MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpofrlmd Structured version   Visualization version   GIF version

Theorem mpofrlmd 20894
Description: Elements of the free module are mappings with two arguments defined by their operation values. (Contributed by AV, 20-Feb-2019.) (Proof shortened by AV, 3-Jul-2022.)
Hypotheses
Ref Expression
mpofrlmd.f 𝐹 = (𝑅 freeLMod (𝑁 × 𝑀))
mpofrlmd.v 𝑉 = (Base‘𝐹)
mpofrlmd.s ((𝑖 = 𝑎𝑗 = 𝑏) → 𝐴 = 𝐵)
mpofrlmd.a ((𝜑𝑖𝑁𝑗𝑀) → 𝐴𝑋)
mpofrlmd.b ((𝜑𝑎𝑁𝑏𝑀) → 𝐵𝑌)
mpofrlmd.e (𝜑 → (𝑁𝑈𝑀𝑊𝑍𝑉))
Assertion
Ref Expression
mpofrlmd (𝜑 → (𝑍 = (𝑎𝑁, 𝑏𝑀𝐵) ↔ ∀𝑖𝑁𝑗𝑀 (𝑖𝑍𝑗) = 𝐴))
Distinct variable groups:   𝐴,𝑎,𝑏   𝐵,𝑖,𝑗   𝑀,𝑎,𝑏,𝑖,𝑗   𝑁,𝑎,𝑏,𝑖,𝑗   𝑖,𝑍,𝑗   𝜑,𝑎,𝑏,𝑖,𝑗
Allowed substitution hints:   𝐴(𝑖,𝑗)   𝐵(𝑎,𝑏)   𝑅(𝑖,𝑗,𝑎,𝑏)   𝑈(𝑖,𝑗,𝑎,𝑏)   𝐹(𝑖,𝑗,𝑎,𝑏)   𝑉(𝑖,𝑗,𝑎,𝑏)   𝑊(𝑖,𝑗,𝑎,𝑏)   𝑋(𝑖,𝑗,𝑎,𝑏)   𝑌(𝑖,𝑗,𝑎,𝑏)   𝑍(𝑎,𝑏)

Proof of Theorem mpofrlmd
StepHypRef Expression
1 mpofrlmd.e . . . 4 (𝜑 → (𝑁𝑈𝑀𝑊𝑍𝑉))
2 xpexg 7578 . . . . . 6 ((𝑁𝑈𝑀𝑊) → (𝑁 × 𝑀) ∈ V)
32anim1i 614 . . . . 5 (((𝑁𝑈𝑀𝑊) ∧ 𝑍𝑉) → ((𝑁 × 𝑀) ∈ V ∧ 𝑍𝑉))
433impa 1108 . . . 4 ((𝑁𝑈𝑀𝑊𝑍𝑉) → ((𝑁 × 𝑀) ∈ V ∧ 𝑍𝑉))
51, 4syl 17 . . 3 (𝜑 → ((𝑁 × 𝑀) ∈ V ∧ 𝑍𝑉))
6 mpofrlmd.f . . . 4 𝐹 = (𝑅 freeLMod (𝑁 × 𝑀))
7 eqid 2738 . . . 4 (Base‘𝑅) = (Base‘𝑅)
8 mpofrlmd.v . . . 4 𝑉 = (Base‘𝐹)
96, 7, 8frlmbasf 20877 . . 3 (((𝑁 × 𝑀) ∈ V ∧ 𝑍𝑉) → 𝑍:(𝑁 × 𝑀)⟶(Base‘𝑅))
10 ffn 6584 . . 3 (𝑍:(𝑁 × 𝑀)⟶(Base‘𝑅) → 𝑍 Fn (𝑁 × 𝑀))
115, 9, 103syl 18 . 2 (𝜑𝑍 Fn (𝑁 × 𝑀))
12 mpofrlmd.s . 2 ((𝑖 = 𝑎𝑗 = 𝑏) → 𝐴 = 𝐵)
13 mpofrlmd.a . 2 ((𝜑𝑖𝑁𝑗𝑀) → 𝐴𝑋)
14 mpofrlmd.b . 2 ((𝜑𝑎𝑁𝑏𝑀) → 𝐵𝑌)
1511, 12, 13, 14fnmpoovd 7898 1 (𝜑 → (𝑍 = (𝑎𝑁, 𝑏𝑀𝐵) ↔ ∀𝑖𝑁𝑗𝑀 (𝑖𝑍𝑗) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  Vcvv 3422   × cxp 5578   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  cmpo 7257  Basecbs 16840   freeLMod cfrlm 20863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-sup 9131  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-hom 16912  df-cco 16913  df-0g 17069  df-prds 17075  df-pws 17077  df-sra 20349  df-rgmod 20350  df-dsmm 20849  df-frlm 20864
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator