) → (𝑧 ∈ (𝐹 “ {(𝐵 / 𝐴)}) ↔ (𝑧 ∈ ℝ ∧ (𝐹𝑧) = (𝐵 / 𝐴))))
4024, 36, 393bitr4d 311 . 2 (((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) → (𝑧 ∈ (((ℝ × {𝐴}) ∘f · 𝐹) “ {𝐵}) ↔ 𝑧 ∈ (𝐹 “ {(𝐵 / 𝐴)})))
4140eqrdv 2733 1 (((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) → (((ℝ × {𝐴}) ∘f · 𝐹) “ {𝐵}) = (𝐹 “ {(𝐵 / 𝐴)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wne 2938  Vcvv 3478  {csn 4631   × cxp 5687  ccnv 5688  dom cdm 5689  cima 5692   Fn wfn 6558  wf 6559  cfv 6563  (class class class)co 7431  f cof 7695  cr 11152  0cc0 11153   · cmul 11158   / cdiv 11918  1citg1 25664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-sum 15720  df-itg1 25669
This theorem is referenced by:  i1fmulc  25753  itg1mulc  25754
  Copyright terms: Public domain W3C validator