Step | Hyp | Ref
| Expression |
1 | | itg2mulc.2 |
. . . . . . 7
⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) |
2 | | icossicc 13097 |
. . . . . . 7
⊢
(0[,)+∞) ⊆ (0[,]+∞) |
3 | | fss 6601 |
. . . . . . 7
⊢ ((𝐹:ℝ⟶(0[,)+∞)
∧ (0[,)+∞) ⊆ (0[,]+∞)) → 𝐹:ℝ⟶(0[,]+∞)) |
4 | 1, 2, 3 | sylancl 585 |
. . . . . 6
⊢ (𝜑 → 𝐹:ℝ⟶(0[,]+∞)) |
5 | 4 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) → 𝐹:ℝ⟶(0[,]+∞)) |
6 | | simpr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) → 𝑓 ∈ dom
∫1) |
7 | | itg2mulclem.4 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈
ℝ+) |
8 | 7 | rpreccld 12711 |
. . . . . . . 8
⊢ (𝜑 → (1 / 𝐴) ∈
ℝ+) |
9 | 8 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) → (1 /
𝐴) ∈
ℝ+) |
10 | 9 | rpred 12701 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) → (1 /
𝐴) ∈
ℝ) |
11 | 6, 10 | i1fmulc 24773 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) →
((ℝ × {(1 / 𝐴)}) ∘f · 𝑓) ∈ dom
∫1) |
12 | | itg2ub 24803 |
. . . . . 6
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ ((ℝ × {(1 / 𝐴)}) ∘f · 𝑓) ∈ dom ∫1
∧ ((ℝ × {(1 / 𝐴)}) ∘f · 𝑓) ∘r ≤ 𝐹) →
(∫1‘((ℝ × {(1 / 𝐴)}) ∘f · 𝑓)) ≤
(∫2‘𝐹)) |
13 | 12 | 3expia 1119 |
. . . . 5
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ ((ℝ × {(1 / 𝐴)}) ∘f · 𝑓) ∈ dom ∫1)
→ (((ℝ × {(1 / 𝐴)}) ∘f · 𝑓) ∘r ≤ 𝐹 →
(∫1‘((ℝ × {(1 / 𝐴)}) ∘f · 𝑓)) ≤
(∫2‘𝐹))) |
14 | 5, 11, 13 | syl2anc 583 |
. . . 4
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) →
(((ℝ × {(1 / 𝐴)}) ∘f · 𝑓) ∘r ≤ 𝐹 →
(∫1‘((ℝ × {(1 / 𝐴)}) ∘f · 𝑓)) ≤
(∫2‘𝐹))) |
15 | | i1ff 24745 |
. . . . . . . . . 10
⊢ (𝑓 ∈ dom ∫1
→ 𝑓:ℝ⟶ℝ) |
16 | 15 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) → 𝑓:ℝ⟶ℝ) |
17 | 16 | ffvelrnda 6943 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → (𝑓‘𝑦) ∈ ℝ) |
18 | | rge0ssre 13117 |
. . . . . . . . . . 11
⊢
(0[,)+∞) ⊆ ℝ |
19 | | fss 6601 |
. . . . . . . . . . 11
⊢ ((𝐹:ℝ⟶(0[,)+∞)
∧ (0[,)+∞) ⊆ ℝ) → 𝐹:ℝ⟶ℝ) |
20 | 1, 18, 19 | sylancl 585 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) |
21 | 20 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) → 𝐹:ℝ⟶ℝ) |
22 | 21 | ffvelrnda 6943 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → (𝐹‘𝑦) ∈ ℝ) |
23 | 7 | rpred 12701 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ ℝ) |
24 | 23 | ad2antrr 722 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → 𝐴 ∈
ℝ) |
25 | 7 | rpgt0d 12704 |
. . . . . . . . 9
⊢ (𝜑 → 0 < 𝐴) |
26 | 25 | ad2antrr 722 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → 0 <
𝐴) |
27 | | ledivmul 11781 |
. . . . . . . 8
⊢ (((𝑓‘𝑦) ∈ ℝ ∧ (𝐹‘𝑦) ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (((𝑓‘𝑦) / 𝐴) ≤ (𝐹‘𝑦) ↔ (𝑓‘𝑦) ≤ (𝐴 · (𝐹‘𝑦)))) |
28 | 17, 22, 24, 26, 27 | syl112anc 1372 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → (((𝑓‘𝑦) / 𝐴) ≤ (𝐹‘𝑦) ↔ (𝑓‘𝑦) ≤ (𝐴 · (𝐹‘𝑦)))) |
29 | 17 | recnd 10934 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → (𝑓‘𝑦) ∈ ℂ) |
30 | 24 | recnd 10934 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → 𝐴 ∈
ℂ) |
31 | 7 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) → 𝐴 ∈
ℝ+) |
32 | 31 | rpne0d 12706 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) → 𝐴 ≠ 0) |
33 | 32 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → 𝐴 ≠ 0) |
34 | 29, 30, 33 | divrec2d 11685 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → ((𝑓‘𝑦) / 𝐴) = ((1 / 𝐴) · (𝑓‘𝑦))) |
35 | 34 | breq1d 5080 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → (((𝑓‘𝑦) / 𝐴) ≤ (𝐹‘𝑦) ↔ ((1 / 𝐴) · (𝑓‘𝑦)) ≤ (𝐹‘𝑦))) |
36 | 28, 35 | bitr3d 280 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → ((𝑓‘𝑦) ≤ (𝐴 · (𝐹‘𝑦)) ↔ ((1 / 𝐴) · (𝑓‘𝑦)) ≤ (𝐹‘𝑦))) |
37 | 36 | ralbidva 3119 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) →
(∀𝑦 ∈ ℝ
(𝑓‘𝑦) ≤ (𝐴 · (𝐹‘𝑦)) ↔ ∀𝑦 ∈ ℝ ((1 / 𝐴) · (𝑓‘𝑦)) ≤ (𝐹‘𝑦))) |
38 | | reex 10893 |
. . . . . . 7
⊢ ℝ
∈ V |
39 | 38 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) → ℝ
∈ V) |
40 | | ovexd 7290 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → (𝐴 · (𝐹‘𝑦)) ∈ V) |
41 | 16 | feqmptd 6819 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) → 𝑓 = (𝑦 ∈ ℝ ↦ (𝑓‘𝑦))) |
42 | 7 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → 𝐴 ∈
ℝ+) |
43 | | fconstmpt 5640 |
. . . . . . . 8
⊢ (ℝ
× {𝐴}) = (𝑦 ∈ ℝ ↦ 𝐴) |
44 | 43 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) →
(ℝ × {𝐴}) =
(𝑦 ∈ ℝ ↦
𝐴)) |
45 | 1 | feqmptd 6819 |
. . . . . . . 8
⊢ (𝜑 → 𝐹 = (𝑦 ∈ ℝ ↦ (𝐹‘𝑦))) |
46 | 45 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) → 𝐹 = (𝑦 ∈ ℝ ↦ (𝐹‘𝑦))) |
47 | 39, 42, 22, 44, 46 | offval2 7531 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) →
((ℝ × {𝐴})
∘f · 𝐹) = (𝑦 ∈ ℝ ↦ (𝐴 · (𝐹‘𝑦)))) |
48 | 39, 17, 40, 41, 47 | ofrfval2 7532 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) → (𝑓 ∘r ≤
((ℝ × {𝐴})
∘f · 𝐹) ↔ ∀𝑦 ∈ ℝ (𝑓‘𝑦) ≤ (𝐴 · (𝐹‘𝑦)))) |
49 | | ovexd 7290 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → ((1 /
𝐴) · (𝑓‘𝑦)) ∈ V) |
50 | 8 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → (1 /
𝐴) ∈
ℝ+) |
51 | | fconstmpt 5640 |
. . . . . . . 8
⊢ (ℝ
× {(1 / 𝐴)}) = (𝑦 ∈ ℝ ↦ (1 /
𝐴)) |
52 | 51 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) →
(ℝ × {(1 / 𝐴)})
= (𝑦 ∈ ℝ ↦
(1 / 𝐴))) |
53 | 39, 50, 17, 52, 41 | offval2 7531 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) →
((ℝ × {(1 / 𝐴)}) ∘f · 𝑓) = (𝑦 ∈ ℝ ↦ ((1 / 𝐴) · (𝑓‘𝑦)))) |
54 | 39, 49, 22, 53, 46 | ofrfval2 7532 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) →
(((ℝ × {(1 / 𝐴)}) ∘f · 𝑓) ∘r ≤ 𝐹 ↔ ∀𝑦 ∈ ℝ ((1 / 𝐴) · (𝑓‘𝑦)) ≤ (𝐹‘𝑦))) |
55 | 37, 48, 54 | 3bitr4d 310 |
. . . 4
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) → (𝑓 ∘r ≤
((ℝ × {𝐴})
∘f · 𝐹) ↔ ((ℝ × {(1 / 𝐴)}) ∘f ·
𝑓) ∘r ≤
𝐹)) |
56 | 6, 10 | itg1mulc 24774 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) →
(∫1‘((ℝ × {(1 / 𝐴)}) ∘f · 𝑓)) = ((1 / 𝐴) · (∫1‘𝑓))) |
57 | | itg1cl 24754 |
. . . . . . . . . 10
⊢ (𝑓 ∈ dom ∫1
→ (∫1‘𝑓) ∈ ℝ) |
58 | 57 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) →
(∫1‘𝑓)
∈ ℝ) |
59 | 58 | recnd 10934 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) →
(∫1‘𝑓)
∈ ℂ) |
60 | 23 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) → 𝐴 ∈
ℝ) |
61 | 60 | recnd 10934 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) → 𝐴 ∈
ℂ) |
62 | 59, 61, 32 | divrec2d 11685 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) →
((∫1‘𝑓) / 𝐴) = ((1 / 𝐴) · (∫1‘𝑓))) |
63 | 56, 62 | eqtr4d 2781 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) →
(∫1‘((ℝ × {(1 / 𝐴)}) ∘f · 𝑓)) =
((∫1‘𝑓) / 𝐴)) |
64 | 63 | breq1d 5080 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) →
((∫1‘((ℝ × {(1 / 𝐴)}) ∘f · 𝑓)) ≤
(∫2‘𝐹)
↔ ((∫1‘𝑓) / 𝐴) ≤ (∫2‘𝐹))) |
65 | | itg2mulc.3 |
. . . . . . 7
⊢ (𝜑 →
(∫2‘𝐹)
∈ ℝ) |
66 | 65 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) →
(∫2‘𝐹)
∈ ℝ) |
67 | 25 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) → 0 <
𝐴) |
68 | | ledivmul 11781 |
. . . . . 6
⊢
(((∫1‘𝑓) ∈ ℝ ∧
(∫2‘𝐹)
∈ ℝ ∧ (𝐴
∈ ℝ ∧ 0 < 𝐴)) → (((∫1‘𝑓) / 𝐴) ≤ (∫2‘𝐹) ↔
(∫1‘𝑓)
≤ (𝐴 ·
(∫2‘𝐹)))) |
69 | 58, 66, 60, 67, 68 | syl112anc 1372 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) →
(((∫1‘𝑓) / 𝐴) ≤ (∫2‘𝐹) ↔
(∫1‘𝑓)
≤ (𝐴 ·
(∫2‘𝐹)))) |
70 | 64, 69 | bitr2d 279 |
. . . 4
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) →
((∫1‘𝑓) ≤ (𝐴 · (∫2‘𝐹)) ↔
(∫1‘((ℝ × {(1 / 𝐴)}) ∘f · 𝑓)) ≤
(∫2‘𝐹))) |
71 | 14, 55, 70 | 3imtr4d 293 |
. . 3
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) → (𝑓 ∘r ≤
((ℝ × {𝐴})
∘f · 𝐹) → (∫1‘𝑓) ≤ (𝐴 · (∫2‘𝐹)))) |
72 | 71 | ralrimiva 3107 |
. 2
⊢ (𝜑 → ∀𝑓 ∈ dom ∫1(𝑓 ∘r ≤
((ℝ × {𝐴})
∘f · 𝐹) → (∫1‘𝑓) ≤ (𝐴 · (∫2‘𝐹)))) |
73 | | ge0mulcl 13122 |
. . . . . 6
⊢ ((𝑥 ∈ (0[,)+∞) ∧
𝑦 ∈ (0[,)+∞))
→ (𝑥 · 𝑦) ∈
(0[,)+∞)) |
74 | 73 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) →
(𝑥 · 𝑦) ∈
(0[,)+∞)) |
75 | | fconstg 6645 |
. . . . . . 7
⊢ (𝐴 ∈ ℝ+
→ (ℝ × {𝐴}):ℝ⟶{𝐴}) |
76 | 7, 75 | syl 17 |
. . . . . 6
⊢ (𝜑 → (ℝ × {𝐴}):ℝ⟶{𝐴}) |
77 | | rpre 12667 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℝ+
→ 𝐴 ∈
ℝ) |
78 | | rpge0 12672 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℝ+
→ 0 ≤ 𝐴) |
79 | | elrege0 13115 |
. . . . . . . . 9
⊢ (𝐴 ∈ (0[,)+∞) ↔
(𝐴 ∈ ℝ ∧ 0
≤ 𝐴)) |
80 | 77, 78, 79 | sylanbrc 582 |
. . . . . . . 8
⊢ (𝐴 ∈ ℝ+
→ 𝐴 ∈
(0[,)+∞)) |
81 | 7, 80 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ (0[,)+∞)) |
82 | 81 | snssd 4739 |
. . . . . 6
⊢ (𝜑 → {𝐴} ⊆ (0[,)+∞)) |
83 | 76, 82 | fssd 6602 |
. . . . 5
⊢ (𝜑 → (ℝ × {𝐴}):ℝ⟶(0[,)+∞)) |
84 | 38 | a1i 11 |
. . . . 5
⊢ (𝜑 → ℝ ∈
V) |
85 | | inidm 4149 |
. . . . 5
⊢ (ℝ
∩ ℝ) = ℝ |
86 | 74, 83, 1, 84, 84, 85 | off 7529 |
. . . 4
⊢ (𝜑 → ((ℝ × {𝐴}) ∘f ·
𝐹):ℝ⟶(0[,)+∞)) |
87 | | fss 6601 |
. . . 4
⊢
((((ℝ × {𝐴}) ∘f · 𝐹):ℝ⟶(0[,)+∞)
∧ (0[,)+∞) ⊆ (0[,]+∞)) → ((ℝ × {𝐴}) ∘f ·
𝐹):ℝ⟶(0[,]+∞)) |
88 | 86, 2, 87 | sylancl 585 |
. . 3
⊢ (𝜑 → ((ℝ × {𝐴}) ∘f ·
𝐹):ℝ⟶(0[,]+∞)) |
89 | 23, 65 | remulcld 10936 |
. . . 4
⊢ (𝜑 → (𝐴 · (∫2‘𝐹)) ∈
ℝ) |
90 | 89 | rexrd 10956 |
. . 3
⊢ (𝜑 → (𝐴 · (∫2‘𝐹)) ∈
ℝ*) |
91 | | itg2leub 24804 |
. . 3
⊢
((((ℝ × {𝐴}) ∘f · 𝐹):ℝ⟶(0[,]+∞)
∧ (𝐴 ·
(∫2‘𝐹)) ∈ ℝ*) →
((∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) ≤ (𝐴 · (∫2‘𝐹)) ↔ ∀𝑓 ∈ dom
∫1(𝑓
∘r ≤ ((ℝ × {𝐴}) ∘f · 𝐹) →
(∫1‘𝑓)
≤ (𝐴 ·
(∫2‘𝐹))))) |
92 | 88, 90, 91 | syl2anc 583 |
. 2
⊢ (𝜑 →
((∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) ≤ (𝐴 · (∫2‘𝐹)) ↔ ∀𝑓 ∈ dom
∫1(𝑓
∘r ≤ ((ℝ × {𝐴}) ∘f · 𝐹) →
(∫1‘𝑓)
≤ (𝐴 ·
(∫2‘𝐹))))) |
93 | 72, 92 | mpbird 256 |
1
⊢ (𝜑 →
(∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) ≤ (𝐴 · (∫2‘𝐹))) |