MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  i1fmulclem Structured version   Visualization version   GIF version

Theorem i1fmulclem 24306
Description: Decompose the preimage of a constant times a function. (Contributed by Mario Carneiro, 25-Jun-2014.)
Hypotheses
Ref Expression
i1fmulc.2 (𝜑𝐹 ∈ dom ∫1)
i1fmulc.3 (𝜑𝐴 ∈ ℝ)
Assertion
Ref Expression
i1fmulclem (((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) → (((ℝ × {𝐴}) ∘f · 𝐹) “ {𝐵}) = (𝐹 “ {(𝐵 / 𝐴)}))

Proof of Theorem i1fmulclem
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reex 10617 . . . . . . . . 9 ℝ ∈ V
21a1i 11 . . . . . . . 8 (𝜑 → ℝ ∈ V)
3 i1fmulc.3 . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
4 i1fmulc.2 . . . . . . . . . 10 (𝜑𝐹 ∈ dom ∫1)
5 i1ff 24280 . . . . . . . . . 10 (𝐹 ∈ dom ∫1𝐹:ℝ⟶ℝ)
64, 5syl 17 . . . . . . . . 9 (𝜑𝐹:ℝ⟶ℝ)
76ffnd 6488 . . . . . . . 8 (𝜑𝐹 Fn ℝ)
8 eqidd 2799 . . . . . . . 8 ((𝜑𝑧 ∈ ℝ) → (𝐹𝑧) = (𝐹𝑧))
92, 3, 7, 8ofc1 7412 . . . . . . 7 ((𝜑𝑧 ∈ ℝ) → (((ℝ × {𝐴}) ∘f · 𝐹)‘𝑧) = (𝐴 · (𝐹𝑧)))
109ad4ant14 751 . . . . . 6 ((((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (((ℝ × {𝐴}) ∘f · 𝐹)‘𝑧) = (𝐴 · (𝐹𝑧)))
1110eqeq1d 2800 . . . . 5 ((((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → ((((ℝ × {𝐴}) ∘f · 𝐹)‘𝑧) = 𝐵 ↔ (𝐴 · (𝐹𝑧)) = 𝐵))
12 eqcom 2805 . . . . . 6 ((𝐹𝑧) = (𝐵 / 𝐴) ↔ (𝐵 / 𝐴) = (𝐹𝑧))
13 simplr 768 . . . . . . . 8 ((((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → 𝐵 ∈ ℝ)
1413recnd 10658 . . . . . . 7 ((((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → 𝐵 ∈ ℂ)
153ad3antrrr 729 . . . . . . . 8 ((((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → 𝐴 ∈ ℝ)
1615recnd 10658 . . . . . . 7 ((((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → 𝐴 ∈ ℂ)
176ad2antrr 725 . . . . . . . . 9 (((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) → 𝐹:ℝ⟶ℝ)
1817ffvelrnda 6828 . . . . . . . 8 ((((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (𝐹𝑧) ∈ ℝ)
1918recnd 10658 . . . . . . 7 ((((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (𝐹𝑧) ∈ ℂ)
20 simpllr 775 . . . . . . 7 ((((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → 𝐴 ≠ 0)
2114, 16, 19, 20divmuld 11427 . . . . . 6 ((((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → ((𝐵 / 𝐴) = (𝐹𝑧) ↔ (𝐴 · (𝐹𝑧)) = 𝐵))
2212, 21syl5bb 286 . . . . 5 ((((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → ((𝐹𝑧) = (𝐵 / 𝐴) ↔ (𝐴 · (𝐹𝑧)) = 𝐵))
2311, 22bitr4d 285 . . . 4 ((((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → ((((ℝ × {𝐴}) ∘f · 𝐹)‘𝑧) = 𝐵 ↔ (𝐹𝑧) = (𝐵 / 𝐴)))
2423pm5.32da 582 . . 3 (((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) → ((𝑧 ∈ ℝ ∧ (((ℝ × {𝐴}) ∘f · 𝐹)‘𝑧) = 𝐵) ↔ (𝑧 ∈ ℝ ∧ (𝐹𝑧) = (𝐵 / 𝐴))))
25 remulcl 10611 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 · 𝑦) ∈ ℝ)
2625adantl 485 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 · 𝑦) ∈ ℝ)
27 fconstg 6540 . . . . . . . . 9 (𝐴 ∈ ℝ → (ℝ × {𝐴}):ℝ⟶{𝐴})
283, 27syl 17 . . . . . . . 8 (𝜑 → (ℝ × {𝐴}):ℝ⟶{𝐴})
293snssd 4702 . . . . . . . 8 (𝜑 → {𝐴} ⊆ ℝ)
3028, 29fssd 6502 . . . . . . 7 (𝜑 → (ℝ × {𝐴}):ℝ⟶ℝ)
31 inidm 4145 . . . . . . 7 (ℝ ∩ ℝ) = ℝ
3226, 30, 6, 2, 2, 31off 7404 . . . . . 6 (𝜑 → ((ℝ × {𝐴}) ∘f · 𝐹):ℝ⟶ℝ)
3332ad2antrr 725 . . . . 5 (((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) → ((ℝ × {𝐴}) ∘f · 𝐹):ℝ⟶ℝ)
3433ffnd 6488 . . . 4 (((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) → ((ℝ × {𝐴}) ∘f · 𝐹) Fn ℝ)
35 fniniseg 6807 . . . 4 (((ℝ × {𝐴}) ∘f · 𝐹) Fn ℝ → (𝑧 ∈ (((ℝ × {𝐴}) ∘f · 𝐹) “ {𝐵}) ↔ (𝑧 ∈ ℝ ∧ (((ℝ × {𝐴}) ∘f · 𝐹)‘𝑧) = 𝐵)))
3634, 35syl 17 . . 3 (((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) → (𝑧 ∈ (((ℝ × {𝐴}) ∘f · 𝐹) “ {𝐵}) ↔ (𝑧 ∈ ℝ ∧ (((ℝ × {𝐴}) ∘f · 𝐹)‘𝑧) = 𝐵)))
3717ffnd 6488 . . . 4 (((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) → 𝐹 Fn ℝ)
38 fniniseg 6807 . . . 4 (𝐹 Fn ℝ → (𝑧 ∈ (𝐹 “ {(𝐵 / 𝐴)}) ↔ (𝑧 ∈ ℝ ∧ (𝐹𝑧) = (𝐵 / 𝐴))))
3937, 38syl 17 . . 3 (((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) → (𝑧 ∈ (𝐹 “ {(𝐵 / 𝐴)}) ↔ (𝑧 ∈ ℝ ∧ (𝐹𝑧) = (𝐵 / 𝐴))))
4024, 36, 393bitr4d 314 . 2 (((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) → (𝑧 ∈ (((ℝ × {𝐴}) ∘f · 𝐹) “ {𝐵}) ↔ 𝑧 ∈ (𝐹 “ {(𝐵 / 𝐴)})))
4140eqrdv 2796 1 (((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) → (((ℝ × {𝐴}) ∘f · 𝐹) “ {𝐵}) = (𝐹 “ {(𝐵 / 𝐴)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wne 2987  Vcvv 3441  {csn 4525   × cxp 5517  ccnv 5518  dom cdm 5519  cima 5522   Fn wfn 6319  wf 6320  cfv 6324  (class class class)co 7135  f cof 7387  cr 10525  0cc0 10526   · cmul 10531   / cdiv 11286  1citg1 24219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-po 5438  df-so 5439  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-sum 15035  df-itg1 24224
This theorem is referenced by:  i1fmulc  24307  itg1mulc  24308
  Copyright terms: Public domain W3C validator