MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coemulc Structured version   Visualization version   GIF version

Theorem coemulc 24966
Description: The coefficient function is linear under scalar multiplication. (Contributed by Mario Carneiro, 24-Jul-2014.)
Assertion
Ref Expression
coemulc ((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) → (coeff‘((ℂ × {𝐴}) ∘f · 𝐹)) = ((ℕ0 × {𝐴}) ∘f · (coeff‘𝐹)))

Proof of Theorem coemulc
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3917 . . . . 5 ℂ ⊆ ℂ
2 plyconst 24917 . . . . 5 ((ℂ ⊆ ℂ ∧ 𝐴 ∈ ℂ) → (ℂ × {𝐴}) ∈ (Poly‘ℂ))
31, 2mpan 689 . . . 4 (𝐴 ∈ ℂ → (ℂ × {𝐴}) ∈ (Poly‘ℂ))
4 plyssc 24911 . . . . 5 (Poly‘𝑆) ⊆ (Poly‘ℂ)
54sseli 3891 . . . 4 (𝐹 ∈ (Poly‘𝑆) → 𝐹 ∈ (Poly‘ℂ))
6 plymulcl 24932 . . . 4 (((ℂ × {𝐴}) ∈ (Poly‘ℂ) ∧ 𝐹 ∈ (Poly‘ℂ)) → ((ℂ × {𝐴}) ∘f · 𝐹) ∈ (Poly‘ℂ))
73, 5, 6syl2an 598 . . 3 ((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) → ((ℂ × {𝐴}) ∘f · 𝐹) ∈ (Poly‘ℂ))
8 eqid 2759 . . . 4 (coeff‘((ℂ × {𝐴}) ∘f · 𝐹)) = (coeff‘((ℂ × {𝐴}) ∘f · 𝐹))
98coef3 24943 . . 3 (((ℂ × {𝐴}) ∘f · 𝐹) ∈ (Poly‘ℂ) → (coeff‘((ℂ × {𝐴}) ∘f · 𝐹)):ℕ0⟶ℂ)
10 ffn 6504 . . 3 ((coeff‘((ℂ × {𝐴}) ∘f · 𝐹)):ℕ0⟶ℂ → (coeff‘((ℂ × {𝐴}) ∘f · 𝐹)) Fn ℕ0)
117, 9, 103syl 18 . 2 ((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) → (coeff‘((ℂ × {𝐴}) ∘f · 𝐹)) Fn ℕ0)
12 fconstg 6557 . . . . 5 (𝐴 ∈ ℂ → (ℕ0 × {𝐴}):ℕ0⟶{𝐴})
1312adantr 484 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) → (ℕ0 × {𝐴}):ℕ0⟶{𝐴})
1413ffnd 6505 . . 3 ((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) → (ℕ0 × {𝐴}) Fn ℕ0)
15 eqid 2759 . . . . . 6 (coeff‘𝐹) = (coeff‘𝐹)
1615coef3 24943 . . . . 5 (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐹):ℕ0⟶ℂ)
1716adantl 485 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) → (coeff‘𝐹):ℕ0⟶ℂ)
1817ffnd 6505 . . 3 ((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) → (coeff‘𝐹) Fn ℕ0)
19 nn0ex 11954 . . . 4 0 ∈ V
2019a1i 11 . . 3 ((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) → ℕ0 ∈ V)
21 inidm 4126 . . 3 (ℕ0 ∩ ℕ0) = ℕ0
2214, 18, 20, 20, 21offn 7424 . 2 ((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) → ((ℕ0 × {𝐴}) ∘f · (coeff‘𝐹)) Fn ℕ0)
233ad2antrr 725 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → (ℂ × {𝐴}) ∈ (Poly‘ℂ))
24 eqid 2759 . . . . . . 7 (coeff‘(ℂ × {𝐴})) = (coeff‘(ℂ × {𝐴}))
2524coefv0 24959 . . . . . 6 ((ℂ × {𝐴}) ∈ (Poly‘ℂ) → ((ℂ × {𝐴})‘0) = ((coeff‘(ℂ × {𝐴}))‘0))
2623, 25syl 17 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → ((ℂ × {𝐴})‘0) = ((coeff‘(ℂ × {𝐴}))‘0))
27 simpll 766 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → 𝐴 ∈ ℂ)
28 0cn 10685 . . . . . 6 0 ∈ ℂ
29 fvconst2g 6962 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 ∈ ℂ) → ((ℂ × {𝐴})‘0) = 𝐴)
3027, 28, 29sylancl 589 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → ((ℂ × {𝐴})‘0) = 𝐴)
3126, 30eqtr3d 2796 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → ((coeff‘(ℂ × {𝐴}))‘0) = 𝐴)
32 simpr 488 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
3332nn0cnd 12010 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℂ)
3433subid1d 11038 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → (𝑛 − 0) = 𝑛)
3534fveq2d 6668 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → ((coeff‘𝐹)‘(𝑛 − 0)) = ((coeff‘𝐹)‘𝑛))
3631, 35oveq12d 7175 . . 3 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → (((coeff‘(ℂ × {𝐴}))‘0) · ((coeff‘𝐹)‘(𝑛 − 0))) = (𝐴 · ((coeff‘𝐹)‘𝑛)))
375ad2antlr 726 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → 𝐹 ∈ (Poly‘ℂ))
3824, 15coemul 24963 . . . . 5 (((ℂ × {𝐴}) ∈ (Poly‘ℂ) ∧ 𝐹 ∈ (Poly‘ℂ) ∧ 𝑛 ∈ ℕ0) → ((coeff‘((ℂ × {𝐴}) ∘f · 𝐹))‘𝑛) = Σ𝑘 ∈ (0...𝑛)(((coeff‘(ℂ × {𝐴}))‘𝑘) · ((coeff‘𝐹)‘(𝑛𝑘))))
3923, 37, 32, 38syl3anc 1369 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → ((coeff‘((ℂ × {𝐴}) ∘f · 𝐹))‘𝑛) = Σ𝑘 ∈ (0...𝑛)(((coeff‘(ℂ × {𝐴}))‘𝑘) · ((coeff‘𝐹)‘(𝑛𝑘))))
40 nn0uz 12334 . . . . . . 7 0 = (ℤ‘0)
4132, 40eleqtrdi 2863 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ (ℤ‘0))
42 fzss2 13010 . . . . . 6 (𝑛 ∈ (ℤ‘0) → (0...0) ⊆ (0...𝑛))
4341, 42syl 17 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → (0...0) ⊆ (0...𝑛))
44 elfz1eq 12981 . . . . . . . 8 (𝑘 ∈ (0...0) → 𝑘 = 0)
4544adantl 485 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ (0...0)) → 𝑘 = 0)
46 fveq2 6664 . . . . . . . 8 (𝑘 = 0 → ((coeff‘(ℂ × {𝐴}))‘𝑘) = ((coeff‘(ℂ × {𝐴}))‘0))
47 oveq2 7165 . . . . . . . . 9 (𝑘 = 0 → (𝑛𝑘) = (𝑛 − 0))
4847fveq2d 6668 . . . . . . . 8 (𝑘 = 0 → ((coeff‘𝐹)‘(𝑛𝑘)) = ((coeff‘𝐹)‘(𝑛 − 0)))
4946, 48oveq12d 7175 . . . . . . 7 (𝑘 = 0 → (((coeff‘(ℂ × {𝐴}))‘𝑘) · ((coeff‘𝐹)‘(𝑛𝑘))) = (((coeff‘(ℂ × {𝐴}))‘0) · ((coeff‘𝐹)‘(𝑛 − 0))))
5045, 49syl 17 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ (0...0)) → (((coeff‘(ℂ × {𝐴}))‘𝑘) · ((coeff‘𝐹)‘(𝑛𝑘))) = (((coeff‘(ℂ × {𝐴}))‘0) · ((coeff‘𝐹)‘(𝑛 − 0))))
5117ffvelrnda 6849 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → ((coeff‘𝐹)‘𝑛) ∈ ℂ)
5227, 51mulcld 10713 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → (𝐴 · ((coeff‘𝐹)‘𝑛)) ∈ ℂ)
5336, 52eqeltrd 2853 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → (((coeff‘(ℂ × {𝐴}))‘0) · ((coeff‘𝐹)‘(𝑛 − 0))) ∈ ℂ)
5453adantr 484 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ (0...0)) → (((coeff‘(ℂ × {𝐴}))‘0) · ((coeff‘𝐹)‘(𝑛 − 0))) ∈ ℂ)
5550, 54eqeltrd 2853 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ (0...0)) → (((coeff‘(ℂ × {𝐴}))‘𝑘) · ((coeff‘𝐹)‘(𝑛𝑘))) ∈ ℂ)
56 eldifn 4036 . . . . . . . . 9 (𝑘 ∈ ((0...𝑛) ∖ (0...0)) → ¬ 𝑘 ∈ (0...0))
5756adantl 485 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ((0...𝑛) ∖ (0...0))) → ¬ 𝑘 ∈ (0...0))
58 eldifi 4035 . . . . . . . . . . . . 13 (𝑘 ∈ ((0...𝑛) ∖ (0...0)) → 𝑘 ∈ (0...𝑛))
59 elfznn0 13063 . . . . . . . . . . . . 13 (𝑘 ∈ (0...𝑛) → 𝑘 ∈ ℕ0)
6058, 59syl 17 . . . . . . . . . . . 12 (𝑘 ∈ ((0...𝑛) ∖ (0...0)) → 𝑘 ∈ ℕ0)
61 eqid 2759 . . . . . . . . . . . . . 14 (deg‘(ℂ × {𝐴})) = (deg‘(ℂ × {𝐴}))
6224, 61dgrub 24945 . . . . . . . . . . . . 13 (((ℂ × {𝐴}) ∈ (Poly‘ℂ) ∧ 𝑘 ∈ ℕ0 ∧ ((coeff‘(ℂ × {𝐴}))‘𝑘) ≠ 0) → 𝑘 ≤ (deg‘(ℂ × {𝐴})))
63623expia 1119 . . . . . . . . . . . 12 (((ℂ × {𝐴}) ∈ (Poly‘ℂ) ∧ 𝑘 ∈ ℕ0) → (((coeff‘(ℂ × {𝐴}))‘𝑘) ≠ 0 → 𝑘 ≤ (deg‘(ℂ × {𝐴}))))
6423, 60, 63syl2an 598 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ((0...𝑛) ∖ (0...0))) → (((coeff‘(ℂ × {𝐴}))‘𝑘) ≠ 0 → 𝑘 ≤ (deg‘(ℂ × {𝐴}))))
65 0dgr 24956 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (deg‘(ℂ × {𝐴})) = 0)
6665ad3antrrr 729 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ((0...𝑛) ∖ (0...0))) → (deg‘(ℂ × {𝐴})) = 0)
6766breq2d 5049 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ((0...𝑛) ∖ (0...0))) → (𝑘 ≤ (deg‘(ℂ × {𝐴})) ↔ 𝑘 ≤ 0))
6860adantl 485 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ((0...𝑛) ∖ (0...0))) → 𝑘 ∈ ℕ0)
69 nn0le0eq0 11976 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 → (𝑘 ≤ 0 ↔ 𝑘 = 0))
7068, 69syl 17 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ((0...𝑛) ∖ (0...0))) → (𝑘 ≤ 0 ↔ 𝑘 = 0))
7167, 70bitrd 282 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ((0...𝑛) ∖ (0...0))) → (𝑘 ≤ (deg‘(ℂ × {𝐴})) ↔ 𝑘 = 0))
7264, 71sylibd 242 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ((0...𝑛) ∖ (0...0))) → (((coeff‘(ℂ × {𝐴}))‘𝑘) ≠ 0 → 𝑘 = 0))
73 id 22 . . . . . . . . . . 11 (𝑘 = 0 → 𝑘 = 0)
74 0z 12045 . . . . . . . . . . . 12 0 ∈ ℤ
75 elfz3 12980 . . . . . . . . . . . 12 (0 ∈ ℤ → 0 ∈ (0...0))
7674, 75ax-mp 5 . . . . . . . . . . 11 0 ∈ (0...0)
7773, 76eqeltrdi 2861 . . . . . . . . . 10 (𝑘 = 0 → 𝑘 ∈ (0...0))
7872, 77syl6 35 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ((0...𝑛) ∖ (0...0))) → (((coeff‘(ℂ × {𝐴}))‘𝑘) ≠ 0 → 𝑘 ∈ (0...0)))
7978necon1bd 2970 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ((0...𝑛) ∖ (0...0))) → (¬ 𝑘 ∈ (0...0) → ((coeff‘(ℂ × {𝐴}))‘𝑘) = 0))
8057, 79mpd 15 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ((0...𝑛) ∖ (0...0))) → ((coeff‘(ℂ × {𝐴}))‘𝑘) = 0)
8180oveq1d 7172 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ((0...𝑛) ∖ (0...0))) → (((coeff‘(ℂ × {𝐴}))‘𝑘) · ((coeff‘𝐹)‘(𝑛𝑘))) = (0 · ((coeff‘𝐹)‘(𝑛𝑘))))
8217adantr 484 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → (coeff‘𝐹):ℕ0⟶ℂ)
83 fznn0sub 13002 . . . . . . . . 9 (𝑘 ∈ (0...𝑛) → (𝑛𝑘) ∈ ℕ0)
8458, 83syl 17 . . . . . . . 8 (𝑘 ∈ ((0...𝑛) ∖ (0...0)) → (𝑛𝑘) ∈ ℕ0)
85 ffvelrn 6847 . . . . . . . 8 (((coeff‘𝐹):ℕ0⟶ℂ ∧ (𝑛𝑘) ∈ ℕ0) → ((coeff‘𝐹)‘(𝑛𝑘)) ∈ ℂ)
8682, 84, 85syl2an 598 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ((0...𝑛) ∖ (0...0))) → ((coeff‘𝐹)‘(𝑛𝑘)) ∈ ℂ)
8786mul02d 10890 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ((0...𝑛) ∖ (0...0))) → (0 · ((coeff‘𝐹)‘(𝑛𝑘))) = 0)
8881, 87eqtrd 2794 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ((0...𝑛) ∖ (0...0))) → (((coeff‘(ℂ × {𝐴}))‘𝑘) · ((coeff‘𝐹)‘(𝑛𝑘))) = 0)
89 fzfid 13404 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → (0...𝑛) ∈ Fin)
9043, 55, 88, 89fsumss 15144 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → Σ𝑘 ∈ (0...0)(((coeff‘(ℂ × {𝐴}))‘𝑘) · ((coeff‘𝐹)‘(𝑛𝑘))) = Σ𝑘 ∈ (0...𝑛)(((coeff‘(ℂ × {𝐴}))‘𝑘) · ((coeff‘𝐹)‘(𝑛𝑘))))
9149fsum1 15164 . . . . 5 ((0 ∈ ℤ ∧ (((coeff‘(ℂ × {𝐴}))‘0) · ((coeff‘𝐹)‘(𝑛 − 0))) ∈ ℂ) → Σ𝑘 ∈ (0...0)(((coeff‘(ℂ × {𝐴}))‘𝑘) · ((coeff‘𝐹)‘(𝑛𝑘))) = (((coeff‘(ℂ × {𝐴}))‘0) · ((coeff‘𝐹)‘(𝑛 − 0))))
9274, 53, 91sylancr 590 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → Σ𝑘 ∈ (0...0)(((coeff‘(ℂ × {𝐴}))‘𝑘) · ((coeff‘𝐹)‘(𝑛𝑘))) = (((coeff‘(ℂ × {𝐴}))‘0) · ((coeff‘𝐹)‘(𝑛 − 0))))
9339, 90, 923eqtr2d 2800 . . 3 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → ((coeff‘((ℂ × {𝐴}) ∘f · 𝐹))‘𝑛) = (((coeff‘(ℂ × {𝐴}))‘0) · ((coeff‘𝐹)‘(𝑛 − 0))))
94 simpl 486 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) → 𝐴 ∈ ℂ)
95 eqidd 2760 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → ((coeff‘𝐹)‘𝑛) = ((coeff‘𝐹)‘𝑛))
9620, 94, 18, 95ofc1 7437 . . 3 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → (((ℕ0 × {𝐴}) ∘f · (coeff‘𝐹))‘𝑛) = (𝐴 · ((coeff‘𝐹)‘𝑛)))
9736, 93, 963eqtr4d 2804 . 2 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → ((coeff‘((ℂ × {𝐴}) ∘f · 𝐹))‘𝑛) = (((ℕ0 × {𝐴}) ∘f · (coeff‘𝐹))‘𝑛))
9811, 22, 97eqfnfvd 6802 1 ((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) → (coeff‘((ℂ × {𝐴}) ∘f · 𝐹)) = ((ℕ0 × {𝐴}) ∘f · (coeff‘𝐹)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1539  wcel 2112  wne 2952  Vcvv 3410  cdif 3858  wss 3861  {csn 4526   class class class wbr 5037   × cxp 5527   Fn wfn 6336  wf 6337  cfv 6341  (class class class)co 7157  f cof 7410  cc 10587  0cc0 10589   · cmul 10594  cle 10728  cmin 10922  0cn0 11948  cz 12034  cuz 12296  ...cfz 12953  Σcsu 15104  Polycply 24895  coeffccoe 24897  degcdgr 24898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5161  ax-sep 5174  ax-nul 5181  ax-pow 5239  ax-pr 5303  ax-un 7466  ax-inf2 9151  ax-cnex 10645  ax-resscn 10646  ax-1cn 10647  ax-icn 10648  ax-addcl 10649  ax-addrcl 10650  ax-mulcl 10651  ax-mulrcl 10652  ax-mulcom 10653  ax-addass 10654  ax-mulass 10655  ax-distr 10656  ax-i2m1 10657  ax-1ne0 10658  ax-1rid 10659  ax-rnegex 10660  ax-rrecex 10661  ax-cnre 10662  ax-pre-lttri 10663  ax-pre-lttrn 10664  ax-pre-ltadd 10665  ax-pre-mulgt0 10666  ax-pre-sup 10667  ax-addf 10668
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3700  df-csb 3809  df-dif 3864  df-un 3866  df-in 3868  df-ss 3878  df-pss 3880  df-nul 4229  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-tp 4531  df-op 4533  df-uni 4803  df-int 4843  df-iun 4889  df-br 5038  df-opab 5100  df-mpt 5118  df-tr 5144  df-id 5435  df-eprel 5440  df-po 5448  df-so 5449  df-fr 5488  df-se 5489  df-we 5490  df-xp 5535  df-rel 5536  df-cnv 5537  df-co 5538  df-dm 5539  df-rn 5540  df-res 5541  df-ima 5542  df-pred 6132  df-ord 6178  df-on 6179  df-lim 6180  df-suc 6181  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-isom 6350  df-riota 7115  df-ov 7160  df-oprab 7161  df-mpo 7162  df-of 7412  df-om 7587  df-1st 7700  df-2nd 7701  df-wrecs 7964  df-recs 8025  df-rdg 8063  df-1o 8119  df-er 8306  df-map 8425  df-pm 8426  df-en 8542  df-dom 8543  df-sdom 8544  df-fin 8545  df-sup 8953  df-inf 8954  df-oi 9021  df-card 9415  df-pnf 10729  df-mnf 10730  df-xr 10731  df-ltxr 10732  df-le 10733  df-sub 10924  df-neg 10925  df-div 11350  df-nn 11689  df-2 11751  df-3 11752  df-n0 11949  df-z 12035  df-uz 12297  df-rp 12445  df-fz 12954  df-fzo 13097  df-fl 13225  df-seq 13433  df-exp 13494  df-hash 13755  df-cj 14520  df-re 14521  df-im 14522  df-sqrt 14656  df-abs 14657  df-clim 14907  df-rlim 14908  df-sum 15105  df-0p 24385  df-ply 24899  df-coe 24901  df-dgr 24902
This theorem is referenced by:  coe0  24967  coesub  24968  mpaaeu  40513
  Copyright terms: Public domain W3C validator