MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2mulclem Structured version   Visualization version   GIF version

Theorem itg2mulclem 24911
Description: Lemma for itg2mulc 24912. (Contributed by Mario Carneiro, 8-Jul-2014.)
Hypotheses
Ref Expression
itg2mulc.2 (𝜑𝐹:ℝ⟶(0[,)+∞))
itg2mulc.3 (𝜑 → (∫2𝐹) ∈ ℝ)
itg2mulclem.4 (𝜑𝐴 ∈ ℝ+)
Assertion
Ref Expression
itg2mulclem (𝜑 → (∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) ≤ (𝐴 · (∫2𝐹)))

Proof of Theorem itg2mulclem
Dummy variables 𝑥 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itg2mulc.2 . . . . . . 7 (𝜑𝐹:ℝ⟶(0[,)+∞))
2 icossicc 13168 . . . . . . 7 (0[,)+∞) ⊆ (0[,]+∞)
3 fss 6617 . . . . . . 7 ((𝐹:ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ (0[,]+∞)) → 𝐹:ℝ⟶(0[,]+∞))
41, 2, 3sylancl 586 . . . . . 6 (𝜑𝐹:ℝ⟶(0[,]+∞))
54adantr 481 . . . . 5 ((𝜑𝑓 ∈ dom ∫1) → 𝐹:ℝ⟶(0[,]+∞))
6 simpr 485 . . . . . 6 ((𝜑𝑓 ∈ dom ∫1) → 𝑓 ∈ dom ∫1)
7 itg2mulclem.4 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ+)
87rpreccld 12782 . . . . . . . 8 (𝜑 → (1 / 𝐴) ∈ ℝ+)
98adantr 481 . . . . . . 7 ((𝜑𝑓 ∈ dom ∫1) → (1 / 𝐴) ∈ ℝ+)
109rpred 12772 . . . . . 6 ((𝜑𝑓 ∈ dom ∫1) → (1 / 𝐴) ∈ ℝ)
116, 10i1fmulc 24868 . . . . 5 ((𝜑𝑓 ∈ dom ∫1) → ((ℝ × {(1 / 𝐴)}) ∘f · 𝑓) ∈ dom ∫1)
12 itg2ub 24898 . . . . . 6 ((𝐹:ℝ⟶(0[,]+∞) ∧ ((ℝ × {(1 / 𝐴)}) ∘f · 𝑓) ∈ dom ∫1 ∧ ((ℝ × {(1 / 𝐴)}) ∘f · 𝑓) ∘r𝐹) → (∫1‘((ℝ × {(1 / 𝐴)}) ∘f · 𝑓)) ≤ (∫2𝐹))
13123expia 1120 . . . . 5 ((𝐹:ℝ⟶(0[,]+∞) ∧ ((ℝ × {(1 / 𝐴)}) ∘f · 𝑓) ∈ dom ∫1) → (((ℝ × {(1 / 𝐴)}) ∘f · 𝑓) ∘r𝐹 → (∫1‘((ℝ × {(1 / 𝐴)}) ∘f · 𝑓)) ≤ (∫2𝐹)))
145, 11, 13syl2anc 584 . . . 4 ((𝜑𝑓 ∈ dom ∫1) → (((ℝ × {(1 / 𝐴)}) ∘f · 𝑓) ∘r𝐹 → (∫1‘((ℝ × {(1 / 𝐴)}) ∘f · 𝑓)) ≤ (∫2𝐹)))
15 i1ff 24840 . . . . . . . . . 10 (𝑓 ∈ dom ∫1𝑓:ℝ⟶ℝ)
1615adantl 482 . . . . . . . . 9 ((𝜑𝑓 ∈ dom ∫1) → 𝑓:ℝ⟶ℝ)
1716ffvelrnda 6961 . . . . . . . 8 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → (𝑓𝑦) ∈ ℝ)
18 rge0ssre 13188 . . . . . . . . . . 11 (0[,)+∞) ⊆ ℝ
19 fss 6617 . . . . . . . . . . 11 ((𝐹:ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ ℝ) → 𝐹:ℝ⟶ℝ)
201, 18, 19sylancl 586 . . . . . . . . . 10 (𝜑𝐹:ℝ⟶ℝ)
2120adantr 481 . . . . . . . . 9 ((𝜑𝑓 ∈ dom ∫1) → 𝐹:ℝ⟶ℝ)
2221ffvelrnda 6961 . . . . . . . 8 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → (𝐹𝑦) ∈ ℝ)
237rpred 12772 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
2423ad2antrr 723 . . . . . . . 8 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → 𝐴 ∈ ℝ)
257rpgt0d 12775 . . . . . . . . 9 (𝜑 → 0 < 𝐴)
2625ad2antrr 723 . . . . . . . 8 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → 0 < 𝐴)
27 ledivmul 11851 . . . . . . . 8 (((𝑓𝑦) ∈ ℝ ∧ (𝐹𝑦) ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (((𝑓𝑦) / 𝐴) ≤ (𝐹𝑦) ↔ (𝑓𝑦) ≤ (𝐴 · (𝐹𝑦))))
2817, 22, 24, 26, 27syl112anc 1373 . . . . . . 7 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → (((𝑓𝑦) / 𝐴) ≤ (𝐹𝑦) ↔ (𝑓𝑦) ≤ (𝐴 · (𝐹𝑦))))
2917recnd 11003 . . . . . . . . 9 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → (𝑓𝑦) ∈ ℂ)
3024recnd 11003 . . . . . . . . 9 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → 𝐴 ∈ ℂ)
317adantr 481 . . . . . . . . . . 11 ((𝜑𝑓 ∈ dom ∫1) → 𝐴 ∈ ℝ+)
3231rpne0d 12777 . . . . . . . . . 10 ((𝜑𝑓 ∈ dom ∫1) → 𝐴 ≠ 0)
3332adantr 481 . . . . . . . . 9 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → 𝐴 ≠ 0)
3429, 30, 33divrec2d 11755 . . . . . . . 8 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → ((𝑓𝑦) / 𝐴) = ((1 / 𝐴) · (𝑓𝑦)))
3534breq1d 5084 . . . . . . 7 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → (((𝑓𝑦) / 𝐴) ≤ (𝐹𝑦) ↔ ((1 / 𝐴) · (𝑓𝑦)) ≤ (𝐹𝑦)))
3628, 35bitr3d 280 . . . . . 6 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → ((𝑓𝑦) ≤ (𝐴 · (𝐹𝑦)) ↔ ((1 / 𝐴) · (𝑓𝑦)) ≤ (𝐹𝑦)))
3736ralbidva 3111 . . . . 5 ((𝜑𝑓 ∈ dom ∫1) → (∀𝑦 ∈ ℝ (𝑓𝑦) ≤ (𝐴 · (𝐹𝑦)) ↔ ∀𝑦 ∈ ℝ ((1 / 𝐴) · (𝑓𝑦)) ≤ (𝐹𝑦)))
38 reex 10962 . . . . . . 7 ℝ ∈ V
3938a1i 11 . . . . . 6 ((𝜑𝑓 ∈ dom ∫1) → ℝ ∈ V)
40 ovexd 7310 . . . . . 6 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → (𝐴 · (𝐹𝑦)) ∈ V)
4116feqmptd 6837 . . . . . 6 ((𝜑𝑓 ∈ dom ∫1) → 𝑓 = (𝑦 ∈ ℝ ↦ (𝑓𝑦)))
427ad2antrr 723 . . . . . . 7 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → 𝐴 ∈ ℝ+)
43 fconstmpt 5649 . . . . . . . 8 (ℝ × {𝐴}) = (𝑦 ∈ ℝ ↦ 𝐴)
4443a1i 11 . . . . . . 7 ((𝜑𝑓 ∈ dom ∫1) → (ℝ × {𝐴}) = (𝑦 ∈ ℝ ↦ 𝐴))
451feqmptd 6837 . . . . . . . 8 (𝜑𝐹 = (𝑦 ∈ ℝ ↦ (𝐹𝑦)))
4645adantr 481 . . . . . . 7 ((𝜑𝑓 ∈ dom ∫1) → 𝐹 = (𝑦 ∈ ℝ ↦ (𝐹𝑦)))
4739, 42, 22, 44, 46offval2 7553 . . . . . 6 ((𝜑𝑓 ∈ dom ∫1) → ((ℝ × {𝐴}) ∘f · 𝐹) = (𝑦 ∈ ℝ ↦ (𝐴 · (𝐹𝑦))))
4839, 17, 40, 41, 47ofrfval2 7554 . . . . 5 ((𝜑𝑓 ∈ dom ∫1) → (𝑓r ≤ ((ℝ × {𝐴}) ∘f · 𝐹) ↔ ∀𝑦 ∈ ℝ (𝑓𝑦) ≤ (𝐴 · (𝐹𝑦))))
49 ovexd 7310 . . . . . 6 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → ((1 / 𝐴) · (𝑓𝑦)) ∈ V)
508ad2antrr 723 . . . . . . 7 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → (1 / 𝐴) ∈ ℝ+)
51 fconstmpt 5649 . . . . . . . 8 (ℝ × {(1 / 𝐴)}) = (𝑦 ∈ ℝ ↦ (1 / 𝐴))
5251a1i 11 . . . . . . 7 ((𝜑𝑓 ∈ dom ∫1) → (ℝ × {(1 / 𝐴)}) = (𝑦 ∈ ℝ ↦ (1 / 𝐴)))
5339, 50, 17, 52, 41offval2 7553 . . . . . 6 ((𝜑𝑓 ∈ dom ∫1) → ((ℝ × {(1 / 𝐴)}) ∘f · 𝑓) = (𝑦 ∈ ℝ ↦ ((1 / 𝐴) · (𝑓𝑦))))
5439, 49, 22, 53, 46ofrfval2 7554 . . . . 5 ((𝜑𝑓 ∈ dom ∫1) → (((ℝ × {(1 / 𝐴)}) ∘f · 𝑓) ∘r𝐹 ↔ ∀𝑦 ∈ ℝ ((1 / 𝐴) · (𝑓𝑦)) ≤ (𝐹𝑦)))
5537, 48, 543bitr4d 311 . . . 4 ((𝜑𝑓 ∈ dom ∫1) → (𝑓r ≤ ((ℝ × {𝐴}) ∘f · 𝐹) ↔ ((ℝ × {(1 / 𝐴)}) ∘f · 𝑓) ∘r𝐹))
566, 10itg1mulc 24869 . . . . . . 7 ((𝜑𝑓 ∈ dom ∫1) → (∫1‘((ℝ × {(1 / 𝐴)}) ∘f · 𝑓)) = ((1 / 𝐴) · (∫1𝑓)))
57 itg1cl 24849 . . . . . . . . . 10 (𝑓 ∈ dom ∫1 → (∫1𝑓) ∈ ℝ)
5857adantl 482 . . . . . . . . 9 ((𝜑𝑓 ∈ dom ∫1) → (∫1𝑓) ∈ ℝ)
5958recnd 11003 . . . . . . . 8 ((𝜑𝑓 ∈ dom ∫1) → (∫1𝑓) ∈ ℂ)
6023adantr 481 . . . . . . . . 9 ((𝜑𝑓 ∈ dom ∫1) → 𝐴 ∈ ℝ)
6160recnd 11003 . . . . . . . 8 ((𝜑𝑓 ∈ dom ∫1) → 𝐴 ∈ ℂ)
6259, 61, 32divrec2d 11755 . . . . . . 7 ((𝜑𝑓 ∈ dom ∫1) → ((∫1𝑓) / 𝐴) = ((1 / 𝐴) · (∫1𝑓)))
6356, 62eqtr4d 2781 . . . . . 6 ((𝜑𝑓 ∈ dom ∫1) → (∫1‘((ℝ × {(1 / 𝐴)}) ∘f · 𝑓)) = ((∫1𝑓) / 𝐴))
6463breq1d 5084 . . . . 5 ((𝜑𝑓 ∈ dom ∫1) → ((∫1‘((ℝ × {(1 / 𝐴)}) ∘f · 𝑓)) ≤ (∫2𝐹) ↔ ((∫1𝑓) / 𝐴) ≤ (∫2𝐹)))
65 itg2mulc.3 . . . . . . 7 (𝜑 → (∫2𝐹) ∈ ℝ)
6665adantr 481 . . . . . 6 ((𝜑𝑓 ∈ dom ∫1) → (∫2𝐹) ∈ ℝ)
6725adantr 481 . . . . . 6 ((𝜑𝑓 ∈ dom ∫1) → 0 < 𝐴)
68 ledivmul 11851 . . . . . 6 (((∫1𝑓) ∈ ℝ ∧ (∫2𝐹) ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (((∫1𝑓) / 𝐴) ≤ (∫2𝐹) ↔ (∫1𝑓) ≤ (𝐴 · (∫2𝐹))))
6958, 66, 60, 67, 68syl112anc 1373 . . . . 5 ((𝜑𝑓 ∈ dom ∫1) → (((∫1𝑓) / 𝐴) ≤ (∫2𝐹) ↔ (∫1𝑓) ≤ (𝐴 · (∫2𝐹))))
7064, 69bitr2d 279 . . . 4 ((𝜑𝑓 ∈ dom ∫1) → ((∫1𝑓) ≤ (𝐴 · (∫2𝐹)) ↔ (∫1‘((ℝ × {(1 / 𝐴)}) ∘f · 𝑓)) ≤ (∫2𝐹)))
7114, 55, 703imtr4d 294 . . 3 ((𝜑𝑓 ∈ dom ∫1) → (𝑓r ≤ ((ℝ × {𝐴}) ∘f · 𝐹) → (∫1𝑓) ≤ (𝐴 · (∫2𝐹))))
7271ralrimiva 3103 . 2 (𝜑 → ∀𝑓 ∈ dom ∫1(𝑓r ≤ ((ℝ × {𝐴}) ∘f · 𝐹) → (∫1𝑓) ≤ (𝐴 · (∫2𝐹))))
73 ge0mulcl 13193 . . . . . 6 ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 · 𝑦) ∈ (0[,)+∞))
7473adantl 482 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → (𝑥 · 𝑦) ∈ (0[,)+∞))
75 fconstg 6661 . . . . . . 7 (𝐴 ∈ ℝ+ → (ℝ × {𝐴}):ℝ⟶{𝐴})
767, 75syl 17 . . . . . 6 (𝜑 → (ℝ × {𝐴}):ℝ⟶{𝐴})
77 rpre 12738 . . . . . . . . 9 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
78 rpge0 12743 . . . . . . . . 9 (𝐴 ∈ ℝ+ → 0 ≤ 𝐴)
79 elrege0 13186 . . . . . . . . 9 (𝐴 ∈ (0[,)+∞) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
8077, 78, 79sylanbrc 583 . . . . . . . 8 (𝐴 ∈ ℝ+𝐴 ∈ (0[,)+∞))
817, 80syl 17 . . . . . . 7 (𝜑𝐴 ∈ (0[,)+∞))
8281snssd 4742 . . . . . 6 (𝜑 → {𝐴} ⊆ (0[,)+∞))
8376, 82fssd 6618 . . . . 5 (𝜑 → (ℝ × {𝐴}):ℝ⟶(0[,)+∞))
8438a1i 11 . . . . 5 (𝜑 → ℝ ∈ V)
85 inidm 4152 . . . . 5 (ℝ ∩ ℝ) = ℝ
8674, 83, 1, 84, 84, 85off 7551 . . . 4 (𝜑 → ((ℝ × {𝐴}) ∘f · 𝐹):ℝ⟶(0[,)+∞))
87 fss 6617 . . . 4 ((((ℝ × {𝐴}) ∘f · 𝐹):ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ (0[,]+∞)) → ((ℝ × {𝐴}) ∘f · 𝐹):ℝ⟶(0[,]+∞))
8886, 2, 87sylancl 586 . . 3 (𝜑 → ((ℝ × {𝐴}) ∘f · 𝐹):ℝ⟶(0[,]+∞))
8923, 65remulcld 11005 . . . 4 (𝜑 → (𝐴 · (∫2𝐹)) ∈ ℝ)
9089rexrd 11025 . . 3 (𝜑 → (𝐴 · (∫2𝐹)) ∈ ℝ*)
91 itg2leub 24899 . . 3 ((((ℝ × {𝐴}) ∘f · 𝐹):ℝ⟶(0[,]+∞) ∧ (𝐴 · (∫2𝐹)) ∈ ℝ*) → ((∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) ≤ (𝐴 · (∫2𝐹)) ↔ ∀𝑓 ∈ dom ∫1(𝑓r ≤ ((ℝ × {𝐴}) ∘f · 𝐹) → (∫1𝑓) ≤ (𝐴 · (∫2𝐹)))))
9288, 90, 91syl2anc 584 . 2 (𝜑 → ((∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) ≤ (𝐴 · (∫2𝐹)) ↔ ∀𝑓 ∈ dom ∫1(𝑓r ≤ ((ℝ × {𝐴}) ∘f · 𝐹) → (∫1𝑓) ≤ (𝐴 · (∫2𝐹)))))
9372, 92mpbird 256 1 (𝜑 → (∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) ≤ (𝐴 · (∫2𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  wral 3064  Vcvv 3432  wss 3887  {csn 4561   class class class wbr 5074  cmpt 5157   × cxp 5587  dom cdm 5589  wf 6429  cfv 6433  (class class class)co 7275  f cof 7531  r cofr 7532  cr 10870  0cc0 10871  1c1 10872   · cmul 10876  +∞cpnf 11006  *cxr 11008   < clt 11009  cle 11010   / cdiv 11632  +crp 12730  [,)cico 13081  [,]cicc 13082  1citg1 24779  2citg2 24780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-ofr 7534  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-oi 9269  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-q 12689  df-rp 12731  df-xadd 12849  df-ioo 13083  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-sum 15398  df-xmet 20590  df-met 20591  df-ovol 24628  df-vol 24629  df-mbf 24783  df-itg1 24784  df-itg2 24785
This theorem is referenced by:  itg2mulc  24912
  Copyright terms: Public domain W3C validator