MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpofrlmd Structured version   Visualization version   GIF version

Theorem mpofrlmd 21737
Description: Elements of the free module are mappings with two arguments defined by their operation values. (Contributed by AV, 20-Feb-2019.) (Proof shortened by AV, 3-Jul-2022.)
Hypotheses
Ref Expression
mpofrlmd.f 𝐹 = (𝑅 freeLMod (𝑁 × 𝑀))
mpofrlmd.v 𝑉 = (Base‘𝐹)
mpofrlmd.s ((𝑖 = 𝑎𝑗 = 𝑏) → 𝐴 = 𝐵)
mpofrlmd.a ((𝜑𝑖𝑁𝑗𝑀) → 𝐴𝑋)
mpofrlmd.b ((𝜑𝑎𝑁𝑏𝑀) → 𝐵𝑌)
mpofrlmd.e (𝜑 → (𝑁𝑈𝑀𝑊𝑍𝑉))
Assertion
Ref Expression
mpofrlmd (𝜑 → (𝑍 = (𝑎𝑁, 𝑏𝑀𝐵) ↔ ∀𝑖𝑁𝑗𝑀 (𝑖𝑍𝑗) = 𝐴))
Distinct variable groups:   𝐴,𝑎,𝑏   𝐵,𝑖,𝑗   𝑀,𝑎,𝑏,𝑖,𝑗   𝑁,𝑎,𝑏,𝑖,𝑗   𝑖,𝑍,𝑗   𝜑,𝑎,𝑏,𝑖,𝑗
Allowed substitution hints:   𝐴(𝑖,𝑗)   𝐵(𝑎,𝑏)   𝑅(𝑖,𝑗,𝑎,𝑏)   𝑈(𝑖,𝑗,𝑎,𝑏)   𝐹(𝑖,𝑗,𝑎,𝑏)   𝑉(𝑖,𝑗,𝑎,𝑏)   𝑊(𝑖,𝑗,𝑎,𝑏)   𝑋(𝑖,𝑗,𝑎,𝑏)   𝑌(𝑖,𝑗,𝑎,𝑏)   𝑍(𝑎,𝑏)

Proof of Theorem mpofrlmd
StepHypRef Expression
1 mpofrlmd.e . . 3 (𝜑 → (𝑁𝑈𝑀𝑊𝑍𝑉))
2 xpexg 7744 . . . . 5 ((𝑁𝑈𝑀𝑊) → (𝑁 × 𝑀) ∈ V)
32anim1i 615 . . . 4 (((𝑁𝑈𝑀𝑊) ∧ 𝑍𝑉) → ((𝑁 × 𝑀) ∈ V ∧ 𝑍𝑉))
433impa 1109 . . 3 ((𝑁𝑈𝑀𝑊𝑍𝑉) → ((𝑁 × 𝑀) ∈ V ∧ 𝑍𝑉))
5 mpofrlmd.f . . . 4 𝐹 = (𝑅 freeLMod (𝑁 × 𝑀))
6 eqid 2735 . . . 4 (Base‘𝑅) = (Base‘𝑅)
7 mpofrlmd.v . . . 4 𝑉 = (Base‘𝐹)
85, 6, 7frlmbasf 21720 . . 3 (((𝑁 × 𝑀) ∈ V ∧ 𝑍𝑉) → 𝑍:(𝑁 × 𝑀)⟶(Base‘𝑅))
9 ffn 6706 . . 3 (𝑍:(𝑁 × 𝑀)⟶(Base‘𝑅) → 𝑍 Fn (𝑁 × 𝑀))
101, 4, 8, 94syl 19 . 2 (𝜑𝑍 Fn (𝑁 × 𝑀))
11 mpofrlmd.s . 2 ((𝑖 = 𝑎𝑗 = 𝑏) → 𝐴 = 𝐵)
12 mpofrlmd.a . 2 ((𝜑𝑖𝑁𝑗𝑀) → 𝐴𝑋)
13 mpofrlmd.b . 2 ((𝜑𝑎𝑁𝑏𝑀) → 𝐵𝑌)
1410, 11, 12, 13fnmpoovd 8086 1 (𝜑 → (𝑍 = (𝑎𝑁, 𝑏𝑀𝐵) ↔ ∀𝑖𝑁𝑗𝑀 (𝑖𝑍𝑗) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wral 3051  Vcvv 3459   × cxp 5652   Fn wfn 6526  wf 6527  cfv 6531  (class class class)co 7405  cmpo 7407  Basecbs 17228   freeLMod cfrlm 21706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-map 8842  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-sup 9454  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-fz 13525  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-hom 17295  df-cco 17296  df-0g 17455  df-prds 17461  df-pws 17463  df-sra 21131  df-rgmod 21132  df-dsmm 21692  df-frlm 21707
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator