MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coemulc Structured version   Visualization version   GIF version

Theorem coemulc 25416
Description: The coefficient function is linear under scalar multiplication. (Contributed by Mario Carneiro, 24-Jul-2014.)
Assertion
Ref Expression
coemulc ((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) → (coeff‘((ℂ × {𝐴}) ∘f · 𝐹)) = ((ℕ0 × {𝐴}) ∘f · (coeff‘𝐹)))

Proof of Theorem coemulc
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3943 . . . . 5 ℂ ⊆ ℂ
2 plyconst 25367 . . . . 5 ((ℂ ⊆ ℂ ∧ 𝐴 ∈ ℂ) → (ℂ × {𝐴}) ∈ (Poly‘ℂ))
31, 2mpan 687 . . . 4 (𝐴 ∈ ℂ → (ℂ × {𝐴}) ∈ (Poly‘ℂ))
4 plyssc 25361 . . . . 5 (Poly‘𝑆) ⊆ (Poly‘ℂ)
54sseli 3917 . . . 4 (𝐹 ∈ (Poly‘𝑆) → 𝐹 ∈ (Poly‘ℂ))
6 plymulcl 25382 . . . 4 (((ℂ × {𝐴}) ∈ (Poly‘ℂ) ∧ 𝐹 ∈ (Poly‘ℂ)) → ((ℂ × {𝐴}) ∘f · 𝐹) ∈ (Poly‘ℂ))
73, 5, 6syl2an 596 . . 3 ((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) → ((ℂ × {𝐴}) ∘f · 𝐹) ∈ (Poly‘ℂ))
8 eqid 2738 . . . 4 (coeff‘((ℂ × {𝐴}) ∘f · 𝐹)) = (coeff‘((ℂ × {𝐴}) ∘f · 𝐹))
98coef3 25393 . . 3 (((ℂ × {𝐴}) ∘f · 𝐹) ∈ (Poly‘ℂ) → (coeff‘((ℂ × {𝐴}) ∘f · 𝐹)):ℕ0⟶ℂ)
10 ffn 6600 . . 3 ((coeff‘((ℂ × {𝐴}) ∘f · 𝐹)):ℕ0⟶ℂ → (coeff‘((ℂ × {𝐴}) ∘f · 𝐹)) Fn ℕ0)
117, 9, 103syl 18 . 2 ((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) → (coeff‘((ℂ × {𝐴}) ∘f · 𝐹)) Fn ℕ0)
12 fconstg 6661 . . . . 5 (𝐴 ∈ ℂ → (ℕ0 × {𝐴}):ℕ0⟶{𝐴})
1312adantr 481 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) → (ℕ0 × {𝐴}):ℕ0⟶{𝐴})
1413ffnd 6601 . . 3 ((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) → (ℕ0 × {𝐴}) Fn ℕ0)
15 eqid 2738 . . . . . 6 (coeff‘𝐹) = (coeff‘𝐹)
1615coef3 25393 . . . . 5 (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐹):ℕ0⟶ℂ)
1716adantl 482 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) → (coeff‘𝐹):ℕ0⟶ℂ)
1817ffnd 6601 . . 3 ((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) → (coeff‘𝐹) Fn ℕ0)
19 nn0ex 12239 . . . 4 0 ∈ V
2019a1i 11 . . 3 ((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) → ℕ0 ∈ V)
21 inidm 4152 . . 3 (ℕ0 ∩ ℕ0) = ℕ0
2214, 18, 20, 20, 21offn 7546 . 2 ((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) → ((ℕ0 × {𝐴}) ∘f · (coeff‘𝐹)) Fn ℕ0)
233ad2antrr 723 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → (ℂ × {𝐴}) ∈ (Poly‘ℂ))
24 eqid 2738 . . . . . . 7 (coeff‘(ℂ × {𝐴})) = (coeff‘(ℂ × {𝐴}))
2524coefv0 25409 . . . . . 6 ((ℂ × {𝐴}) ∈ (Poly‘ℂ) → ((ℂ × {𝐴})‘0) = ((coeff‘(ℂ × {𝐴}))‘0))
2623, 25syl 17 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → ((ℂ × {𝐴})‘0) = ((coeff‘(ℂ × {𝐴}))‘0))
27 simpll 764 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → 𝐴 ∈ ℂ)
28 0cn 10967 . . . . . 6 0 ∈ ℂ
29 fvconst2g 7077 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 ∈ ℂ) → ((ℂ × {𝐴})‘0) = 𝐴)
3027, 28, 29sylancl 586 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → ((ℂ × {𝐴})‘0) = 𝐴)
3126, 30eqtr3d 2780 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → ((coeff‘(ℂ × {𝐴}))‘0) = 𝐴)
32 simpr 485 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
3332nn0cnd 12295 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℂ)
3433subid1d 11321 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → (𝑛 − 0) = 𝑛)
3534fveq2d 6778 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → ((coeff‘𝐹)‘(𝑛 − 0)) = ((coeff‘𝐹)‘𝑛))
3631, 35oveq12d 7293 . . 3 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → (((coeff‘(ℂ × {𝐴}))‘0) · ((coeff‘𝐹)‘(𝑛 − 0))) = (𝐴 · ((coeff‘𝐹)‘𝑛)))
375ad2antlr 724 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → 𝐹 ∈ (Poly‘ℂ))
3824, 15coemul 25413 . . . . 5 (((ℂ × {𝐴}) ∈ (Poly‘ℂ) ∧ 𝐹 ∈ (Poly‘ℂ) ∧ 𝑛 ∈ ℕ0) → ((coeff‘((ℂ × {𝐴}) ∘f · 𝐹))‘𝑛) = Σ𝑘 ∈ (0...𝑛)(((coeff‘(ℂ × {𝐴}))‘𝑘) · ((coeff‘𝐹)‘(𝑛𝑘))))
3923, 37, 32, 38syl3anc 1370 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → ((coeff‘((ℂ × {𝐴}) ∘f · 𝐹))‘𝑛) = Σ𝑘 ∈ (0...𝑛)(((coeff‘(ℂ × {𝐴}))‘𝑘) · ((coeff‘𝐹)‘(𝑛𝑘))))
40 nn0uz 12620 . . . . . . 7 0 = (ℤ‘0)
4132, 40eleqtrdi 2849 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ (ℤ‘0))
42 fzss2 13296 . . . . . 6 (𝑛 ∈ (ℤ‘0) → (0...0) ⊆ (0...𝑛))
4341, 42syl 17 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → (0...0) ⊆ (0...𝑛))
44 elfz1eq 13267 . . . . . . . 8 (𝑘 ∈ (0...0) → 𝑘 = 0)
4544adantl 482 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ (0...0)) → 𝑘 = 0)
46 fveq2 6774 . . . . . . . 8 (𝑘 = 0 → ((coeff‘(ℂ × {𝐴}))‘𝑘) = ((coeff‘(ℂ × {𝐴}))‘0))
47 oveq2 7283 . . . . . . . . 9 (𝑘 = 0 → (𝑛𝑘) = (𝑛 − 0))
4847fveq2d 6778 . . . . . . . 8 (𝑘 = 0 → ((coeff‘𝐹)‘(𝑛𝑘)) = ((coeff‘𝐹)‘(𝑛 − 0)))
4946, 48oveq12d 7293 . . . . . . 7 (𝑘 = 0 → (((coeff‘(ℂ × {𝐴}))‘𝑘) · ((coeff‘𝐹)‘(𝑛𝑘))) = (((coeff‘(ℂ × {𝐴}))‘0) · ((coeff‘𝐹)‘(𝑛 − 0))))
5045, 49syl 17 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ (0...0)) → (((coeff‘(ℂ × {𝐴}))‘𝑘) · ((coeff‘𝐹)‘(𝑛𝑘))) = (((coeff‘(ℂ × {𝐴}))‘0) · ((coeff‘𝐹)‘(𝑛 − 0))))
5117ffvelrnda 6961 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → ((coeff‘𝐹)‘𝑛) ∈ ℂ)
5227, 51mulcld 10995 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → (𝐴 · ((coeff‘𝐹)‘𝑛)) ∈ ℂ)
5336, 52eqeltrd 2839 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → (((coeff‘(ℂ × {𝐴}))‘0) · ((coeff‘𝐹)‘(𝑛 − 0))) ∈ ℂ)
5453adantr 481 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ (0...0)) → (((coeff‘(ℂ × {𝐴}))‘0) · ((coeff‘𝐹)‘(𝑛 − 0))) ∈ ℂ)
5550, 54eqeltrd 2839 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ (0...0)) → (((coeff‘(ℂ × {𝐴}))‘𝑘) · ((coeff‘𝐹)‘(𝑛𝑘))) ∈ ℂ)
56 eldifn 4062 . . . . . . . . 9 (𝑘 ∈ ((0...𝑛) ∖ (0...0)) → ¬ 𝑘 ∈ (0...0))
5756adantl 482 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ((0...𝑛) ∖ (0...0))) → ¬ 𝑘 ∈ (0...0))
58 eldifi 4061 . . . . . . . . . . . . 13 (𝑘 ∈ ((0...𝑛) ∖ (0...0)) → 𝑘 ∈ (0...𝑛))
59 elfznn0 13349 . . . . . . . . . . . . 13 (𝑘 ∈ (0...𝑛) → 𝑘 ∈ ℕ0)
6058, 59syl 17 . . . . . . . . . . . 12 (𝑘 ∈ ((0...𝑛) ∖ (0...0)) → 𝑘 ∈ ℕ0)
61 eqid 2738 . . . . . . . . . . . . . 14 (deg‘(ℂ × {𝐴})) = (deg‘(ℂ × {𝐴}))
6224, 61dgrub 25395 . . . . . . . . . . . . 13 (((ℂ × {𝐴}) ∈ (Poly‘ℂ) ∧ 𝑘 ∈ ℕ0 ∧ ((coeff‘(ℂ × {𝐴}))‘𝑘) ≠ 0) → 𝑘 ≤ (deg‘(ℂ × {𝐴})))
63623expia 1120 . . . . . . . . . . . 12 (((ℂ × {𝐴}) ∈ (Poly‘ℂ) ∧ 𝑘 ∈ ℕ0) → (((coeff‘(ℂ × {𝐴}))‘𝑘) ≠ 0 → 𝑘 ≤ (deg‘(ℂ × {𝐴}))))
6423, 60, 63syl2an 596 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ((0...𝑛) ∖ (0...0))) → (((coeff‘(ℂ × {𝐴}))‘𝑘) ≠ 0 → 𝑘 ≤ (deg‘(ℂ × {𝐴}))))
65 0dgr 25406 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (deg‘(ℂ × {𝐴})) = 0)
6665ad3antrrr 727 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ((0...𝑛) ∖ (0...0))) → (deg‘(ℂ × {𝐴})) = 0)
6766breq2d 5086 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ((0...𝑛) ∖ (0...0))) → (𝑘 ≤ (deg‘(ℂ × {𝐴})) ↔ 𝑘 ≤ 0))
6860adantl 482 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ((0...𝑛) ∖ (0...0))) → 𝑘 ∈ ℕ0)
69 nn0le0eq0 12261 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 → (𝑘 ≤ 0 ↔ 𝑘 = 0))
7068, 69syl 17 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ((0...𝑛) ∖ (0...0))) → (𝑘 ≤ 0 ↔ 𝑘 = 0))
7167, 70bitrd 278 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ((0...𝑛) ∖ (0...0))) → (𝑘 ≤ (deg‘(ℂ × {𝐴})) ↔ 𝑘 = 0))
7264, 71sylibd 238 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ((0...𝑛) ∖ (0...0))) → (((coeff‘(ℂ × {𝐴}))‘𝑘) ≠ 0 → 𝑘 = 0))
73 id 22 . . . . . . . . . . 11 (𝑘 = 0 → 𝑘 = 0)
74 0z 12330 . . . . . . . . . . . 12 0 ∈ ℤ
75 elfz3 13266 . . . . . . . . . . . 12 (0 ∈ ℤ → 0 ∈ (0...0))
7674, 75ax-mp 5 . . . . . . . . . . 11 0 ∈ (0...0)
7773, 76eqeltrdi 2847 . . . . . . . . . 10 (𝑘 = 0 → 𝑘 ∈ (0...0))
7872, 77syl6 35 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ((0...𝑛) ∖ (0...0))) → (((coeff‘(ℂ × {𝐴}))‘𝑘) ≠ 0 → 𝑘 ∈ (0...0)))
7978necon1bd 2961 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ((0...𝑛) ∖ (0...0))) → (¬ 𝑘 ∈ (0...0) → ((coeff‘(ℂ × {𝐴}))‘𝑘) = 0))
8057, 79mpd 15 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ((0...𝑛) ∖ (0...0))) → ((coeff‘(ℂ × {𝐴}))‘𝑘) = 0)
8180oveq1d 7290 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ((0...𝑛) ∖ (0...0))) → (((coeff‘(ℂ × {𝐴}))‘𝑘) · ((coeff‘𝐹)‘(𝑛𝑘))) = (0 · ((coeff‘𝐹)‘(𝑛𝑘))))
8217adantr 481 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → (coeff‘𝐹):ℕ0⟶ℂ)
83 fznn0sub 13288 . . . . . . . . 9 (𝑘 ∈ (0...𝑛) → (𝑛𝑘) ∈ ℕ0)
8458, 83syl 17 . . . . . . . 8 (𝑘 ∈ ((0...𝑛) ∖ (0...0)) → (𝑛𝑘) ∈ ℕ0)
85 ffvelrn 6959 . . . . . . . 8 (((coeff‘𝐹):ℕ0⟶ℂ ∧ (𝑛𝑘) ∈ ℕ0) → ((coeff‘𝐹)‘(𝑛𝑘)) ∈ ℂ)
8682, 84, 85syl2an 596 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ((0...𝑛) ∖ (0...0))) → ((coeff‘𝐹)‘(𝑛𝑘)) ∈ ℂ)
8786mul02d 11173 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ((0...𝑛) ∖ (0...0))) → (0 · ((coeff‘𝐹)‘(𝑛𝑘))) = 0)
8881, 87eqtrd 2778 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ((0...𝑛) ∖ (0...0))) → (((coeff‘(ℂ × {𝐴}))‘𝑘) · ((coeff‘𝐹)‘(𝑛𝑘))) = 0)
89 fzfid 13693 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → (0...𝑛) ∈ Fin)
9043, 55, 88, 89fsumss 15437 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → Σ𝑘 ∈ (0...0)(((coeff‘(ℂ × {𝐴}))‘𝑘) · ((coeff‘𝐹)‘(𝑛𝑘))) = Σ𝑘 ∈ (0...𝑛)(((coeff‘(ℂ × {𝐴}))‘𝑘) · ((coeff‘𝐹)‘(𝑛𝑘))))
9149fsum1 15459 . . . . 5 ((0 ∈ ℤ ∧ (((coeff‘(ℂ × {𝐴}))‘0) · ((coeff‘𝐹)‘(𝑛 − 0))) ∈ ℂ) → Σ𝑘 ∈ (0...0)(((coeff‘(ℂ × {𝐴}))‘𝑘) · ((coeff‘𝐹)‘(𝑛𝑘))) = (((coeff‘(ℂ × {𝐴}))‘0) · ((coeff‘𝐹)‘(𝑛 − 0))))
9274, 53, 91sylancr 587 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → Σ𝑘 ∈ (0...0)(((coeff‘(ℂ × {𝐴}))‘𝑘) · ((coeff‘𝐹)‘(𝑛𝑘))) = (((coeff‘(ℂ × {𝐴}))‘0) · ((coeff‘𝐹)‘(𝑛 − 0))))
9339, 90, 923eqtr2d 2784 . . 3 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → ((coeff‘((ℂ × {𝐴}) ∘f · 𝐹))‘𝑛) = (((coeff‘(ℂ × {𝐴}))‘0) · ((coeff‘𝐹)‘(𝑛 − 0))))
94 simpl 483 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) → 𝐴 ∈ ℂ)
95 eqidd 2739 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → ((coeff‘𝐹)‘𝑛) = ((coeff‘𝐹)‘𝑛))
9620, 94, 18, 95ofc1 7559 . . 3 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → (((ℕ0 × {𝐴}) ∘f · (coeff‘𝐹))‘𝑛) = (𝐴 · ((coeff‘𝐹)‘𝑛)))
9736, 93, 963eqtr4d 2788 . 2 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → ((coeff‘((ℂ × {𝐴}) ∘f · 𝐹))‘𝑛) = (((ℕ0 × {𝐴}) ∘f · (coeff‘𝐹))‘𝑛))
9811, 22, 97eqfnfvd 6912 1 ((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) → (coeff‘((ℂ × {𝐴}) ∘f · 𝐹)) = ((ℕ0 × {𝐴}) ∘f · (coeff‘𝐹)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  Vcvv 3432  cdif 3884  wss 3887  {csn 4561   class class class wbr 5074   × cxp 5587   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  f cof 7531  cc 10869  0cc0 10871   · cmul 10876  cle 11010  cmin 11205  0cn0 12233  cz 12319  cuz 12582  ...cfz 13239  Σcsu 15397  Polycply 25345  coeffccoe 25347  degcdgr 25348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-fl 13512  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-rlim 15198  df-sum 15398  df-0p 24834  df-ply 25349  df-coe 25351  df-dgr 25352
This theorem is referenced by:  coe0  25417  coesub  25418  mpaaeu  40975
  Copyright terms: Public domain W3C validator