Step | Hyp | Ref
| Expression |
1 | | ssid 3939 |
. . . . 5
⊢ ℂ
⊆ ℂ |
2 | | plyconst 25272 |
. . . . 5
⊢ ((ℂ
⊆ ℂ ∧ 𝐴
∈ ℂ) → (ℂ × {𝐴}) ∈
(Poly‘ℂ)) |
3 | 1, 2 | mpan 686 |
. . . 4
⊢ (𝐴 ∈ ℂ → (ℂ
× {𝐴}) ∈
(Poly‘ℂ)) |
4 | | plyssc 25266 |
. . . . 5
⊢
(Poly‘𝑆)
⊆ (Poly‘ℂ) |
5 | 4 | sseli 3913 |
. . . 4
⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹 ∈
(Poly‘ℂ)) |
6 | | plymulcl 25287 |
. . . 4
⊢
(((ℂ × {𝐴}) ∈ (Poly‘ℂ) ∧ 𝐹 ∈ (Poly‘ℂ))
→ ((ℂ × {𝐴}) ∘f · 𝐹) ∈
(Poly‘ℂ)) |
7 | 3, 5, 6 | syl2an 595 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) → ((ℂ ×
{𝐴}) ∘f
· 𝐹) ∈
(Poly‘ℂ)) |
8 | | eqid 2738 |
. . . 4
⊢
(coeff‘((ℂ × {𝐴}) ∘f · 𝐹)) = (coeff‘((ℂ
× {𝐴})
∘f · 𝐹)) |
9 | 8 | coef3 25298 |
. . 3
⊢
(((ℂ × {𝐴}) ∘f · 𝐹) ∈ (Poly‘ℂ)
→ (coeff‘((ℂ × {𝐴}) ∘f · 𝐹)):ℕ0⟶ℂ) |
10 | | ffn 6584 |
. . 3
⊢
((coeff‘((ℂ × {𝐴}) ∘f · 𝐹)):ℕ0⟶ℂ →
(coeff‘((ℂ × {𝐴}) ∘f · 𝐹)) Fn
ℕ0) |
11 | 7, 9, 10 | 3syl 18 |
. 2
⊢ ((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) → (coeff‘((ℂ
× {𝐴})
∘f · 𝐹)) Fn ℕ0) |
12 | | fconstg 6645 |
. . . . 5
⊢ (𝐴 ∈ ℂ →
(ℕ0 × {𝐴}):ℕ0⟶{𝐴}) |
13 | 12 | adantr 480 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) → (ℕ0
× {𝐴}):ℕ0⟶{𝐴}) |
14 | 13 | ffnd 6585 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) → (ℕ0
× {𝐴}) Fn
ℕ0) |
15 | | eqid 2738 |
. . . . . 6
⊢
(coeff‘𝐹) =
(coeff‘𝐹) |
16 | 15 | coef3 25298 |
. . . . 5
⊢ (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐹):ℕ0⟶ℂ) |
17 | 16 | adantl 481 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) → (coeff‘𝐹):ℕ0⟶ℂ) |
18 | 17 | ffnd 6585 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) → (coeff‘𝐹) Fn
ℕ0) |
19 | | nn0ex 12169 |
. . . 4
⊢
ℕ0 ∈ V |
20 | 19 | a1i 11 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) → ℕ0
∈ V) |
21 | | inidm 4149 |
. . 3
⊢
(ℕ0 ∩ ℕ0) =
ℕ0 |
22 | 14, 18, 20, 20, 21 | offn 7524 |
. 2
⊢ ((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) → ((ℕ0
× {𝐴})
∘f · (coeff‘𝐹)) Fn ℕ0) |
23 | 3 | ad2antrr 722 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → (ℂ
× {𝐴}) ∈
(Poly‘ℂ)) |
24 | | eqid 2738 |
. . . . . . 7
⊢
(coeff‘(ℂ × {𝐴})) = (coeff‘(ℂ × {𝐴})) |
25 | 24 | coefv0 25314 |
. . . . . 6
⊢ ((ℂ
× {𝐴}) ∈
(Poly‘ℂ) → ((ℂ × {𝐴})‘0) = ((coeff‘(ℂ ×
{𝐴}))‘0)) |
26 | 23, 25 | syl 17 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → ((ℂ
× {𝐴})‘0) =
((coeff‘(ℂ × {𝐴}))‘0)) |
27 | | simpll 763 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → 𝐴 ∈
ℂ) |
28 | | 0cn 10898 |
. . . . . 6
⊢ 0 ∈
ℂ |
29 | | fvconst2g 7059 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 0 ∈
ℂ) → ((ℂ × {𝐴})‘0) = 𝐴) |
30 | 27, 28, 29 | sylancl 585 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → ((ℂ
× {𝐴})‘0) =
𝐴) |
31 | 26, 30 | eqtr3d 2780 |
. . . 4
⊢ (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) →
((coeff‘(ℂ × {𝐴}))‘0) = 𝐴) |
32 | | simpr 484 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈
ℕ0) |
33 | 32 | nn0cnd 12225 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈
ℂ) |
34 | 33 | subid1d 11251 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → (𝑛 − 0) = 𝑛) |
35 | 34 | fveq2d 6760 |
. . . 4
⊢ (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) →
((coeff‘𝐹)‘(𝑛 − 0)) = ((coeff‘𝐹)‘𝑛)) |
36 | 31, 35 | oveq12d 7273 |
. . 3
⊢ (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) →
(((coeff‘(ℂ × {𝐴}))‘0) · ((coeff‘𝐹)‘(𝑛 − 0))) = (𝐴 · ((coeff‘𝐹)‘𝑛))) |
37 | 5 | ad2antlr 723 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → 𝐹 ∈
(Poly‘ℂ)) |
38 | 24, 15 | coemul 25318 |
. . . . 5
⊢
(((ℂ × {𝐴}) ∈ (Poly‘ℂ) ∧ 𝐹 ∈ (Poly‘ℂ)
∧ 𝑛 ∈
ℕ0) → ((coeff‘((ℂ × {𝐴}) ∘f · 𝐹))‘𝑛) = Σ𝑘 ∈ (0...𝑛)(((coeff‘(ℂ × {𝐴}))‘𝑘) · ((coeff‘𝐹)‘(𝑛 − 𝑘)))) |
39 | 23, 37, 32, 38 | syl3anc 1369 |
. . . 4
⊢ (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) →
((coeff‘((ℂ × {𝐴}) ∘f · 𝐹))‘𝑛) = Σ𝑘 ∈ (0...𝑛)(((coeff‘(ℂ × {𝐴}))‘𝑘) · ((coeff‘𝐹)‘(𝑛 − 𝑘)))) |
40 | | nn0uz 12549 |
. . . . . . 7
⊢
ℕ0 = (ℤ≥‘0) |
41 | 32, 40 | eleqtrdi 2849 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈
(ℤ≥‘0)) |
42 | | fzss2 13225 |
. . . . . 6
⊢ (𝑛 ∈
(ℤ≥‘0) → (0...0) ⊆ (0...𝑛)) |
43 | 41, 42 | syl 17 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → (0...0)
⊆ (0...𝑛)) |
44 | | elfz1eq 13196 |
. . . . . . . 8
⊢ (𝑘 ∈ (0...0) → 𝑘 = 0) |
45 | 44 | adantl 481 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ (0...0)) → 𝑘 = 0) |
46 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑘 = 0 →
((coeff‘(ℂ × {𝐴}))‘𝑘) = ((coeff‘(ℂ × {𝐴}))‘0)) |
47 | | oveq2 7263 |
. . . . . . . . 9
⊢ (𝑘 = 0 → (𝑛 − 𝑘) = (𝑛 − 0)) |
48 | 47 | fveq2d 6760 |
. . . . . . . 8
⊢ (𝑘 = 0 → ((coeff‘𝐹)‘(𝑛 − 𝑘)) = ((coeff‘𝐹)‘(𝑛 − 0))) |
49 | 46, 48 | oveq12d 7273 |
. . . . . . 7
⊢ (𝑘 = 0 →
(((coeff‘(ℂ × {𝐴}))‘𝑘) · ((coeff‘𝐹)‘(𝑛 − 𝑘))) = (((coeff‘(ℂ × {𝐴}))‘0) ·
((coeff‘𝐹)‘(𝑛 − 0)))) |
50 | 45, 49 | syl 17 |
. . . . . 6
⊢ ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ (0...0)) →
(((coeff‘(ℂ × {𝐴}))‘𝑘) · ((coeff‘𝐹)‘(𝑛 − 𝑘))) = (((coeff‘(ℂ × {𝐴}))‘0) ·
((coeff‘𝐹)‘(𝑛 − 0)))) |
51 | 17 | ffvelrnda 6943 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) →
((coeff‘𝐹)‘𝑛) ∈ ℂ) |
52 | 27, 51 | mulcld 10926 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → (𝐴 · ((coeff‘𝐹)‘𝑛)) ∈ ℂ) |
53 | 36, 52 | eqeltrd 2839 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) →
(((coeff‘(ℂ × {𝐴}))‘0) · ((coeff‘𝐹)‘(𝑛 − 0))) ∈
ℂ) |
54 | 53 | adantr 480 |
. . . . . 6
⊢ ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ (0...0)) →
(((coeff‘(ℂ × {𝐴}))‘0) · ((coeff‘𝐹)‘(𝑛 − 0))) ∈
ℂ) |
55 | 50, 54 | eqeltrd 2839 |
. . . . 5
⊢ ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ (0...0)) →
(((coeff‘(ℂ × {𝐴}))‘𝑘) · ((coeff‘𝐹)‘(𝑛 − 𝑘))) ∈ ℂ) |
56 | | eldifn 4058 |
. . . . . . . . 9
⊢ (𝑘 ∈ ((0...𝑛) ∖ (0...0)) → ¬ 𝑘 ∈
(0...0)) |
57 | 56 | adantl 481 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ((0...𝑛) ∖ (0...0))) → ¬ 𝑘 ∈
(0...0)) |
58 | | eldifi 4057 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ((0...𝑛) ∖ (0...0)) → 𝑘 ∈ (0...𝑛)) |
59 | | elfznn0 13278 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ (0...𝑛) → 𝑘 ∈ ℕ0) |
60 | 58, 59 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ((0...𝑛) ∖ (0...0)) → 𝑘 ∈ ℕ0) |
61 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢
(deg‘(ℂ × {𝐴})) = (deg‘(ℂ × {𝐴})) |
62 | 24, 61 | dgrub 25300 |
. . . . . . . . . . . . 13
⊢
(((ℂ × {𝐴}) ∈ (Poly‘ℂ) ∧ 𝑘 ∈ ℕ0
∧ ((coeff‘(ℂ × {𝐴}))‘𝑘) ≠ 0) → 𝑘 ≤ (deg‘(ℂ × {𝐴}))) |
63 | 62 | 3expia 1119 |
. . . . . . . . . . . 12
⊢
(((ℂ × {𝐴}) ∈ (Poly‘ℂ) ∧ 𝑘 ∈ ℕ0)
→ (((coeff‘(ℂ × {𝐴}))‘𝑘) ≠ 0 → 𝑘 ≤ (deg‘(ℂ × {𝐴})))) |
64 | 23, 60, 63 | syl2an 595 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ((0...𝑛) ∖ (0...0))) →
(((coeff‘(ℂ × {𝐴}))‘𝑘) ≠ 0 → 𝑘 ≤ (deg‘(ℂ × {𝐴})))) |
65 | | 0dgr 25311 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ ℂ →
(deg‘(ℂ × {𝐴})) = 0) |
66 | 65 | ad3antrrr 726 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ((0...𝑛) ∖ (0...0))) →
(deg‘(ℂ × {𝐴})) = 0) |
67 | 66 | breq2d 5082 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ((0...𝑛) ∖ (0...0))) → (𝑘 ≤ (deg‘(ℂ
× {𝐴})) ↔ 𝑘 ≤ 0)) |
68 | 60 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ((0...𝑛) ∖ (0...0))) → 𝑘 ∈ ℕ0) |
69 | | nn0le0eq0 12191 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ℕ0
→ (𝑘 ≤ 0 ↔
𝑘 = 0)) |
70 | 68, 69 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ((0...𝑛) ∖ (0...0))) → (𝑘 ≤ 0 ↔ 𝑘 = 0)) |
71 | 67, 70 | bitrd 278 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ((0...𝑛) ∖ (0...0))) → (𝑘 ≤ (deg‘(ℂ
× {𝐴})) ↔ 𝑘 = 0)) |
72 | 64, 71 | sylibd 238 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ((0...𝑛) ∖ (0...0))) →
(((coeff‘(ℂ × {𝐴}))‘𝑘) ≠ 0 → 𝑘 = 0)) |
73 | | id 22 |
. . . . . . . . . . 11
⊢ (𝑘 = 0 → 𝑘 = 0) |
74 | | 0z 12260 |
. . . . . . . . . . . 12
⊢ 0 ∈
ℤ |
75 | | elfz3 13195 |
. . . . . . . . . . . 12
⊢ (0 ∈
ℤ → 0 ∈ (0...0)) |
76 | 74, 75 | ax-mp 5 |
. . . . . . . . . . 11
⊢ 0 ∈
(0...0) |
77 | 73, 76 | eqeltrdi 2847 |
. . . . . . . . . 10
⊢ (𝑘 = 0 → 𝑘 ∈ (0...0)) |
78 | 72, 77 | syl6 35 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ((0...𝑛) ∖ (0...0))) →
(((coeff‘(ℂ × {𝐴}))‘𝑘) ≠ 0 → 𝑘 ∈ (0...0))) |
79 | 78 | necon1bd 2960 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ((0...𝑛) ∖ (0...0))) → (¬ 𝑘 ∈ (0...0) →
((coeff‘(ℂ × {𝐴}))‘𝑘) = 0)) |
80 | 57, 79 | mpd 15 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ((0...𝑛) ∖ (0...0))) →
((coeff‘(ℂ × {𝐴}))‘𝑘) = 0) |
81 | 80 | oveq1d 7270 |
. . . . . 6
⊢ ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ((0...𝑛) ∖ (0...0))) →
(((coeff‘(ℂ × {𝐴}))‘𝑘) · ((coeff‘𝐹)‘(𝑛 − 𝑘))) = (0 · ((coeff‘𝐹)‘(𝑛 − 𝑘)))) |
82 | 17 | adantr 480 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) →
(coeff‘𝐹):ℕ0⟶ℂ) |
83 | | fznn0sub 13217 |
. . . . . . . . 9
⊢ (𝑘 ∈ (0...𝑛) → (𝑛 − 𝑘) ∈
ℕ0) |
84 | 58, 83 | syl 17 |
. . . . . . . 8
⊢ (𝑘 ∈ ((0...𝑛) ∖ (0...0)) → (𝑛 − 𝑘) ∈
ℕ0) |
85 | | ffvelrn 6941 |
. . . . . . . 8
⊢
(((coeff‘𝐹):ℕ0⟶ℂ ∧
(𝑛 − 𝑘) ∈ ℕ0)
→ ((coeff‘𝐹)‘(𝑛 − 𝑘)) ∈ ℂ) |
86 | 82, 84, 85 | syl2an 595 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ((0...𝑛) ∖ (0...0))) →
((coeff‘𝐹)‘(𝑛 − 𝑘)) ∈ ℂ) |
87 | 86 | mul02d 11103 |
. . . . . 6
⊢ ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ((0...𝑛) ∖ (0...0))) → (0 ·
((coeff‘𝐹)‘(𝑛 − 𝑘))) = 0) |
88 | 81, 87 | eqtrd 2778 |
. . . . 5
⊢ ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ((0...𝑛) ∖ (0...0))) →
(((coeff‘(ℂ × {𝐴}))‘𝑘) · ((coeff‘𝐹)‘(𝑛 − 𝑘))) = 0) |
89 | | fzfid 13621 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) →
(0...𝑛) ∈
Fin) |
90 | 43, 55, 88, 89 | fsumss 15365 |
. . . 4
⊢ (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) →
Σ𝑘 ∈
(0...0)(((coeff‘(ℂ × {𝐴}))‘𝑘) · ((coeff‘𝐹)‘(𝑛 − 𝑘))) = Σ𝑘 ∈ (0...𝑛)(((coeff‘(ℂ × {𝐴}))‘𝑘) · ((coeff‘𝐹)‘(𝑛 − 𝑘)))) |
91 | 49 | fsum1 15387 |
. . . . 5
⊢ ((0
∈ ℤ ∧ (((coeff‘(ℂ × {𝐴}))‘0) · ((coeff‘𝐹)‘(𝑛 − 0))) ∈ ℂ) →
Σ𝑘 ∈
(0...0)(((coeff‘(ℂ × {𝐴}))‘𝑘) · ((coeff‘𝐹)‘(𝑛 − 𝑘))) = (((coeff‘(ℂ × {𝐴}))‘0) ·
((coeff‘𝐹)‘(𝑛 − 0)))) |
92 | 74, 53, 91 | sylancr 586 |
. . . 4
⊢ (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) →
Σ𝑘 ∈
(0...0)(((coeff‘(ℂ × {𝐴}))‘𝑘) · ((coeff‘𝐹)‘(𝑛 − 𝑘))) = (((coeff‘(ℂ × {𝐴}))‘0) ·
((coeff‘𝐹)‘(𝑛 − 0)))) |
93 | 39, 90, 92 | 3eqtr2d 2784 |
. . 3
⊢ (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) →
((coeff‘((ℂ × {𝐴}) ∘f · 𝐹))‘𝑛) = (((coeff‘(ℂ × {𝐴}))‘0) ·
((coeff‘𝐹)‘(𝑛 − 0)))) |
94 | | simpl 482 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) → 𝐴 ∈ ℂ) |
95 | | eqidd 2739 |
. . . 4
⊢ (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) →
((coeff‘𝐹)‘𝑛) = ((coeff‘𝐹)‘𝑛)) |
96 | 20, 94, 18, 95 | ofc1 7537 |
. . 3
⊢ (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) →
(((ℕ0 × {𝐴}) ∘f ·
(coeff‘𝐹))‘𝑛) = (𝐴 · ((coeff‘𝐹)‘𝑛))) |
97 | 36, 93, 96 | 3eqtr4d 2788 |
. 2
⊢ (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) →
((coeff‘((ℂ × {𝐴}) ∘f · 𝐹))‘𝑛) = (((ℕ0 × {𝐴}) ∘f ·
(coeff‘𝐹))‘𝑛)) |
98 | 11, 22, 97 | eqfnfvd 6894 |
1
⊢ ((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) → (coeff‘((ℂ
× {𝐴})
∘f · 𝐹)) = ((ℕ0 × {𝐴}) ∘f ·
(coeff‘𝐹))) |