MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coemulc Structured version   Visualization version   GIF version

Theorem coemulc 25321
Description: The coefficient function is linear under scalar multiplication. (Contributed by Mario Carneiro, 24-Jul-2014.)
Assertion
Ref Expression
coemulc ((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) → (coeff‘((ℂ × {𝐴}) ∘f · 𝐹)) = ((ℕ0 × {𝐴}) ∘f · (coeff‘𝐹)))

Proof of Theorem coemulc
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3939 . . . . 5 ℂ ⊆ ℂ
2 plyconst 25272 . . . . 5 ((ℂ ⊆ ℂ ∧ 𝐴 ∈ ℂ) → (ℂ × {𝐴}) ∈ (Poly‘ℂ))
31, 2mpan 686 . . . 4 (𝐴 ∈ ℂ → (ℂ × {𝐴}) ∈ (Poly‘ℂ))
4 plyssc 25266 . . . . 5 (Poly‘𝑆) ⊆ (Poly‘ℂ)
54sseli 3913 . . . 4 (𝐹 ∈ (Poly‘𝑆) → 𝐹 ∈ (Poly‘ℂ))
6 plymulcl 25287 . . . 4 (((ℂ × {𝐴}) ∈ (Poly‘ℂ) ∧ 𝐹 ∈ (Poly‘ℂ)) → ((ℂ × {𝐴}) ∘f · 𝐹) ∈ (Poly‘ℂ))
73, 5, 6syl2an 595 . . 3 ((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) → ((ℂ × {𝐴}) ∘f · 𝐹) ∈ (Poly‘ℂ))
8 eqid 2738 . . . 4 (coeff‘((ℂ × {𝐴}) ∘f · 𝐹)) = (coeff‘((ℂ × {𝐴}) ∘f · 𝐹))
98coef3 25298 . . 3 (((ℂ × {𝐴}) ∘f · 𝐹) ∈ (Poly‘ℂ) → (coeff‘((ℂ × {𝐴}) ∘f · 𝐹)):ℕ0⟶ℂ)
10 ffn 6584 . . 3 ((coeff‘((ℂ × {𝐴}) ∘f · 𝐹)):ℕ0⟶ℂ → (coeff‘((ℂ × {𝐴}) ∘f · 𝐹)) Fn ℕ0)
117, 9, 103syl 18 . 2 ((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) → (coeff‘((ℂ × {𝐴}) ∘f · 𝐹)) Fn ℕ0)
12 fconstg 6645 . . . . 5 (𝐴 ∈ ℂ → (ℕ0 × {𝐴}):ℕ0⟶{𝐴})
1312adantr 480 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) → (ℕ0 × {𝐴}):ℕ0⟶{𝐴})
1413ffnd 6585 . . 3 ((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) → (ℕ0 × {𝐴}) Fn ℕ0)
15 eqid 2738 . . . . . 6 (coeff‘𝐹) = (coeff‘𝐹)
1615coef3 25298 . . . . 5 (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐹):ℕ0⟶ℂ)
1716adantl 481 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) → (coeff‘𝐹):ℕ0⟶ℂ)
1817ffnd 6585 . . 3 ((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) → (coeff‘𝐹) Fn ℕ0)
19 nn0ex 12169 . . . 4 0 ∈ V
2019a1i 11 . . 3 ((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) → ℕ0 ∈ V)
21 inidm 4149 . . 3 (ℕ0 ∩ ℕ0) = ℕ0
2214, 18, 20, 20, 21offn 7524 . 2 ((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) → ((ℕ0 × {𝐴}) ∘f · (coeff‘𝐹)) Fn ℕ0)
233ad2antrr 722 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → (ℂ × {𝐴}) ∈ (Poly‘ℂ))
24 eqid 2738 . . . . . . 7 (coeff‘(ℂ × {𝐴})) = (coeff‘(ℂ × {𝐴}))
2524coefv0 25314 . . . . . 6 ((ℂ × {𝐴}) ∈ (Poly‘ℂ) → ((ℂ × {𝐴})‘0) = ((coeff‘(ℂ × {𝐴}))‘0))
2623, 25syl 17 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → ((ℂ × {𝐴})‘0) = ((coeff‘(ℂ × {𝐴}))‘0))
27 simpll 763 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → 𝐴 ∈ ℂ)
28 0cn 10898 . . . . . 6 0 ∈ ℂ
29 fvconst2g 7059 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 ∈ ℂ) → ((ℂ × {𝐴})‘0) = 𝐴)
3027, 28, 29sylancl 585 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → ((ℂ × {𝐴})‘0) = 𝐴)
3126, 30eqtr3d 2780 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → ((coeff‘(ℂ × {𝐴}))‘0) = 𝐴)
32 simpr 484 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
3332nn0cnd 12225 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℂ)
3433subid1d 11251 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → (𝑛 − 0) = 𝑛)
3534fveq2d 6760 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → ((coeff‘𝐹)‘(𝑛 − 0)) = ((coeff‘𝐹)‘𝑛))
3631, 35oveq12d 7273 . . 3 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → (((coeff‘(ℂ × {𝐴}))‘0) · ((coeff‘𝐹)‘(𝑛 − 0))) = (𝐴 · ((coeff‘𝐹)‘𝑛)))
375ad2antlr 723 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → 𝐹 ∈ (Poly‘ℂ))
3824, 15coemul 25318 . . . . 5 (((ℂ × {𝐴}) ∈ (Poly‘ℂ) ∧ 𝐹 ∈ (Poly‘ℂ) ∧ 𝑛 ∈ ℕ0) → ((coeff‘((ℂ × {𝐴}) ∘f · 𝐹))‘𝑛) = Σ𝑘 ∈ (0...𝑛)(((coeff‘(ℂ × {𝐴}))‘𝑘) · ((coeff‘𝐹)‘(𝑛𝑘))))
3923, 37, 32, 38syl3anc 1369 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → ((coeff‘((ℂ × {𝐴}) ∘f · 𝐹))‘𝑛) = Σ𝑘 ∈ (0...𝑛)(((coeff‘(ℂ × {𝐴}))‘𝑘) · ((coeff‘𝐹)‘(𝑛𝑘))))
40 nn0uz 12549 . . . . . . 7 0 = (ℤ‘0)
4132, 40eleqtrdi 2849 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ (ℤ‘0))
42 fzss2 13225 . . . . . 6 (𝑛 ∈ (ℤ‘0) → (0...0) ⊆ (0...𝑛))
4341, 42syl 17 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → (0...0) ⊆ (0...𝑛))
44 elfz1eq 13196 . . . . . . . 8 (𝑘 ∈ (0...0) → 𝑘 = 0)
4544adantl 481 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ (0...0)) → 𝑘 = 0)
46 fveq2 6756 . . . . . . . 8 (𝑘 = 0 → ((coeff‘(ℂ × {𝐴}))‘𝑘) = ((coeff‘(ℂ × {𝐴}))‘0))
47 oveq2 7263 . . . . . . . . 9 (𝑘 = 0 → (𝑛𝑘) = (𝑛 − 0))
4847fveq2d 6760 . . . . . . . 8 (𝑘 = 0 → ((coeff‘𝐹)‘(𝑛𝑘)) = ((coeff‘𝐹)‘(𝑛 − 0)))
4946, 48oveq12d 7273 . . . . . . 7 (𝑘 = 0 → (((coeff‘(ℂ × {𝐴}))‘𝑘) · ((coeff‘𝐹)‘(𝑛𝑘))) = (((coeff‘(ℂ × {𝐴}))‘0) · ((coeff‘𝐹)‘(𝑛 − 0))))
5045, 49syl 17 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ (0...0)) → (((coeff‘(ℂ × {𝐴}))‘𝑘) · ((coeff‘𝐹)‘(𝑛𝑘))) = (((coeff‘(ℂ × {𝐴}))‘0) · ((coeff‘𝐹)‘(𝑛 − 0))))
5117ffvelrnda 6943 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → ((coeff‘𝐹)‘𝑛) ∈ ℂ)
5227, 51mulcld 10926 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → (𝐴 · ((coeff‘𝐹)‘𝑛)) ∈ ℂ)
5336, 52eqeltrd 2839 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → (((coeff‘(ℂ × {𝐴}))‘0) · ((coeff‘𝐹)‘(𝑛 − 0))) ∈ ℂ)
5453adantr 480 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ (0...0)) → (((coeff‘(ℂ × {𝐴}))‘0) · ((coeff‘𝐹)‘(𝑛 − 0))) ∈ ℂ)
5550, 54eqeltrd 2839 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ (0...0)) → (((coeff‘(ℂ × {𝐴}))‘𝑘) · ((coeff‘𝐹)‘(𝑛𝑘))) ∈ ℂ)
56 eldifn 4058 . . . . . . . . 9 (𝑘 ∈ ((0...𝑛) ∖ (0...0)) → ¬ 𝑘 ∈ (0...0))
5756adantl 481 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ((0...𝑛) ∖ (0...0))) → ¬ 𝑘 ∈ (0...0))
58 eldifi 4057 . . . . . . . . . . . . 13 (𝑘 ∈ ((0...𝑛) ∖ (0...0)) → 𝑘 ∈ (0...𝑛))
59 elfznn0 13278 . . . . . . . . . . . . 13 (𝑘 ∈ (0...𝑛) → 𝑘 ∈ ℕ0)
6058, 59syl 17 . . . . . . . . . . . 12 (𝑘 ∈ ((0...𝑛) ∖ (0...0)) → 𝑘 ∈ ℕ0)
61 eqid 2738 . . . . . . . . . . . . . 14 (deg‘(ℂ × {𝐴})) = (deg‘(ℂ × {𝐴}))
6224, 61dgrub 25300 . . . . . . . . . . . . 13 (((ℂ × {𝐴}) ∈ (Poly‘ℂ) ∧ 𝑘 ∈ ℕ0 ∧ ((coeff‘(ℂ × {𝐴}))‘𝑘) ≠ 0) → 𝑘 ≤ (deg‘(ℂ × {𝐴})))
63623expia 1119 . . . . . . . . . . . 12 (((ℂ × {𝐴}) ∈ (Poly‘ℂ) ∧ 𝑘 ∈ ℕ0) → (((coeff‘(ℂ × {𝐴}))‘𝑘) ≠ 0 → 𝑘 ≤ (deg‘(ℂ × {𝐴}))))
6423, 60, 63syl2an 595 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ((0...𝑛) ∖ (0...0))) → (((coeff‘(ℂ × {𝐴}))‘𝑘) ≠ 0 → 𝑘 ≤ (deg‘(ℂ × {𝐴}))))
65 0dgr 25311 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (deg‘(ℂ × {𝐴})) = 0)
6665ad3antrrr 726 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ((0...𝑛) ∖ (0...0))) → (deg‘(ℂ × {𝐴})) = 0)
6766breq2d 5082 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ((0...𝑛) ∖ (0...0))) → (𝑘 ≤ (deg‘(ℂ × {𝐴})) ↔ 𝑘 ≤ 0))
6860adantl 481 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ((0...𝑛) ∖ (0...0))) → 𝑘 ∈ ℕ0)
69 nn0le0eq0 12191 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 → (𝑘 ≤ 0 ↔ 𝑘 = 0))
7068, 69syl 17 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ((0...𝑛) ∖ (0...0))) → (𝑘 ≤ 0 ↔ 𝑘 = 0))
7167, 70bitrd 278 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ((0...𝑛) ∖ (0...0))) → (𝑘 ≤ (deg‘(ℂ × {𝐴})) ↔ 𝑘 = 0))
7264, 71sylibd 238 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ((0...𝑛) ∖ (0...0))) → (((coeff‘(ℂ × {𝐴}))‘𝑘) ≠ 0 → 𝑘 = 0))
73 id 22 . . . . . . . . . . 11 (𝑘 = 0 → 𝑘 = 0)
74 0z 12260 . . . . . . . . . . . 12 0 ∈ ℤ
75 elfz3 13195 . . . . . . . . . . . 12 (0 ∈ ℤ → 0 ∈ (0...0))
7674, 75ax-mp 5 . . . . . . . . . . 11 0 ∈ (0...0)
7773, 76eqeltrdi 2847 . . . . . . . . . 10 (𝑘 = 0 → 𝑘 ∈ (0...0))
7872, 77syl6 35 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ((0...𝑛) ∖ (0...0))) → (((coeff‘(ℂ × {𝐴}))‘𝑘) ≠ 0 → 𝑘 ∈ (0...0)))
7978necon1bd 2960 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ((0...𝑛) ∖ (0...0))) → (¬ 𝑘 ∈ (0...0) → ((coeff‘(ℂ × {𝐴}))‘𝑘) = 0))
8057, 79mpd 15 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ((0...𝑛) ∖ (0...0))) → ((coeff‘(ℂ × {𝐴}))‘𝑘) = 0)
8180oveq1d 7270 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ((0...𝑛) ∖ (0...0))) → (((coeff‘(ℂ × {𝐴}))‘𝑘) · ((coeff‘𝐹)‘(𝑛𝑘))) = (0 · ((coeff‘𝐹)‘(𝑛𝑘))))
8217adantr 480 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → (coeff‘𝐹):ℕ0⟶ℂ)
83 fznn0sub 13217 . . . . . . . . 9 (𝑘 ∈ (0...𝑛) → (𝑛𝑘) ∈ ℕ0)
8458, 83syl 17 . . . . . . . 8 (𝑘 ∈ ((0...𝑛) ∖ (0...0)) → (𝑛𝑘) ∈ ℕ0)
85 ffvelrn 6941 . . . . . . . 8 (((coeff‘𝐹):ℕ0⟶ℂ ∧ (𝑛𝑘) ∈ ℕ0) → ((coeff‘𝐹)‘(𝑛𝑘)) ∈ ℂ)
8682, 84, 85syl2an 595 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ((0...𝑛) ∖ (0...0))) → ((coeff‘𝐹)‘(𝑛𝑘)) ∈ ℂ)
8786mul02d 11103 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ((0...𝑛) ∖ (0...0))) → (0 · ((coeff‘𝐹)‘(𝑛𝑘))) = 0)
8881, 87eqtrd 2778 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ((0...𝑛) ∖ (0...0))) → (((coeff‘(ℂ × {𝐴}))‘𝑘) · ((coeff‘𝐹)‘(𝑛𝑘))) = 0)
89 fzfid 13621 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → (0...𝑛) ∈ Fin)
9043, 55, 88, 89fsumss 15365 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → Σ𝑘 ∈ (0...0)(((coeff‘(ℂ × {𝐴}))‘𝑘) · ((coeff‘𝐹)‘(𝑛𝑘))) = Σ𝑘 ∈ (0...𝑛)(((coeff‘(ℂ × {𝐴}))‘𝑘) · ((coeff‘𝐹)‘(𝑛𝑘))))
9149fsum1 15387 . . . . 5 ((0 ∈ ℤ ∧ (((coeff‘(ℂ × {𝐴}))‘0) · ((coeff‘𝐹)‘(𝑛 − 0))) ∈ ℂ) → Σ𝑘 ∈ (0...0)(((coeff‘(ℂ × {𝐴}))‘𝑘) · ((coeff‘𝐹)‘(𝑛𝑘))) = (((coeff‘(ℂ × {𝐴}))‘0) · ((coeff‘𝐹)‘(𝑛 − 0))))
9274, 53, 91sylancr 586 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → Σ𝑘 ∈ (0...0)(((coeff‘(ℂ × {𝐴}))‘𝑘) · ((coeff‘𝐹)‘(𝑛𝑘))) = (((coeff‘(ℂ × {𝐴}))‘0) · ((coeff‘𝐹)‘(𝑛 − 0))))
9339, 90, 923eqtr2d 2784 . . 3 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → ((coeff‘((ℂ × {𝐴}) ∘f · 𝐹))‘𝑛) = (((coeff‘(ℂ × {𝐴}))‘0) · ((coeff‘𝐹)‘(𝑛 − 0))))
94 simpl 482 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) → 𝐴 ∈ ℂ)
95 eqidd 2739 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → ((coeff‘𝐹)‘𝑛) = ((coeff‘𝐹)‘𝑛))
9620, 94, 18, 95ofc1 7537 . . 3 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → (((ℕ0 × {𝐴}) ∘f · (coeff‘𝐹))‘𝑛) = (𝐴 · ((coeff‘𝐹)‘𝑛)))
9736, 93, 963eqtr4d 2788 . 2 (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → ((coeff‘((ℂ × {𝐴}) ∘f · 𝐹))‘𝑛) = (((ℕ0 × {𝐴}) ∘f · (coeff‘𝐹))‘𝑛))
9811, 22, 97eqfnfvd 6894 1 ((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) → (coeff‘((ℂ × {𝐴}) ∘f · 𝐹)) = ((ℕ0 × {𝐴}) ∘f · (coeff‘𝐹)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  Vcvv 3422  cdif 3880  wss 3883  {csn 4558   class class class wbr 5070   × cxp 5578   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  f cof 7509  cc 10800  0cc0 10802   · cmul 10807  cle 10941  cmin 11135  0cn0 12163  cz 12249  cuz 12511  ...cfz 13168  Σcsu 15325  Polycply 25250  coeffccoe 25252  degcdgr 25253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-rlim 15126  df-sum 15326  df-0p 24739  df-ply 25254  df-coe 25256  df-dgr 25257
This theorem is referenced by:  coe0  25322  coesub  25323  mpaaeu  40891
  Copyright terms: Public domain W3C validator