Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2mulclem Structured version   Visualization version   GIF version

Theorem itg2mulclem 24328
 Description: Lemma for itg2mulc 24329. (Contributed by Mario Carneiro, 8-Jul-2014.)
Hypotheses
Ref Expression
itg2mulc.2 (𝜑𝐹:ℝ⟶(0[,)+∞))
itg2mulc.3 (𝜑 → (∫2𝐹) ∈ ℝ)
itg2mulclem.4 (𝜑𝐴 ∈ ℝ+)
Assertion
Ref Expression
itg2mulclem (𝜑 → (∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) ≤ (𝐴 · (∫2𝐹)))

Proof of Theorem itg2mulclem
Dummy variables 𝑥 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itg2mulc.2 . . . . . . 7 (𝜑𝐹:ℝ⟶(0[,)+∞))
2 icossicc 12804 . . . . . . 7 (0[,)+∞) ⊆ (0[,]+∞)
3 fss 6500 . . . . . . 7 ((𝐹:ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ (0[,]+∞)) → 𝐹:ℝ⟶(0[,]+∞))
41, 2, 3sylancl 589 . . . . . 6 (𝜑𝐹:ℝ⟶(0[,]+∞))
54adantr 484 . . . . 5 ((𝜑𝑓 ∈ dom ∫1) → 𝐹:ℝ⟶(0[,]+∞))
6 simpr 488 . . . . . 6 ((𝜑𝑓 ∈ dom ∫1) → 𝑓 ∈ dom ∫1)
7 itg2mulclem.4 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ+)
87rpreccld 12419 . . . . . . . 8 (𝜑 → (1 / 𝐴) ∈ ℝ+)
98adantr 484 . . . . . . 7 ((𝜑𝑓 ∈ dom ∫1) → (1 / 𝐴) ∈ ℝ+)
109rpred 12409 . . . . . 6 ((𝜑𝑓 ∈ dom ∫1) → (1 / 𝐴) ∈ ℝ)
116, 10i1fmulc 24285 . . . . 5 ((𝜑𝑓 ∈ dom ∫1) → ((ℝ × {(1 / 𝐴)}) ∘f · 𝑓) ∈ dom ∫1)
12 itg2ub 24315 . . . . . 6 ((𝐹:ℝ⟶(0[,]+∞) ∧ ((ℝ × {(1 / 𝐴)}) ∘f · 𝑓) ∈ dom ∫1 ∧ ((ℝ × {(1 / 𝐴)}) ∘f · 𝑓) ∘r𝐹) → (∫1‘((ℝ × {(1 / 𝐴)}) ∘f · 𝑓)) ≤ (∫2𝐹))
13123expia 1118 . . . . 5 ((𝐹:ℝ⟶(0[,]+∞) ∧ ((ℝ × {(1 / 𝐴)}) ∘f · 𝑓) ∈ dom ∫1) → (((ℝ × {(1 / 𝐴)}) ∘f · 𝑓) ∘r𝐹 → (∫1‘((ℝ × {(1 / 𝐴)}) ∘f · 𝑓)) ≤ (∫2𝐹)))
145, 11, 13syl2anc 587 . . . 4 ((𝜑𝑓 ∈ dom ∫1) → (((ℝ × {(1 / 𝐴)}) ∘f · 𝑓) ∘r𝐹 → (∫1‘((ℝ × {(1 / 𝐴)}) ∘f · 𝑓)) ≤ (∫2𝐹)))
15 i1ff 24258 . . . . . . . . . 10 (𝑓 ∈ dom ∫1𝑓:ℝ⟶ℝ)
1615adantl 485 . . . . . . . . 9 ((𝜑𝑓 ∈ dom ∫1) → 𝑓:ℝ⟶ℝ)
1716ffvelrnda 6824 . . . . . . . 8 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → (𝑓𝑦) ∈ ℝ)
18 rge0ssre 12824 . . . . . . . . . . 11 (0[,)+∞) ⊆ ℝ
19 fss 6500 . . . . . . . . . . 11 ((𝐹:ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ ℝ) → 𝐹:ℝ⟶ℝ)
201, 18, 19sylancl 589 . . . . . . . . . 10 (𝜑𝐹:ℝ⟶ℝ)
2120adantr 484 . . . . . . . . 9 ((𝜑𝑓 ∈ dom ∫1) → 𝐹:ℝ⟶ℝ)
2221ffvelrnda 6824 . . . . . . . 8 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → (𝐹𝑦) ∈ ℝ)
237rpred 12409 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
2423ad2antrr 725 . . . . . . . 8 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → 𝐴 ∈ ℝ)
257rpgt0d 12412 . . . . . . . . 9 (𝜑 → 0 < 𝐴)
2625ad2antrr 725 . . . . . . . 8 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → 0 < 𝐴)
27 ledivmul 11493 . . . . . . . 8 (((𝑓𝑦) ∈ ℝ ∧ (𝐹𝑦) ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (((𝑓𝑦) / 𝐴) ≤ (𝐹𝑦) ↔ (𝑓𝑦) ≤ (𝐴 · (𝐹𝑦))))
2817, 22, 24, 26, 27syl112anc 1371 . . . . . . 7 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → (((𝑓𝑦) / 𝐴) ≤ (𝐹𝑦) ↔ (𝑓𝑦) ≤ (𝐴 · (𝐹𝑦))))
2917recnd 10646 . . . . . . . . 9 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → (𝑓𝑦) ∈ ℂ)
3024recnd 10646 . . . . . . . . 9 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → 𝐴 ∈ ℂ)
317adantr 484 . . . . . . . . . . 11 ((𝜑𝑓 ∈ dom ∫1) → 𝐴 ∈ ℝ+)
3231rpne0d 12414 . . . . . . . . . 10 ((𝜑𝑓 ∈ dom ∫1) → 𝐴 ≠ 0)
3332adantr 484 . . . . . . . . 9 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → 𝐴 ≠ 0)
3429, 30, 33divrec2d 11397 . . . . . . . 8 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → ((𝑓𝑦) / 𝐴) = ((1 / 𝐴) · (𝑓𝑦)))
3534breq1d 5049 . . . . . . 7 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → (((𝑓𝑦) / 𝐴) ≤ (𝐹𝑦) ↔ ((1 / 𝐴) · (𝑓𝑦)) ≤ (𝐹𝑦)))
3628, 35bitr3d 284 . . . . . 6 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → ((𝑓𝑦) ≤ (𝐴 · (𝐹𝑦)) ↔ ((1 / 𝐴) · (𝑓𝑦)) ≤ (𝐹𝑦)))
3736ralbidva 3184 . . . . 5 ((𝜑𝑓 ∈ dom ∫1) → (∀𝑦 ∈ ℝ (𝑓𝑦) ≤ (𝐴 · (𝐹𝑦)) ↔ ∀𝑦 ∈ ℝ ((1 / 𝐴) · (𝑓𝑦)) ≤ (𝐹𝑦)))
38 reex 10605 . . . . . . 7 ℝ ∈ V
3938a1i 11 . . . . . 6 ((𝜑𝑓 ∈ dom ∫1) → ℝ ∈ V)
40 ovexd 7165 . . . . . 6 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → (𝐴 · (𝐹𝑦)) ∈ V)
4116feqmptd 6706 . . . . . 6 ((𝜑𝑓 ∈ dom ∫1) → 𝑓 = (𝑦 ∈ ℝ ↦ (𝑓𝑦)))
427ad2antrr 725 . . . . . . 7 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → 𝐴 ∈ ℝ+)
43 fconstmpt 5587 . . . . . . . 8 (ℝ × {𝐴}) = (𝑦 ∈ ℝ ↦ 𝐴)
4443a1i 11 . . . . . . 7 ((𝜑𝑓 ∈ dom ∫1) → (ℝ × {𝐴}) = (𝑦 ∈ ℝ ↦ 𝐴))
451feqmptd 6706 . . . . . . . 8 (𝜑𝐹 = (𝑦 ∈ ℝ ↦ (𝐹𝑦)))
4645adantr 484 . . . . . . 7 ((𝜑𝑓 ∈ dom ∫1) → 𝐹 = (𝑦 ∈ ℝ ↦ (𝐹𝑦)))
4739, 42, 22, 44, 46offval2 7401 . . . . . 6 ((𝜑𝑓 ∈ dom ∫1) → ((ℝ × {𝐴}) ∘f · 𝐹) = (𝑦 ∈ ℝ ↦ (𝐴 · (𝐹𝑦))))
4839, 17, 40, 41, 47ofrfval2 7402 . . . . 5 ((𝜑𝑓 ∈ dom ∫1) → (𝑓r ≤ ((ℝ × {𝐴}) ∘f · 𝐹) ↔ ∀𝑦 ∈ ℝ (𝑓𝑦) ≤ (𝐴 · (𝐹𝑦))))
49 ovexd 7165 . . . . . 6 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → ((1 / 𝐴) · (𝑓𝑦)) ∈ V)
508ad2antrr 725 . . . . . . 7 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → (1 / 𝐴) ∈ ℝ+)
51 fconstmpt 5587 . . . . . . . 8 (ℝ × {(1 / 𝐴)}) = (𝑦 ∈ ℝ ↦ (1 / 𝐴))
5251a1i 11 . . . . . . 7 ((𝜑𝑓 ∈ dom ∫1) → (ℝ × {(1 / 𝐴)}) = (𝑦 ∈ ℝ ↦ (1 / 𝐴)))
5339, 50, 17, 52, 41offval2 7401 . . . . . 6 ((𝜑𝑓 ∈ dom ∫1) → ((ℝ × {(1 / 𝐴)}) ∘f · 𝑓) = (𝑦 ∈ ℝ ↦ ((1 / 𝐴) · (𝑓𝑦))))
5439, 49, 22, 53, 46ofrfval2 7402 . . . . 5 ((𝜑𝑓 ∈ dom ∫1) → (((ℝ × {(1 / 𝐴)}) ∘f · 𝑓) ∘r𝐹 ↔ ∀𝑦 ∈ ℝ ((1 / 𝐴) · (𝑓𝑦)) ≤ (𝐹𝑦)))
5537, 48, 543bitr4d 314 . . . 4 ((𝜑𝑓 ∈ dom ∫1) → (𝑓r ≤ ((ℝ × {𝐴}) ∘f · 𝐹) ↔ ((ℝ × {(1 / 𝐴)}) ∘f · 𝑓) ∘r𝐹))
566, 10itg1mulc 24286 . . . . . . 7 ((𝜑𝑓 ∈ dom ∫1) → (∫1‘((ℝ × {(1 / 𝐴)}) ∘f · 𝑓)) = ((1 / 𝐴) · (∫1𝑓)))
57 itg1cl 24267 . . . . . . . . . 10 (𝑓 ∈ dom ∫1 → (∫1𝑓) ∈ ℝ)
5857adantl 485 . . . . . . . . 9 ((𝜑𝑓 ∈ dom ∫1) → (∫1𝑓) ∈ ℝ)
5958recnd 10646 . . . . . . . 8 ((𝜑𝑓 ∈ dom ∫1) → (∫1𝑓) ∈ ℂ)
6023adantr 484 . . . . . . . . 9 ((𝜑𝑓 ∈ dom ∫1) → 𝐴 ∈ ℝ)
6160recnd 10646 . . . . . . . 8 ((𝜑𝑓 ∈ dom ∫1) → 𝐴 ∈ ℂ)
6259, 61, 32divrec2d 11397 . . . . . . 7 ((𝜑𝑓 ∈ dom ∫1) → ((∫1𝑓) / 𝐴) = ((1 / 𝐴) · (∫1𝑓)))
6356, 62eqtr4d 2859 . . . . . 6 ((𝜑𝑓 ∈ dom ∫1) → (∫1‘((ℝ × {(1 / 𝐴)}) ∘f · 𝑓)) = ((∫1𝑓) / 𝐴))
6463breq1d 5049 . . . . 5 ((𝜑𝑓 ∈ dom ∫1) → ((∫1‘((ℝ × {(1 / 𝐴)}) ∘f · 𝑓)) ≤ (∫2𝐹) ↔ ((∫1𝑓) / 𝐴) ≤ (∫2𝐹)))
65 itg2mulc.3 . . . . . . 7 (𝜑 → (∫2𝐹) ∈ ℝ)
6665adantr 484 . . . . . 6 ((𝜑𝑓 ∈ dom ∫1) → (∫2𝐹) ∈ ℝ)
6725adantr 484 . . . . . 6 ((𝜑𝑓 ∈ dom ∫1) → 0 < 𝐴)
68 ledivmul 11493 . . . . . 6 (((∫1𝑓) ∈ ℝ ∧ (∫2𝐹) ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (((∫1𝑓) / 𝐴) ≤ (∫2𝐹) ↔ (∫1𝑓) ≤ (𝐴 · (∫2𝐹))))
6958, 66, 60, 67, 68syl112anc 1371 . . . . 5 ((𝜑𝑓 ∈ dom ∫1) → (((∫1𝑓) / 𝐴) ≤ (∫2𝐹) ↔ (∫1𝑓) ≤ (𝐴 · (∫2𝐹))))
7064, 69bitr2d 283 . . . 4 ((𝜑𝑓 ∈ dom ∫1) → ((∫1𝑓) ≤ (𝐴 · (∫2𝐹)) ↔ (∫1‘((ℝ × {(1 / 𝐴)}) ∘f · 𝑓)) ≤ (∫2𝐹)))
7114, 55, 703imtr4d 297 . . 3 ((𝜑𝑓 ∈ dom ∫1) → (𝑓r ≤ ((ℝ × {𝐴}) ∘f · 𝐹) → (∫1𝑓) ≤ (𝐴 · (∫2𝐹))))
7271ralrimiva 3170 . 2 (𝜑 → ∀𝑓 ∈ dom ∫1(𝑓r ≤ ((ℝ × {𝐴}) ∘f · 𝐹) → (∫1𝑓) ≤ (𝐴 · (∫2𝐹))))
73 ge0mulcl 12829 . . . . . 6 ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 · 𝑦) ∈ (0[,)+∞))
7473adantl 485 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → (𝑥 · 𝑦) ∈ (0[,)+∞))
75 fconstg 6539 . . . . . . 7 (𝐴 ∈ ℝ+ → (ℝ × {𝐴}):ℝ⟶{𝐴})
767, 75syl 17 . . . . . 6 (𝜑 → (ℝ × {𝐴}):ℝ⟶{𝐴})
77 rpre 12375 . . . . . . . . 9 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
78 rpge0 12380 . . . . . . . . 9 (𝐴 ∈ ℝ+ → 0 ≤ 𝐴)
79 elrege0 12822 . . . . . . . . 9 (𝐴 ∈ (0[,)+∞) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
8077, 78, 79sylanbrc 586 . . . . . . . 8 (𝐴 ∈ ℝ+𝐴 ∈ (0[,)+∞))
817, 80syl 17 . . . . . . 7 (𝜑𝐴 ∈ (0[,)+∞))
8281snssd 4715 . . . . . 6 (𝜑 → {𝐴} ⊆ (0[,)+∞))
8376, 82fssd 6501 . . . . 5 (𝜑 → (ℝ × {𝐴}):ℝ⟶(0[,)+∞))
8438a1i 11 . . . . 5 (𝜑 → ℝ ∈ V)
85 inidm 4170 . . . . 5 (ℝ ∩ ℝ) = ℝ
8674, 83, 1, 84, 84, 85off 7399 . . . 4 (𝜑 → ((ℝ × {𝐴}) ∘f · 𝐹):ℝ⟶(0[,)+∞))
87 fss 6500 . . . 4 ((((ℝ × {𝐴}) ∘f · 𝐹):ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ (0[,]+∞)) → ((ℝ × {𝐴}) ∘f · 𝐹):ℝ⟶(0[,]+∞))
8886, 2, 87sylancl 589 . . 3 (𝜑 → ((ℝ × {𝐴}) ∘f · 𝐹):ℝ⟶(0[,]+∞))
8923, 65remulcld 10648 . . . 4 (𝜑 → (𝐴 · (∫2𝐹)) ∈ ℝ)
9089rexrd 10668 . . 3 (𝜑 → (𝐴 · (∫2𝐹)) ∈ ℝ*)
91 itg2leub 24316 . . 3 ((((ℝ × {𝐴}) ∘f · 𝐹):ℝ⟶(0[,]+∞) ∧ (𝐴 · (∫2𝐹)) ∈ ℝ*) → ((∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) ≤ (𝐴 · (∫2𝐹)) ↔ ∀𝑓 ∈ dom ∫1(𝑓r ≤ ((ℝ × {𝐴}) ∘f · 𝐹) → (∫1𝑓) ≤ (𝐴 · (∫2𝐹)))))
9288, 90, 91syl2anc 587 . 2 (𝜑 → ((∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) ≤ (𝐴 · (∫2𝐹)) ↔ ∀𝑓 ∈ dom ∫1(𝑓r ≤ ((ℝ × {𝐴}) ∘f · 𝐹) → (∫1𝑓) ≤ (𝐴 · (∫2𝐹)))))
9372, 92mpbird 260 1 (𝜑 → (∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) ≤ (𝐴 · (∫2𝐹)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2115   ≠ wne 3007  ∀wral 3126  Vcvv 3471   ⊆ wss 3910  {csn 4540   class class class wbr 5039   ↦ cmpt 5119   × cxp 5526  dom cdm 5528  ⟶wf 6324  ‘cfv 6328  (class class class)co 7130   ∘f cof 7382   ∘r cofr 7383  ℝcr 10513  0cc0 10514  1c1 10515   · cmul 10519  +∞cpnf 10649  ℝ*cxr 10651   < clt 10652   ≤ cle 10653   / cdiv 11274  ℝ+crp 12367  [,)cico 12718  [,]cicc 12719  ∫1citg1 24197  ∫2citg2 24198 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-rep 5163  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-inf2 9080  ax-cnex 10570  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590  ax-pre-mulgt0 10591  ax-pre-sup 10592 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rmo 3134  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-int 4850  df-iun 4894  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-se 5488  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-of 7384  df-ofr 7385  df-om 7556  df-1st 7664  df-2nd 7665  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-1o 8077  df-2o 8078  df-oadd 8081  df-er 8264  df-map 8383  df-pm 8384  df-en 8485  df-dom 8486  df-sdom 8487  df-fin 8488  df-sup 8882  df-inf 8883  df-oi 8950  df-dju 9306  df-card 9344  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-sub 10849  df-neg 10850  df-div 11275  df-nn 11616  df-2 11678  df-3 11679  df-n0 11876  df-z 11960  df-uz 12222  df-q 12327  df-rp 12368  df-xadd 12486  df-ioo 12720  df-ico 12722  df-icc 12723  df-fz 12876  df-fzo 13017  df-fl 13145  df-seq 13353  df-exp 13414  df-hash 13675  df-cj 14437  df-re 14438  df-im 14439  df-sqrt 14573  df-abs 14574  df-clim 14824  df-sum 15022  df-xmet 20513  df-met 20514  df-ovol 24046  df-vol 24047  df-mbf 24201  df-itg1 24202  df-itg2 24203 This theorem is referenced by:  itg2mulc  24329
 Copyright terms: Public domain W3C validator