MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2mulclem Structured version   Visualization version   GIF version

Theorem itg2mulclem 24341
Description: Lemma for itg2mulc 24342. (Contributed by Mario Carneiro, 8-Jul-2014.)
Hypotheses
Ref Expression
itg2mulc.2 (𝜑𝐹:ℝ⟶(0[,)+∞))
itg2mulc.3 (𝜑 → (∫2𝐹) ∈ ℝ)
itg2mulclem.4 (𝜑𝐴 ∈ ℝ+)
Assertion
Ref Expression
itg2mulclem (𝜑 → (∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) ≤ (𝐴 · (∫2𝐹)))

Proof of Theorem itg2mulclem
Dummy variables 𝑥 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itg2mulc.2 . . . . . . 7 (𝜑𝐹:ℝ⟶(0[,)+∞))
2 icossicc 12818 . . . . . . 7 (0[,)+∞) ⊆ (0[,]+∞)
3 fss 6522 . . . . . . 7 ((𝐹:ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ (0[,]+∞)) → 𝐹:ℝ⟶(0[,]+∞))
41, 2, 3sylancl 588 . . . . . 6 (𝜑𝐹:ℝ⟶(0[,]+∞))
54adantr 483 . . . . 5 ((𝜑𝑓 ∈ dom ∫1) → 𝐹:ℝ⟶(0[,]+∞))
6 simpr 487 . . . . . 6 ((𝜑𝑓 ∈ dom ∫1) → 𝑓 ∈ dom ∫1)
7 itg2mulclem.4 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ+)
87rpreccld 12435 . . . . . . . 8 (𝜑 → (1 / 𝐴) ∈ ℝ+)
98adantr 483 . . . . . . 7 ((𝜑𝑓 ∈ dom ∫1) → (1 / 𝐴) ∈ ℝ+)
109rpred 12425 . . . . . 6 ((𝜑𝑓 ∈ dom ∫1) → (1 / 𝐴) ∈ ℝ)
116, 10i1fmulc 24298 . . . . 5 ((𝜑𝑓 ∈ dom ∫1) → ((ℝ × {(1 / 𝐴)}) ∘f · 𝑓) ∈ dom ∫1)
12 itg2ub 24328 . . . . . 6 ((𝐹:ℝ⟶(0[,]+∞) ∧ ((ℝ × {(1 / 𝐴)}) ∘f · 𝑓) ∈ dom ∫1 ∧ ((ℝ × {(1 / 𝐴)}) ∘f · 𝑓) ∘r𝐹) → (∫1‘((ℝ × {(1 / 𝐴)}) ∘f · 𝑓)) ≤ (∫2𝐹))
13123expia 1117 . . . . 5 ((𝐹:ℝ⟶(0[,]+∞) ∧ ((ℝ × {(1 / 𝐴)}) ∘f · 𝑓) ∈ dom ∫1) → (((ℝ × {(1 / 𝐴)}) ∘f · 𝑓) ∘r𝐹 → (∫1‘((ℝ × {(1 / 𝐴)}) ∘f · 𝑓)) ≤ (∫2𝐹)))
145, 11, 13syl2anc 586 . . . 4 ((𝜑𝑓 ∈ dom ∫1) → (((ℝ × {(1 / 𝐴)}) ∘f · 𝑓) ∘r𝐹 → (∫1‘((ℝ × {(1 / 𝐴)}) ∘f · 𝑓)) ≤ (∫2𝐹)))
15 i1ff 24271 . . . . . . . . . 10 (𝑓 ∈ dom ∫1𝑓:ℝ⟶ℝ)
1615adantl 484 . . . . . . . . 9 ((𝜑𝑓 ∈ dom ∫1) → 𝑓:ℝ⟶ℝ)
1716ffvelrnda 6846 . . . . . . . 8 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → (𝑓𝑦) ∈ ℝ)
18 rge0ssre 12838 . . . . . . . . . . 11 (0[,)+∞) ⊆ ℝ
19 fss 6522 . . . . . . . . . . 11 ((𝐹:ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ ℝ) → 𝐹:ℝ⟶ℝ)
201, 18, 19sylancl 588 . . . . . . . . . 10 (𝜑𝐹:ℝ⟶ℝ)
2120adantr 483 . . . . . . . . 9 ((𝜑𝑓 ∈ dom ∫1) → 𝐹:ℝ⟶ℝ)
2221ffvelrnda 6846 . . . . . . . 8 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → (𝐹𝑦) ∈ ℝ)
237rpred 12425 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
2423ad2antrr 724 . . . . . . . 8 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → 𝐴 ∈ ℝ)
257rpgt0d 12428 . . . . . . . . 9 (𝜑 → 0 < 𝐴)
2625ad2antrr 724 . . . . . . . 8 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → 0 < 𝐴)
27 ledivmul 11510 . . . . . . . 8 (((𝑓𝑦) ∈ ℝ ∧ (𝐹𝑦) ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (((𝑓𝑦) / 𝐴) ≤ (𝐹𝑦) ↔ (𝑓𝑦) ≤ (𝐴 · (𝐹𝑦))))
2817, 22, 24, 26, 27syl112anc 1370 . . . . . . 7 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → (((𝑓𝑦) / 𝐴) ≤ (𝐹𝑦) ↔ (𝑓𝑦) ≤ (𝐴 · (𝐹𝑦))))
2917recnd 10663 . . . . . . . . 9 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → (𝑓𝑦) ∈ ℂ)
3024recnd 10663 . . . . . . . . 9 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → 𝐴 ∈ ℂ)
317adantr 483 . . . . . . . . . . 11 ((𝜑𝑓 ∈ dom ∫1) → 𝐴 ∈ ℝ+)
3231rpne0d 12430 . . . . . . . . . 10 ((𝜑𝑓 ∈ dom ∫1) → 𝐴 ≠ 0)
3332adantr 483 . . . . . . . . 9 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → 𝐴 ≠ 0)
3429, 30, 33divrec2d 11414 . . . . . . . 8 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → ((𝑓𝑦) / 𝐴) = ((1 / 𝐴) · (𝑓𝑦)))
3534breq1d 5069 . . . . . . 7 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → (((𝑓𝑦) / 𝐴) ≤ (𝐹𝑦) ↔ ((1 / 𝐴) · (𝑓𝑦)) ≤ (𝐹𝑦)))
3628, 35bitr3d 283 . . . . . 6 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → ((𝑓𝑦) ≤ (𝐴 · (𝐹𝑦)) ↔ ((1 / 𝐴) · (𝑓𝑦)) ≤ (𝐹𝑦)))
3736ralbidva 3196 . . . . 5 ((𝜑𝑓 ∈ dom ∫1) → (∀𝑦 ∈ ℝ (𝑓𝑦) ≤ (𝐴 · (𝐹𝑦)) ↔ ∀𝑦 ∈ ℝ ((1 / 𝐴) · (𝑓𝑦)) ≤ (𝐹𝑦)))
38 reex 10622 . . . . . . 7 ℝ ∈ V
3938a1i 11 . . . . . 6 ((𝜑𝑓 ∈ dom ∫1) → ℝ ∈ V)
40 ovexd 7185 . . . . . 6 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → (𝐴 · (𝐹𝑦)) ∈ V)
4116feqmptd 6728 . . . . . 6 ((𝜑𝑓 ∈ dom ∫1) → 𝑓 = (𝑦 ∈ ℝ ↦ (𝑓𝑦)))
427ad2antrr 724 . . . . . . 7 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → 𝐴 ∈ ℝ+)
43 fconstmpt 5609 . . . . . . . 8 (ℝ × {𝐴}) = (𝑦 ∈ ℝ ↦ 𝐴)
4443a1i 11 . . . . . . 7 ((𝜑𝑓 ∈ dom ∫1) → (ℝ × {𝐴}) = (𝑦 ∈ ℝ ↦ 𝐴))
451feqmptd 6728 . . . . . . . 8 (𝜑𝐹 = (𝑦 ∈ ℝ ↦ (𝐹𝑦)))
4645adantr 483 . . . . . . 7 ((𝜑𝑓 ∈ dom ∫1) → 𝐹 = (𝑦 ∈ ℝ ↦ (𝐹𝑦)))
4739, 42, 22, 44, 46offval2 7420 . . . . . 6 ((𝜑𝑓 ∈ dom ∫1) → ((ℝ × {𝐴}) ∘f · 𝐹) = (𝑦 ∈ ℝ ↦ (𝐴 · (𝐹𝑦))))
4839, 17, 40, 41, 47ofrfval2 7421 . . . . 5 ((𝜑𝑓 ∈ dom ∫1) → (𝑓r ≤ ((ℝ × {𝐴}) ∘f · 𝐹) ↔ ∀𝑦 ∈ ℝ (𝑓𝑦) ≤ (𝐴 · (𝐹𝑦))))
49 ovexd 7185 . . . . . 6 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → ((1 / 𝐴) · (𝑓𝑦)) ∈ V)
508ad2antrr 724 . . . . . . 7 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → (1 / 𝐴) ∈ ℝ+)
51 fconstmpt 5609 . . . . . . . 8 (ℝ × {(1 / 𝐴)}) = (𝑦 ∈ ℝ ↦ (1 / 𝐴))
5251a1i 11 . . . . . . 7 ((𝜑𝑓 ∈ dom ∫1) → (ℝ × {(1 / 𝐴)}) = (𝑦 ∈ ℝ ↦ (1 / 𝐴)))
5339, 50, 17, 52, 41offval2 7420 . . . . . 6 ((𝜑𝑓 ∈ dom ∫1) → ((ℝ × {(1 / 𝐴)}) ∘f · 𝑓) = (𝑦 ∈ ℝ ↦ ((1 / 𝐴) · (𝑓𝑦))))
5439, 49, 22, 53, 46ofrfval2 7421 . . . . 5 ((𝜑𝑓 ∈ dom ∫1) → (((ℝ × {(1 / 𝐴)}) ∘f · 𝑓) ∘r𝐹 ↔ ∀𝑦 ∈ ℝ ((1 / 𝐴) · (𝑓𝑦)) ≤ (𝐹𝑦)))
5537, 48, 543bitr4d 313 . . . 4 ((𝜑𝑓 ∈ dom ∫1) → (𝑓r ≤ ((ℝ × {𝐴}) ∘f · 𝐹) ↔ ((ℝ × {(1 / 𝐴)}) ∘f · 𝑓) ∘r𝐹))
566, 10itg1mulc 24299 . . . . . . 7 ((𝜑𝑓 ∈ dom ∫1) → (∫1‘((ℝ × {(1 / 𝐴)}) ∘f · 𝑓)) = ((1 / 𝐴) · (∫1𝑓)))
57 itg1cl 24280 . . . . . . . . . 10 (𝑓 ∈ dom ∫1 → (∫1𝑓) ∈ ℝ)
5857adantl 484 . . . . . . . . 9 ((𝜑𝑓 ∈ dom ∫1) → (∫1𝑓) ∈ ℝ)
5958recnd 10663 . . . . . . . 8 ((𝜑𝑓 ∈ dom ∫1) → (∫1𝑓) ∈ ℂ)
6023adantr 483 . . . . . . . . 9 ((𝜑𝑓 ∈ dom ∫1) → 𝐴 ∈ ℝ)
6160recnd 10663 . . . . . . . 8 ((𝜑𝑓 ∈ dom ∫1) → 𝐴 ∈ ℂ)
6259, 61, 32divrec2d 11414 . . . . . . 7 ((𝜑𝑓 ∈ dom ∫1) → ((∫1𝑓) / 𝐴) = ((1 / 𝐴) · (∫1𝑓)))
6356, 62eqtr4d 2859 . . . . . 6 ((𝜑𝑓 ∈ dom ∫1) → (∫1‘((ℝ × {(1 / 𝐴)}) ∘f · 𝑓)) = ((∫1𝑓) / 𝐴))
6463breq1d 5069 . . . . 5 ((𝜑𝑓 ∈ dom ∫1) → ((∫1‘((ℝ × {(1 / 𝐴)}) ∘f · 𝑓)) ≤ (∫2𝐹) ↔ ((∫1𝑓) / 𝐴) ≤ (∫2𝐹)))
65 itg2mulc.3 . . . . . . 7 (𝜑 → (∫2𝐹) ∈ ℝ)
6665adantr 483 . . . . . 6 ((𝜑𝑓 ∈ dom ∫1) → (∫2𝐹) ∈ ℝ)
6725adantr 483 . . . . . 6 ((𝜑𝑓 ∈ dom ∫1) → 0 < 𝐴)
68 ledivmul 11510 . . . . . 6 (((∫1𝑓) ∈ ℝ ∧ (∫2𝐹) ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (((∫1𝑓) / 𝐴) ≤ (∫2𝐹) ↔ (∫1𝑓) ≤ (𝐴 · (∫2𝐹))))
6958, 66, 60, 67, 68syl112anc 1370 . . . . 5 ((𝜑𝑓 ∈ dom ∫1) → (((∫1𝑓) / 𝐴) ≤ (∫2𝐹) ↔ (∫1𝑓) ≤ (𝐴 · (∫2𝐹))))
7064, 69bitr2d 282 . . . 4 ((𝜑𝑓 ∈ dom ∫1) → ((∫1𝑓) ≤ (𝐴 · (∫2𝐹)) ↔ (∫1‘((ℝ × {(1 / 𝐴)}) ∘f · 𝑓)) ≤ (∫2𝐹)))
7114, 55, 703imtr4d 296 . . 3 ((𝜑𝑓 ∈ dom ∫1) → (𝑓r ≤ ((ℝ × {𝐴}) ∘f · 𝐹) → (∫1𝑓) ≤ (𝐴 · (∫2𝐹))))
7271ralrimiva 3182 . 2 (𝜑 → ∀𝑓 ∈ dom ∫1(𝑓r ≤ ((ℝ × {𝐴}) ∘f · 𝐹) → (∫1𝑓) ≤ (𝐴 · (∫2𝐹))))
73 ge0mulcl 12843 . . . . . 6 ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 · 𝑦) ∈ (0[,)+∞))
7473adantl 484 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → (𝑥 · 𝑦) ∈ (0[,)+∞))
75 fconstg 6561 . . . . . . 7 (𝐴 ∈ ℝ+ → (ℝ × {𝐴}):ℝ⟶{𝐴})
767, 75syl 17 . . . . . 6 (𝜑 → (ℝ × {𝐴}):ℝ⟶{𝐴})
77 rpre 12391 . . . . . . . . 9 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
78 rpge0 12396 . . . . . . . . 9 (𝐴 ∈ ℝ+ → 0 ≤ 𝐴)
79 elrege0 12836 . . . . . . . . 9 (𝐴 ∈ (0[,)+∞) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
8077, 78, 79sylanbrc 585 . . . . . . . 8 (𝐴 ∈ ℝ+𝐴 ∈ (0[,)+∞))
817, 80syl 17 . . . . . . 7 (𝜑𝐴 ∈ (0[,)+∞))
8281snssd 4736 . . . . . 6 (𝜑 → {𝐴} ⊆ (0[,)+∞))
8376, 82fssd 6523 . . . . 5 (𝜑 → (ℝ × {𝐴}):ℝ⟶(0[,)+∞))
8438a1i 11 . . . . 5 (𝜑 → ℝ ∈ V)
85 inidm 4195 . . . . 5 (ℝ ∩ ℝ) = ℝ
8674, 83, 1, 84, 84, 85off 7418 . . . 4 (𝜑 → ((ℝ × {𝐴}) ∘f · 𝐹):ℝ⟶(0[,)+∞))
87 fss 6522 . . . 4 ((((ℝ × {𝐴}) ∘f · 𝐹):ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ (0[,]+∞)) → ((ℝ × {𝐴}) ∘f · 𝐹):ℝ⟶(0[,]+∞))
8886, 2, 87sylancl 588 . . 3 (𝜑 → ((ℝ × {𝐴}) ∘f · 𝐹):ℝ⟶(0[,]+∞))
8923, 65remulcld 10665 . . . 4 (𝜑 → (𝐴 · (∫2𝐹)) ∈ ℝ)
9089rexrd 10685 . . 3 (𝜑 → (𝐴 · (∫2𝐹)) ∈ ℝ*)
91 itg2leub 24329 . . 3 ((((ℝ × {𝐴}) ∘f · 𝐹):ℝ⟶(0[,]+∞) ∧ (𝐴 · (∫2𝐹)) ∈ ℝ*) → ((∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) ≤ (𝐴 · (∫2𝐹)) ↔ ∀𝑓 ∈ dom ∫1(𝑓r ≤ ((ℝ × {𝐴}) ∘f · 𝐹) → (∫1𝑓) ≤ (𝐴 · (∫2𝐹)))))
9288, 90, 91syl2anc 586 . 2 (𝜑 → ((∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) ≤ (𝐴 · (∫2𝐹)) ↔ ∀𝑓 ∈ dom ∫1(𝑓r ≤ ((ℝ × {𝐴}) ∘f · 𝐹) → (∫1𝑓) ≤ (𝐴 · (∫2𝐹)))))
9372, 92mpbird 259 1 (𝜑 → (∫2‘((ℝ × {𝐴}) ∘f · 𝐹)) ≤ (𝐴 · (∫2𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wne 3016  wral 3138  Vcvv 3495  wss 3936  {csn 4561   class class class wbr 5059  cmpt 5139   × cxp 5548  dom cdm 5550  wf 6346  cfv 6350  (class class class)co 7150  f cof 7401  r cofr 7402  cr 10530  0cc0 10531  1c1 10532   · cmul 10536  +∞cpnf 10666  *cxr 10668   < clt 10669  cle 10670   / cdiv 11291  +crp 12383  [,)cico 12734  [,]cicc 12735  1citg1 24210  2citg2 24211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-se 5510  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-isom 6359  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-ofr 7404  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8283  df-map 8402  df-pm 8403  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-inf 8901  df-oi 8968  df-dju 9324  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-q 12343  df-rp 12384  df-xadd 12502  df-ioo 12736  df-ico 12738  df-icc 12739  df-fz 12887  df-fzo 13028  df-fl 13156  df-seq 13364  df-exp 13424  df-hash 13685  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-clim 14839  df-sum 15037  df-xmet 20532  df-met 20533  df-ovol 24059  df-vol 24060  df-mbf 24214  df-itg1 24215  df-itg2 24216
This theorem is referenced by:  itg2mulc  24342
  Copyright terms: Public domain W3C validator