MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2mulclem Structured version   Visualization version   GIF version

Theorem itg2mulclem 25781
Description: Lemma for itg2mulc 25782. (Contributed by Mario Carneiro, 8-Jul-2014.)
Hypotheses
Ref Expression
itg2mulc.2 (𝜑𝐹:ℝ⟶(0[,)+∞))
itg2mulc.3 (𝜑 → (∫2𝐹) ∈ ℝ)
itg2mulclem.4 (𝜑𝐴 ∈ ℝ+)
Assertion
Ref Expression
itg2mulclem (𝜑 → (∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) ≤ (𝐴 · (∫2𝐹)))

Proof of Theorem itg2mulclem
Dummy variables 𝑥 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itg2mulc.2 . . . . . . 7 (𝜑𝐹:ℝ⟶(0[,)+∞))
2 icossicc 13476 . . . . . . 7 (0[,)+∞) ⊆ (0[,]+∞)
3 fss 6752 . . . . . . 7 ((𝐹:ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ (0[,]+∞)) → 𝐹:ℝ⟶(0[,]+∞))
41, 2, 3sylancl 586 . . . . . 6 (𝜑𝐹:ℝ⟶(0[,]+∞))
54adantr 480 . . . . 5 ((𝜑𝑓 ∈ dom ∫1) → 𝐹:ℝ⟶(0[,]+∞))
6 simpr 484 . . . . . 6 ((𝜑𝑓 ∈ dom ∫1) → 𝑓 ∈ dom ∫1)
7 itg2mulclem.4 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ+)
87rpreccld 13087 . . . . . . . 8 (𝜑 → (1 / 𝐴) ∈ ℝ+)
98adantr 480 . . . . . . 7 ((𝜑𝑓 ∈ dom ∫1) → (1 / 𝐴) ∈ ℝ+)
109rpred 13077 . . . . . 6 ((𝜑𝑓 ∈ dom ∫1) → (1 / 𝐴) ∈ ℝ)
116, 10i1fmulc 25738 . . . . 5 ((𝜑𝑓 ∈ dom ∫1) → ((ℝ × {(1 / 𝐴)}) ∘f · 𝑓) ∈ dom ∫1)
12 itg2ub 25768 . . . . . 6 ((𝐹:ℝ⟶(0[,]+∞) ∧ ((ℝ × {(1 / 𝐴)}) ∘f · 𝑓) ∈ dom ∫1 ∧ ((ℝ × {(1 / 𝐴)}) ∘f · 𝑓) ∘r𝐹) → (∫1‘((ℝ × {(1 / 𝐴)}) ∘f · 𝑓)) ≤ (∫2𝐹))
13123expia 1122 . . . . 5 ((𝐹:ℝ⟶(0[,]+∞) ∧ ((ℝ × {(1 / 𝐴)}) ∘f · 𝑓) ∈ dom ∫1) → (((ℝ × {(1 / 𝐴)}) ∘f · 𝑓) ∘r𝐹 → (∫1‘((ℝ × {(1 / 𝐴)}) ∘f · 𝑓)) ≤ (∫2𝐹)))
145, 11, 13syl2anc 584 . . . 4 ((𝜑𝑓 ∈ dom ∫1) → (((ℝ × {(1 / 𝐴)}) ∘f · 𝑓) ∘r𝐹 → (∫1‘((ℝ × {(1 / 𝐴)}) ∘f · 𝑓)) ≤ (∫2𝐹)))
15 i1ff 25711 . . . . . . . . . 10 (𝑓 ∈ dom ∫1𝑓:ℝ⟶ℝ)
1615adantl 481 . . . . . . . . 9 ((𝜑𝑓 ∈ dom ∫1) → 𝑓:ℝ⟶ℝ)
1716ffvelcdmda 7104 . . . . . . . 8 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → (𝑓𝑦) ∈ ℝ)
18 rge0ssre 13496 . . . . . . . . . . 11 (0[,)+∞) ⊆ ℝ
19 fss 6752 . . . . . . . . . . 11 ((𝐹:ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ ℝ) → 𝐹:ℝ⟶ℝ)
201, 18, 19sylancl 586 . . . . . . . . . 10 (𝜑𝐹:ℝ⟶ℝ)
2120adantr 480 . . . . . . . . 9 ((𝜑𝑓 ∈ dom ∫1) → 𝐹:ℝ⟶ℝ)
2221ffvelcdmda 7104 . . . . . . . 8 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → (𝐹𝑦) ∈ ℝ)
237rpred 13077 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
2423ad2antrr 726 . . . . . . . 8 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → 𝐴 ∈ ℝ)
257rpgt0d 13080 . . . . . . . . 9 (𝜑 → 0 < 𝐴)
2625ad2antrr 726 . . . . . . . 8 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → 0 < 𝐴)
27 ledivmul 12144 . . . . . . . 8 (((𝑓𝑦) ∈ ℝ ∧ (𝐹𝑦) ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (((𝑓𝑦) / 𝐴) ≤ (𝐹𝑦) ↔ (𝑓𝑦) ≤ (𝐴 · (𝐹𝑦))))
2817, 22, 24, 26, 27syl112anc 1376 . . . . . . 7 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → (((𝑓𝑦) / 𝐴) ≤ (𝐹𝑦) ↔ (𝑓𝑦) ≤ (𝐴 · (𝐹𝑦))))
2917recnd 11289 . . . . . . . . 9 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → (𝑓𝑦) ∈ ℂ)
3024recnd 11289 . . . . . . . . 9 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → 𝐴 ∈ ℂ)
317adantr 480 . . . . . . . . . . 11 ((𝜑𝑓 ∈ dom ∫1) → 𝐴 ∈ ℝ+)
3231rpne0d 13082 . . . . . . . . . 10 ((𝜑𝑓 ∈ dom ∫1) → 𝐴 ≠ 0)
3332adantr 480 . . . . . . . . 9 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → 𝐴 ≠ 0)
3429, 30, 33divrec2d 12047 . . . . . . . 8 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → ((𝑓𝑦) / 𝐴) = ((1 / 𝐴) · (𝑓𝑦)))
3534breq1d 5153 . . . . . . 7 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → (((𝑓𝑦) / 𝐴) ≤ (𝐹𝑦) ↔ ((1 / 𝐴) · (𝑓𝑦)) ≤ (𝐹𝑦)))
3628, 35bitr3d 281 . . . . . 6 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → ((𝑓𝑦) ≤ (𝐴 · (𝐹𝑦)) ↔ ((1 / 𝐴) · (𝑓𝑦)) ≤ (𝐹𝑦)))
3736ralbidva 3176 . . . . 5 ((𝜑𝑓 ∈ dom ∫1) → (∀𝑦 ∈ ℝ (𝑓𝑦) ≤ (𝐴 · (𝐹𝑦)) ↔ ∀𝑦 ∈ ℝ ((1 / 𝐴) · (𝑓𝑦)) ≤ (𝐹𝑦)))
38 reex 11246 . . . . . . 7 ℝ ∈ V
3938a1i 11 . . . . . 6 ((𝜑𝑓 ∈ dom ∫1) → ℝ ∈ V)
40 ovexd 7466 . . . . . 6 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → (𝐴 · (𝐹𝑦)) ∈ V)
4116feqmptd 6977 . . . . . 6 ((𝜑𝑓 ∈ dom ∫1) → 𝑓 = (𝑦 ∈ ℝ ↦ (𝑓𝑦)))
427ad2antrr 726 . . . . . . 7 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → 𝐴 ∈ ℝ+)
43 fconstmpt 5747 . . . . . . . 8 (ℝ × {𝐴}) = (𝑦 ∈ ℝ ↦ 𝐴)
4443a1i 11 . . . . . . 7 ((𝜑𝑓 ∈ dom ∫1) → (ℝ × {𝐴}) = (𝑦 ∈ ℝ ↦ 𝐴))
451feqmptd 6977 . . . . . . . 8 (𝜑𝐹 = (𝑦 ∈ ℝ ↦ (𝐹𝑦)))
4645adantr 480 . . . . . . 7 ((𝜑𝑓 ∈ dom ∫1) → 𝐹 = (𝑦 ∈ ℝ ↦ (𝐹𝑦)))
4739, 42, 22, 44, 46offval2 7717 . . . . . 6 ((𝜑𝑓 ∈ dom ∫1) → ((ℝ × {𝐴}) ∘f · 𝐹) = (𝑦 ∈ ℝ ↦ (𝐴 · (𝐹𝑦))))
4839, 17, 40, 41, 47ofrfval2 7718 . . . . 5 ((𝜑𝑓 ∈ dom ∫1) → (𝑓r ≤ ((ℝ × {𝐴}) ∘f · 𝐹) ↔ ∀𝑦 ∈ ℝ (𝑓𝑦) ≤ (𝐴 · (𝐹𝑦))))
49 ovexd 7466 . . . . . 6 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → ((1 / 𝐴) · (𝑓𝑦)) ∈ V)
508ad2antrr 726 . . . . . . 7 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → (1 / 𝐴) ∈ ℝ+)
51 fconstmpt 5747 . . . . . . . 8 (ℝ × {(1 / 𝐴)}) = (𝑦 ∈ ℝ ↦ (1 / 𝐴))
5251a1i 11 . . . . . . 7 ((𝜑𝑓 ∈ dom ∫1) → (ℝ × {(1 / 𝐴)}) = (𝑦 ∈ ℝ ↦ (1 / 𝐴)))
5339, 50, 17, 52, 41offval2 7717 . . . . . 6 ((𝜑𝑓 ∈ dom ∫1) → ((ℝ × {(1 / 𝐴)}) ∘f · 𝑓) = (𝑦 ∈ ℝ ↦ ((1 / 𝐴) · (𝑓𝑦))))
5439, 49, 22, 53, 46ofrfval2 7718 . . . . 5 ((𝜑𝑓 ∈ dom ∫1) → (((ℝ × {(1 / 𝐴)}) ∘f · 𝑓) ∘r𝐹 ↔ ∀𝑦 ∈ ℝ ((1 / 𝐴) · (𝑓𝑦)) ≤ (𝐹𝑦)))
5537, 48, 543bitr4d 311 . . . 4 ((𝜑𝑓 ∈ dom ∫1) → (𝑓r ≤ ((ℝ × {𝐴}) ∘f · 𝐹) ↔ ((ℝ × {(1 / 𝐴)}) ∘f · 𝑓) ∘r𝐹))
566, 10itg1mulc 25739 . . . . . . 7 ((𝜑𝑓 ∈ dom ∫1) → (∫1‘((ℝ × {(1 / 𝐴)}) ∘f · 𝑓)) = ((1 / 𝐴) · (∫1𝑓)))
57 itg1cl 25720 . . . . . . . . . 10 (𝑓 ∈ dom ∫1 → (∫1𝑓) ∈ ℝ)
5857adantl 481 . . . . . . . . 9 ((𝜑𝑓 ∈ dom ∫1) → (∫1𝑓) ∈ ℝ)
5958recnd 11289 . . . . . . . 8 ((𝜑𝑓 ∈ dom ∫1) → (∫1𝑓) ∈ ℂ)
6023adantr 480 . . . . . . . . 9 ((𝜑𝑓 ∈ dom ∫1) → 𝐴 ∈ ℝ)
6160recnd 11289 . . . . . . . 8 ((𝜑𝑓 ∈ dom ∫1) → 𝐴 ∈ ℂ)
6259, 61, 32divrec2d 12047 . . . . . . 7 ((𝜑𝑓 ∈ dom ∫1) → ((∫1𝑓) / 𝐴) = ((1 / 𝐴) · (∫1𝑓)))
6356, 62eqtr4d 2780 . . . . . 6 ((𝜑𝑓 ∈ dom ∫1) → (∫1‘((ℝ × {(1 / 𝐴)}) ∘f · 𝑓)) = ((∫1𝑓) / 𝐴))
6463breq1d 5153 . . . . 5 ((𝜑𝑓 ∈ dom ∫1) → ((∫1‘((ℝ × {(1 / 𝐴)}) ∘f · 𝑓)) ≤ (∫2𝐹) ↔ ((∫1𝑓) / 𝐴) ≤ (∫2𝐹)))
65 itg2mulc.3 . . . . . . 7 (𝜑 → (∫2𝐹) ∈ ℝ)
6665adantr 480 . . . . . 6 ((𝜑𝑓 ∈ dom ∫1) → (∫2𝐹) ∈ ℝ)
6725adantr 480 . . . . . 6 ((𝜑𝑓 ∈ dom ∫1) → 0 < 𝐴)
68 ledivmul 12144 . . . . . 6 (((∫1𝑓) ∈ ℝ ∧ (∫2𝐹) ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (((∫1𝑓) / 𝐴) ≤ (∫2𝐹) ↔ (∫1𝑓) ≤ (𝐴 · (∫2𝐹))))
6958, 66, 60, 67, 68syl112anc 1376 . . . . 5 ((𝜑𝑓 ∈ dom ∫1) → (((∫1𝑓) / 𝐴) ≤ (∫2𝐹) ↔ (∫1𝑓) ≤ (𝐴 · (∫2𝐹))))
7064, 69bitr2d 280 . . . 4 ((𝜑𝑓 ∈ dom ∫1) → ((∫1𝑓) ≤ (𝐴 · (∫2𝐹)) ↔ (∫1‘((ℝ × {(1 / 𝐴)}) ∘f · 𝑓)) ≤ (∫2𝐹)))
7114, 55, 703imtr4d 294 . . 3 ((𝜑𝑓 ∈ dom ∫1) → (𝑓r ≤ ((ℝ × {𝐴}) ∘f · 𝐹) → (∫1𝑓) ≤ (𝐴 · (∫2𝐹))))
7271ralrimiva 3146 . 2 (𝜑 → ∀𝑓 ∈ dom ∫1(𝑓r ≤ ((ℝ × {𝐴}) ∘f · 𝐹) → (∫1𝑓) ≤ (𝐴 · (∫2𝐹))))
73 ge0mulcl 13501 . . . . . 6 ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 · 𝑦) ∈ (0[,)+∞))
7473adantl 481 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → (𝑥 · 𝑦) ∈ (0[,)+∞))
75 fconstg 6795 . . . . . . 7 (𝐴 ∈ ℝ+ → (ℝ × {𝐴}):ℝ⟶{𝐴})
767, 75syl 17 . . . . . 6 (𝜑 → (ℝ × {𝐴}):ℝ⟶{𝐴})
77 rpre 13043 . . . . . . . . 9 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
78 rpge0 13048 . . . . . . . . 9 (𝐴 ∈ ℝ+ → 0 ≤ 𝐴)
79 elrege0 13494 . . . . . . . . 9 (𝐴 ∈ (0[,)+∞) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
8077, 78, 79sylanbrc 583 . . . . . . . 8 (𝐴 ∈ ℝ+𝐴 ∈ (0[,)+∞))
817, 80syl 17 . . . . . . 7 (𝜑𝐴 ∈ (0[,)+∞))
8281snssd 4809 . . . . . 6 (𝜑 → {𝐴} ⊆ (0[,)+∞))
8376, 82fssd 6753 . . . . 5 (𝜑 → (ℝ × {𝐴}):ℝ⟶(0[,)+∞))
8438a1i 11 . . . . 5 (𝜑 → ℝ ∈ V)
85 inidm 4227 . . . . 5 (ℝ ∩ ℝ) = ℝ
8674, 83, 1, 84, 84, 85off 7715 . . . 4 (𝜑 → ((ℝ × {𝐴}) ∘f · 𝐹):ℝ⟶(0[,)+∞))
87 fss 6752 . . . 4 ((((ℝ × {𝐴}) ∘f · 𝐹):ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ (0[,]+∞)) → ((ℝ × {𝐴}) ∘f · 𝐹):ℝ⟶(0[,]+∞))
8886, 2, 87sylancl 586 . . 3 (𝜑 → ((ℝ × {𝐴}) ∘f · 𝐹):ℝ⟶(0[,]+∞))
8923, 65remulcld 11291 . . . 4 (𝜑 → (𝐴 · (∫2𝐹)) ∈ ℝ)
9089rexrd 11311 . . 3 (𝜑 → (𝐴 · (∫2𝐹)) ∈ ℝ*)
91 itg2leub 25769 . . 3 ((((ℝ × {𝐴}) ∘f · 𝐹):ℝ⟶(0[,]+∞) ∧ (𝐴 · (∫2𝐹)) ∈ ℝ*) → ((∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) ≤ (𝐴 · (∫2𝐹)) ↔ ∀𝑓 ∈ dom ∫1(𝑓r ≤ ((ℝ × {𝐴}) ∘f · 𝐹) → (∫1𝑓) ≤ (𝐴 · (∫2𝐹)))))
9288, 90, 91syl2anc 584 . 2 (𝜑 → ((∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) ≤ (𝐴 · (∫2𝐹)) ↔ ∀𝑓 ∈ dom ∫1(𝑓r ≤ ((ℝ × {𝐴}) ∘f · 𝐹) → (∫1𝑓) ≤ (𝐴 · (∫2𝐹)))))
9372, 92mpbird 257 1 (𝜑 → (∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) ≤ (𝐴 · (∫2𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2940  wral 3061  Vcvv 3480  wss 3951  {csn 4626   class class class wbr 5143  cmpt 5225   × cxp 5683  dom cdm 5685  wf 6557  cfv 6561  (class class class)co 7431  f cof 7695  r cofr 7696  cr 11154  0cc0 11155  1c1 11156   · cmul 11160  +∞cpnf 11292  *cxr 11294   < clt 11295  cle 11296   / cdiv 11920  +crp 13034  [,)cico 13389  [,]cicc 13390  1citg1 25650  2citg2 25651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-oi 9550  df-dju 9941  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-q 12991  df-rp 13035  df-xadd 13155  df-ioo 13391  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-sum 15723  df-xmet 21357  df-met 21358  df-ovol 25499  df-vol 25500  df-mbf 25654  df-itg1 25655  df-itg2 25656
This theorem is referenced by:  itg2mulc  25782
  Copyright terms: Public domain W3C validator