MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  i1fmulclem Structured version   Visualization version   GIF version

Theorem i1fmulclem 25623
Description: Decompose the preimage of a constant times a function. (Contributed by Mario Carneiro, 25-Jun-2014.)
Hypotheses
Ref Expression
i1fmulc.2 (𝜑𝐹 ∈ dom ∫1)
i1fmulc.3 (𝜑𝐴 ∈ ℝ)
Assertion
Ref Expression
i1fmulclem (((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) → (((ℝ × {𝐴}) ∘f · 𝐹) “ {𝐵}) = (𝐹 “ {(𝐵 / 𝐴)}))

Proof of Theorem i1fmulclem
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reex 11089 . . . . . . . . 9 ℝ ∈ V
21a1i 11 . . . . . . . 8 (𝜑 → ℝ ∈ V)
3 i1fmulc.3 . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
4 i1fmulc.2 . . . . . . . . . 10 (𝜑𝐹 ∈ dom ∫1)
5 i1ff 25597 . . . . . . . . . 10 (𝐹 ∈ dom ∫1𝐹:ℝ⟶ℝ)
64, 5syl 17 . . . . . . . . 9 (𝜑𝐹:ℝ⟶ℝ)
76ffnd 6648 . . . . . . . 8 (𝜑𝐹 Fn ℝ)
8 eqidd 2731 . . . . . . . 8 ((𝜑𝑧 ∈ ℝ) → (𝐹𝑧) = (𝐹𝑧))
92, 3, 7, 8ofc1 7633 . . . . . . 7 ((𝜑𝑧 ∈ ℝ) → (((ℝ × {𝐴}) ∘f · 𝐹)‘𝑧) = (𝐴 · (𝐹𝑧)))
109ad4ant14 752 . . . . . 6 ((((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (((ℝ × {𝐴}) ∘f · 𝐹)‘𝑧) = (𝐴 · (𝐹𝑧)))
1110eqeq1d 2732 . . . . 5 ((((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → ((((ℝ × {𝐴}) ∘f · 𝐹)‘𝑧) = 𝐵 ↔ (𝐴 · (𝐹𝑧)) = 𝐵))
12 eqcom 2737 . . . . . 6 ((𝐹𝑧) = (𝐵 / 𝐴) ↔ (𝐵 / 𝐴) = (𝐹𝑧))
13 simplr 768 . . . . . . . 8 ((((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → 𝐵 ∈ ℝ)
1413recnd 11132 . . . . . . 7 ((((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → 𝐵 ∈ ℂ)
153ad3antrrr 730 . . . . . . . 8 ((((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → 𝐴 ∈ ℝ)
1615recnd 11132 . . . . . . 7 ((((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → 𝐴 ∈ ℂ)
176ad2antrr 726 . . . . . . . . 9 (((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) → 𝐹:ℝ⟶ℝ)
1817ffvelcdmda 7012 . . . . . . . 8 ((((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (𝐹𝑧) ∈ ℝ)
1918recnd 11132 . . . . . . 7 ((((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (𝐹𝑧) ∈ ℂ)
20 simpllr 775 . . . . . . 7 ((((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → 𝐴 ≠ 0)
2114, 16, 19, 20divmuld 11911 . . . . . 6 ((((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → ((𝐵 / 𝐴) = (𝐹𝑧) ↔ (𝐴 · (𝐹𝑧)) = 𝐵))
2212, 21bitrid 283 . . . . 5 ((((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → ((𝐹𝑧) = (𝐵 / 𝐴) ↔ (𝐴 · (𝐹𝑧)) = 𝐵))
2311, 22bitr4d 282 . . . 4 ((((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → ((((ℝ × {𝐴}) ∘f · 𝐹)‘𝑧) = 𝐵 ↔ (𝐹𝑧) = (𝐵 / 𝐴)))
2423pm5.32da 579 . . 3 (((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) → ((𝑧 ∈ ℝ ∧ (((ℝ × {𝐴}) ∘f · 𝐹)‘𝑧) = 𝐵) ↔ (𝑧 ∈ ℝ ∧ (𝐹𝑧) = (𝐵 / 𝐴))))
25 remulcl 11083 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 · 𝑦) ∈ ℝ)
2625adantl 481 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 · 𝑦) ∈ ℝ)
27 fconstg 6706 . . . . . . . . 9 (𝐴 ∈ ℝ → (ℝ × {𝐴}):ℝ⟶{𝐴})
283, 27syl 17 . . . . . . . 8 (𝜑 → (ℝ × {𝐴}):ℝ⟶{𝐴})
293snssd 4759 . . . . . . . 8 (𝜑 → {𝐴} ⊆ ℝ)
3028, 29fssd 6664 . . . . . . 7 (𝜑 → (ℝ × {𝐴}):ℝ⟶ℝ)
31 inidm 4175 . . . . . . 7 (ℝ ∩ ℝ) = ℝ
3226, 30, 6, 2, 2, 31off 7623 . . . . . 6 (𝜑 → ((ℝ × {𝐴}) ∘f · 𝐹):ℝ⟶ℝ)
3332ad2antrr 726 . . . . 5 (((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) → ((ℝ × {𝐴}) ∘f · 𝐹):ℝ⟶ℝ)
3433ffnd 6648 . . . 4 (((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) → ((ℝ × {𝐴}) ∘f · 𝐹) Fn ℝ)
35 fniniseg 6988 . . . 4 (((ℝ × {𝐴}) ∘f · 𝐹) Fn ℝ → (𝑧 ∈ (((ℝ × {𝐴}) ∘f · 𝐹) “ {𝐵}) ↔ (𝑧 ∈ ℝ ∧ (((ℝ × {𝐴}) ∘f · 𝐹)‘𝑧) = 𝐵)))
3634, 35syl 17 . . 3 (((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) → (𝑧 ∈ (((ℝ × {𝐴}) ∘f · 𝐹) “ {𝐵}) ↔ (𝑧 ∈ ℝ ∧ (((ℝ × {𝐴}) ∘f · 𝐹)‘𝑧) = 𝐵)))
3717ffnd 6648 . . . 4 (((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) → 𝐹 Fn ℝ)
38 fniniseg 6988 . . . 4 (𝐹 Fn ℝ → (𝑧 ∈ (𝐹 “ {(𝐵 / 𝐴)}) ↔ (𝑧 ∈ ℝ ∧ (𝐹𝑧) = (𝐵 / 𝐴))))
3937, 38syl 17 . . 3 (((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) → (𝑧 ∈ (𝐹 “ {(𝐵 / 𝐴)}) ↔ (𝑧 ∈ ℝ ∧ (𝐹𝑧) = (𝐵 / 𝐴))))
4024, 36, 393bitr4d 311 . 2 (((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) → (𝑧 ∈ (((ℝ × {𝐴}) ∘f · 𝐹) “ {𝐵}) ↔ 𝑧 ∈ (𝐹 “ {(𝐵 / 𝐴)})))
4140eqrdv 2728 1 (((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) → (((ℝ × {𝐴}) ∘f · 𝐹) “ {𝐵}) = (𝐹 “ {(𝐵 / 𝐴)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2110  wne 2926  Vcvv 3434  {csn 4574   × cxp 5612  ccnv 5613  dom cdm 5614  cima 5617   Fn wfn 6472  wf 6473  cfv 6477  (class class class)co 7341  f cof 7603  cr 10997  0cc0 10998   · cmul 11003   / cdiv 11766  1citg1 25536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-po 5522  df-so 5523  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-div 11767  df-sum 15586  df-itg1 25541
This theorem is referenced by:  i1fmulc  25624  itg1mulc  25625
  Copyright terms: Public domain W3C validator