MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coemulc Structured version   Visualization version   GIF version

Theorem coemulc 26160
Description: The coefficient function is linear under scalar multiplication. (Contributed by Mario Carneiro, 24-Jul-2014.)
Assertion
Ref Expression
coemulc ((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) → (coeff‘((ℂ × {𝐴}) ∘f · 𝐹)) = ((ℕ0 × {𝐴}) ∘f · (coeff‘𝐹)))

Proof of Theorem coemulc
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3969 . . . . 5 ℂ ⊆ ℂ
2 plyconst 26111 . . . . 5 ((ℂ ⊆ ℂ ∧ 𝐴 ∈ ℂ) → (ℂ × {𝐴}) ∈ (Poly‘ℂ))
31, 2mpan 690 . . . 4 (𝐴 ∈ ℂ → (ℂ × {𝐴}) ∈ (Poly‘ℂ))
4 plyssc 26105 . . . . 5 (Poly‘𝑆) ⊆ (Poly‘ℂ)
54sseli 3942 . . . 4 (𝐹 ∈ (Poly‘𝑆) → 𝐹 ∈ (Poly‘ℂ))
6 plymulcl 26126 . . . 4 (((ℂ × {𝐴}) ∈ (Poly‘ℂ) ∧ 𝐹 ∈ (Poly‘ℂ)) → ((ℂ × {𝐴}) ∘f · 𝐹) ∈ (Poly‘ℂ))
73, 5, 6syl2an 596 . . 3 ((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) → ((ℂ × {𝐴}) ∘f · 𝐹) ∈ (Poly‘ℂ))
8 eqid 2729 . . . 4 (coeff‘((ℂ × {𝐴}) ∘f · 𝐹)) = (coeff‘((ℂ × {𝐴}) ∘f · 𝐹))
98coef3 26137 . . 3 (((ℂ × {𝐴}) ∘f · 𝐹) ∈ (Poly‘ℂ) → (coeff‘((ℂ × {𝐴}) ∘f · 𝐹)):ℕ0⟶ℂ)
10 ffn 6688 . . 3 ((coeff‘((ℂ × {𝐴}) ∘f · 𝐹)):ℕ0⟶ℂ → (coeff‘((ℂ × {𝐴}) ∘f · 𝐹)) Fn ℕ0)
117, 9, 103syl 18 . 2 ((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) → (coeff‘((ℂ × {𝐴}) ∘f · 𝐹)) Fn ℕ0)
12 fconstg 6747 . . . . 5 (𝐴 ∈ ℂ → (ℕ0 × {𝐴}):ℕ0⟶{𝐴})
1312adantr 480 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) → (ℕ0 × {𝐴}):ℕ0⟶{𝐴})
1413ffnd 6689 . . 3 ((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) → (ℕ0 × {𝐴}) Fn ℕ0)
15 eqid 2729 . . . . . 6 (coeff‘𝐹) = (coeff‘𝐹)
1615coef3 26137 . . . . 5 (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐹):ℕ0⟶ℂ)
1716adantl 481 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) → (coeff‘𝐹):ℕ0⟶ℂ)
1817ffnd 6689 . . 3 ((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) → (coeff‘𝐹) Fn ℕ0)
19 nn0ex 12448 . . . 4 0 ∈ V
2019a1i 11 . . 3 ((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) → ℕ0 ∈ V)
21 inidm 4190 . . 3 (ℕ0 ∩ ℕ0) = ℕ0
2214, 18, 20, 20, 21offn 7666 . 2 ((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) → ((ℕ0 × {𝐴}) ∘f · (coeff‘𝐹)) Fn ℕ0)
233ad2antrr 726 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → (ℂ × {𝐴}) ∈ (Poly‘ℂ))
24 eqid 2729 . . . . . . 7 (coeff‘(ℂ × {𝐴})) = (coeff‘(ℂ × {𝐴}))
2524coefv0 26153 . . . . . 6 ((ℂ × {𝐴}) ∈ (Poly‘ℂ) → ((ℂ × {𝐴})‘0) = ((coeff‘(ℂ × {𝐴}))‘0))
2623, 25syl 17 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → ((ℂ × {𝐴})‘0) = ((coeff‘(ℂ × {𝐴}))‘0))
27 simpll 766 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → 𝐴 ∈ ℂ)
28 0cn 11166 . . . . . 6 0 ∈ ℂ
29 fvconst2g 7176 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 ∈ ℂ) → ((ℂ × {𝐴})‘0) = 𝐴)
3027, 28, 29sylancl 586 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → ((ℂ × {𝐴})‘0) = 𝐴)
3126, 30eqtr3d 2766 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → ((coeff‘(ℂ × {𝐴}))‘0) = 𝐴)
32 simpr 484 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
3332nn0cnd 12505 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℂ)
3433subid1d 11522 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → (𝑛 − 0) = 𝑛)
3534fveq2d 6862 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → ((coeff‘𝐹)‘(𝑛 − 0)) = ((coeff‘𝐹)‘𝑛))
3631, 35oveq12d 7405 . . 3 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → (((coeff‘(ℂ × {𝐴}))‘0) · ((coeff‘𝐹)‘(𝑛 − 0))) = (𝐴 · ((coeff‘𝐹)‘𝑛)))
375ad2antlr 727 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → 𝐹 ∈ (Poly‘ℂ))
3824, 15coemul 26157 . . . . 5 (((ℂ × {𝐴}) ∈ (Poly‘ℂ) ∧ 𝐹 ∈ (Poly‘ℂ) ∧ 𝑛 ∈ ℕ0) → ((coeff‘((ℂ × {𝐴}) ∘f · 𝐹))‘𝑛) = Σ𝑘 ∈ (0...𝑛)(((coeff‘(ℂ × {𝐴}))‘𝑘) · ((coeff‘𝐹)‘(𝑛𝑘))))
3923, 37, 32, 38syl3anc 1373 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → ((coeff‘((ℂ × {𝐴}) ∘f · 𝐹))‘𝑛) = Σ𝑘 ∈ (0...𝑛)(((coeff‘(ℂ × {𝐴}))‘𝑘) · ((coeff‘𝐹)‘(𝑛𝑘))))
40 nn0uz 12835 . . . . . . 7 0 = (ℤ‘0)
4132, 40eleqtrdi 2838 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ (ℤ‘0))
42 fzss2 13525 . . . . . 6 (𝑛 ∈ (ℤ‘0) → (0...0) ⊆ (0...𝑛))
4341, 42syl 17 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → (0...0) ⊆ (0...𝑛))
44 elfz1eq 13496 . . . . . . . 8 (𝑘 ∈ (0...0) → 𝑘 = 0)
4544adantl 481 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ (0...0)) → 𝑘 = 0)
46 fveq2 6858 . . . . . . . 8 (𝑘 = 0 → ((coeff‘(ℂ × {𝐴}))‘𝑘) = ((coeff‘(ℂ × {𝐴}))‘0))
47 oveq2 7395 . . . . . . . . 9 (𝑘 = 0 → (𝑛𝑘) = (𝑛 − 0))
4847fveq2d 6862 . . . . . . . 8 (𝑘 = 0 → ((coeff‘𝐹)‘(𝑛𝑘)) = ((coeff‘𝐹)‘(𝑛 − 0)))
4946, 48oveq12d 7405 . . . . . . 7 (𝑘 = 0 → (((coeff‘(ℂ × {𝐴}))‘𝑘) · ((coeff‘𝐹)‘(𝑛𝑘))) = (((coeff‘(ℂ × {𝐴}))‘0) · ((coeff‘𝐹)‘(𝑛 − 0))))
5045, 49syl 17 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ (0...0)) → (((coeff‘(ℂ × {𝐴}))‘𝑘) · ((coeff‘𝐹)‘(𝑛𝑘))) = (((coeff‘(ℂ × {𝐴}))‘0) · ((coeff‘𝐹)‘(𝑛 − 0))))
5117ffvelcdmda 7056 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → ((coeff‘𝐹)‘𝑛) ∈ ℂ)
5227, 51mulcld 11194 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → (𝐴 · ((coeff‘𝐹)‘𝑛)) ∈ ℂ)
5336, 52eqeltrd 2828 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → (((coeff‘(ℂ × {𝐴}))‘0) · ((coeff‘𝐹)‘(𝑛 − 0))) ∈ ℂ)
5453adantr 480 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ (0...0)) → (((coeff‘(ℂ × {𝐴}))‘0) · ((coeff‘𝐹)‘(𝑛 − 0))) ∈ ℂ)
5550, 54eqeltrd 2828 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ (0...0)) → (((coeff‘(ℂ × {𝐴}))‘𝑘) · ((coeff‘𝐹)‘(𝑛𝑘))) ∈ ℂ)
56 eldifn 4095 . . . . . . . . 9 (𝑘 ∈ ((0...𝑛) ∖ (0...0)) → ¬ 𝑘 ∈ (0...0))
5756adantl 481 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ((0...𝑛) ∖ (0...0))) → ¬ 𝑘 ∈ (0...0))
58 eldifi 4094 . . . . . . . . . . . . 13 (𝑘 ∈ ((0...𝑛) ∖ (0...0)) → 𝑘 ∈ (0...𝑛))
59 elfznn0 13581 . . . . . . . . . . . . 13 (𝑘 ∈ (0...𝑛) → 𝑘 ∈ ℕ0)
6058, 59syl 17 . . . . . . . . . . . 12 (𝑘 ∈ ((0...𝑛) ∖ (0...0)) → 𝑘 ∈ ℕ0)
61 eqid 2729 . . . . . . . . . . . . . 14 (deg‘(ℂ × {𝐴})) = (deg‘(ℂ × {𝐴}))
6224, 61dgrub 26139 . . . . . . . . . . . . 13 (((ℂ × {𝐴}) ∈ (Poly‘ℂ) ∧ 𝑘 ∈ ℕ0 ∧ ((coeff‘(ℂ × {𝐴}))‘𝑘) ≠ 0) → 𝑘 ≤ (deg‘(ℂ × {𝐴})))
63623expia 1121 . . . . . . . . . . . 12 (((ℂ × {𝐴}) ∈ (Poly‘ℂ) ∧ 𝑘 ∈ ℕ0) → (((coeff‘(ℂ × {𝐴}))‘𝑘) ≠ 0 → 𝑘 ≤ (deg‘(ℂ × {𝐴}))))
6423, 60, 63syl2an 596 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ((0...𝑛) ∖ (0...0))) → (((coeff‘(ℂ × {𝐴}))‘𝑘) ≠ 0 → 𝑘 ≤ (deg‘(ℂ × {𝐴}))))
65 0dgr 26150 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (deg‘(ℂ × {𝐴})) = 0)
6665ad3antrrr 730 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ((0...𝑛) ∖ (0...0))) → (deg‘(ℂ × {𝐴})) = 0)
6766breq2d 5119 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ((0...𝑛) ∖ (0...0))) → (𝑘 ≤ (deg‘(ℂ × {𝐴})) ↔ 𝑘 ≤ 0))
6860adantl 481 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ((0...𝑛) ∖ (0...0))) → 𝑘 ∈ ℕ0)
69 nn0le0eq0 12470 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 → (𝑘 ≤ 0 ↔ 𝑘 = 0))
7068, 69syl 17 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ((0...𝑛) ∖ (0...0))) → (𝑘 ≤ 0 ↔ 𝑘 = 0))
7167, 70bitrd 279 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ((0...𝑛) ∖ (0...0))) → (𝑘 ≤ (deg‘(ℂ × {𝐴})) ↔ 𝑘 = 0))
7264, 71sylibd 239 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ((0...𝑛) ∖ (0...0))) → (((coeff‘(ℂ × {𝐴}))‘𝑘) ≠ 0 → 𝑘 = 0))
73 id 22 . . . . . . . . . . 11 (𝑘 = 0 → 𝑘 = 0)
74 0z 12540 . . . . . . . . . . . 12 0 ∈ ℤ
75 elfz3 13495 . . . . . . . . . . . 12 (0 ∈ ℤ → 0 ∈ (0...0))
7674, 75ax-mp 5 . . . . . . . . . . 11 0 ∈ (0...0)
7773, 76eqeltrdi 2836 . . . . . . . . . 10 (𝑘 = 0 → 𝑘 ∈ (0...0))
7872, 77syl6 35 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ((0...𝑛) ∖ (0...0))) → (((coeff‘(ℂ × {𝐴}))‘𝑘) ≠ 0 → 𝑘 ∈ (0...0)))
7978necon1bd 2943 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ((0...𝑛) ∖ (0...0))) → (¬ 𝑘 ∈ (0...0) → ((coeff‘(ℂ × {𝐴}))‘𝑘) = 0))
8057, 79mpd 15 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ((0...𝑛) ∖ (0...0))) → ((coeff‘(ℂ × {𝐴}))‘𝑘) = 0)
8180oveq1d 7402 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ((0...𝑛) ∖ (0...0))) → (((coeff‘(ℂ × {𝐴}))‘𝑘) · ((coeff‘𝐹)‘(𝑛𝑘))) = (0 · ((coeff‘𝐹)‘(𝑛𝑘))))
8217adantr 480 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → (coeff‘𝐹):ℕ0⟶ℂ)
83 fznn0sub 13517 . . . . . . . . 9 (𝑘 ∈ (0...𝑛) → (𝑛𝑘) ∈ ℕ0)
8458, 83syl 17 . . . . . . . 8 (𝑘 ∈ ((0...𝑛) ∖ (0...0)) → (𝑛𝑘) ∈ ℕ0)
85 ffvelcdm 7053 . . . . . . . 8 (((coeff‘𝐹):ℕ0⟶ℂ ∧ (𝑛𝑘) ∈ ℕ0) → ((coeff‘𝐹)‘(𝑛𝑘)) ∈ ℂ)
8682, 84, 85syl2an 596 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ((0...𝑛) ∖ (0...0))) → ((coeff‘𝐹)‘(𝑛𝑘)) ∈ ℂ)
8786mul02d 11372 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ((0...𝑛) ∖ (0...0))) → (0 · ((coeff‘𝐹)‘(𝑛𝑘))) = 0)
8881, 87eqtrd 2764 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ((0...𝑛) ∖ (0...0))) → (((coeff‘(ℂ × {𝐴}))‘𝑘) · ((coeff‘𝐹)‘(𝑛𝑘))) = 0)
89 fzfid 13938 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → (0...𝑛) ∈ Fin)
9043, 55, 88, 89fsumss 15691 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → Σ𝑘 ∈ (0...0)(((coeff‘(ℂ × {𝐴}))‘𝑘) · ((coeff‘𝐹)‘(𝑛𝑘))) = Σ𝑘 ∈ (0...𝑛)(((coeff‘(ℂ × {𝐴}))‘𝑘) · ((coeff‘𝐹)‘(𝑛𝑘))))
9149fsum1 15713 . . . . 5 ((0 ∈ ℤ ∧ (((coeff‘(ℂ × {𝐴}))‘0) · ((coeff‘𝐹)‘(𝑛 − 0))) ∈ ℂ) → Σ𝑘 ∈ (0...0)(((coeff‘(ℂ × {𝐴}))‘𝑘) · ((coeff‘𝐹)‘(𝑛𝑘))) = (((coeff‘(ℂ × {𝐴}))‘0) · ((coeff‘𝐹)‘(𝑛 − 0))))
9274, 53, 91sylancr 587 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → Σ𝑘 ∈ (0...0)(((coeff‘(ℂ × {𝐴}))‘𝑘) · ((coeff‘𝐹)‘(𝑛𝑘))) = (((coeff‘(ℂ × {𝐴}))‘0) · ((coeff‘𝐹)‘(𝑛 − 0))))
9339, 90, 923eqtr2d 2770 . . 3 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → ((coeff‘((ℂ × {𝐴}) ∘f · 𝐹))‘𝑛) = (((coeff‘(ℂ × {𝐴}))‘0) · ((coeff‘𝐹)‘(𝑛 − 0))))
94 simpl 482 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) → 𝐴 ∈ ℂ)
95 eqidd 2730 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → ((coeff‘𝐹)‘𝑛) = ((coeff‘𝐹)‘𝑛))
9620, 94, 18, 95ofc1 7681 . . 3 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → (((ℕ0 × {𝐴}) ∘f · (coeff‘𝐹))‘𝑛) = (𝐴 · ((coeff‘𝐹)‘𝑛)))
9736, 93, 963eqtr4d 2774 . 2 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → ((coeff‘((ℂ × {𝐴}) ∘f · 𝐹))‘𝑛) = (((ℕ0 × {𝐴}) ∘f · (coeff‘𝐹))‘𝑛))
9811, 22, 97eqfnfvd 7006 1 ((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) → (coeff‘((ℂ × {𝐴}) ∘f · 𝐹)) = ((ℕ0 × {𝐴}) ∘f · (coeff‘𝐹)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  Vcvv 3447  cdif 3911  wss 3914  {csn 4589   class class class wbr 5107   × cxp 5636   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  f cof 7651  cc 11066  0cc0 11068   · cmul 11073  cle 11209  cmin 11405  0cn0 12442  cz 12529  cuz 12793  ...cfz 13468  Σcsu 15652  Polycply 26089  coeffccoe 26091  degcdgr 26092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-fz 13469  df-fzo 13616  df-fl 13754  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-rlim 15455  df-sum 15653  df-0p 25571  df-ply 26093  df-coe 26095  df-dgr 26096
This theorem is referenced by:  coe0  26161  coesub  26162  mpaaeu  43139
  Copyright terms: Public domain W3C validator