Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpofrlmd | Structured version Visualization version GIF version |
Description: Elements of the free module are mappings with two arguments defined by their operation values. (Contributed by AV, 20-Feb-2019.) (Proof shortened by AV, 3-Jul-2022.) |
Ref | Expression |
---|---|
mpofrlmd.f | ⊢ 𝐹 = (𝑅 freeLMod (𝑁 × 𝑀)) |
mpofrlmd.v | ⊢ 𝑉 = (Base‘𝐹) |
mpofrlmd.s | ⊢ ((𝑖 = 𝑎 ∧ 𝑗 = 𝑏) → 𝐴 = 𝐵) |
mpofrlmd.a | ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑀) → 𝐴 ∈ 𝑋) |
mpofrlmd.b | ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑀) → 𝐵 ∈ 𝑌) |
mpofrlmd.e | ⊢ (𝜑 → (𝑁 ∈ 𝑈 ∧ 𝑀 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉)) |
Ref | Expression |
---|---|
mpofrlmd | ⊢ (𝜑 → (𝑍 = (𝑎 ∈ 𝑁, 𝑏 ∈ 𝑀 ↦ 𝐵) ↔ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑀 (𝑖𝑍𝑗) = 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpofrlmd.e | . . . 4 ⊢ (𝜑 → (𝑁 ∈ 𝑈 ∧ 𝑀 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉)) | |
2 | xpexg 7590 | . . . . . 6 ⊢ ((𝑁 ∈ 𝑈 ∧ 𝑀 ∈ 𝑊) → (𝑁 × 𝑀) ∈ V) | |
3 | 2 | anim1i 615 | . . . . 5 ⊢ (((𝑁 ∈ 𝑈 ∧ 𝑀 ∈ 𝑊) ∧ 𝑍 ∈ 𝑉) → ((𝑁 × 𝑀) ∈ V ∧ 𝑍 ∈ 𝑉)) |
4 | 3 | 3impa 1109 | . . . 4 ⊢ ((𝑁 ∈ 𝑈 ∧ 𝑀 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) → ((𝑁 × 𝑀) ∈ V ∧ 𝑍 ∈ 𝑉)) |
5 | 1, 4 | syl 17 | . . 3 ⊢ (𝜑 → ((𝑁 × 𝑀) ∈ V ∧ 𝑍 ∈ 𝑉)) |
6 | mpofrlmd.f | . . . 4 ⊢ 𝐹 = (𝑅 freeLMod (𝑁 × 𝑀)) | |
7 | eqid 2738 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
8 | mpofrlmd.v | . . . 4 ⊢ 𝑉 = (Base‘𝐹) | |
9 | 6, 7, 8 | frlmbasf 20977 | . . 3 ⊢ (((𝑁 × 𝑀) ∈ V ∧ 𝑍 ∈ 𝑉) → 𝑍:(𝑁 × 𝑀)⟶(Base‘𝑅)) |
10 | ffn 6592 | . . 3 ⊢ (𝑍:(𝑁 × 𝑀)⟶(Base‘𝑅) → 𝑍 Fn (𝑁 × 𝑀)) | |
11 | 5, 9, 10 | 3syl 18 | . 2 ⊢ (𝜑 → 𝑍 Fn (𝑁 × 𝑀)) |
12 | mpofrlmd.s | . 2 ⊢ ((𝑖 = 𝑎 ∧ 𝑗 = 𝑏) → 𝐴 = 𝐵) | |
13 | mpofrlmd.a | . 2 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑀) → 𝐴 ∈ 𝑋) | |
14 | mpofrlmd.b | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑀) → 𝐵 ∈ 𝑌) | |
15 | 11, 12, 13, 14 | fnmpoovd 7914 | 1 ⊢ (𝜑 → (𝑍 = (𝑎 ∈ 𝑁, 𝑏 ∈ 𝑀 ↦ 𝐵) ↔ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑀 (𝑖𝑍𝑗) = 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∀wral 3064 Vcvv 3429 × cxp 5582 Fn wfn 6421 ⟶wf 6422 ‘cfv 6426 (class class class)co 7267 ∈ cmpo 7269 Basecbs 16922 freeLMod cfrlm 20963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5208 ax-sep 5221 ax-nul 5228 ax-pow 5286 ax-pr 5350 ax-un 7578 ax-cnex 10937 ax-resscn 10938 ax-1cn 10939 ax-icn 10940 ax-addcl 10941 ax-addrcl 10942 ax-mulcl 10943 ax-mulrcl 10944 ax-mulcom 10945 ax-addass 10946 ax-mulass 10947 ax-distr 10948 ax-i2m1 10949 ax-1ne0 10950 ax-1rid 10951 ax-rnegex 10952 ax-rrecex 10953 ax-cnre 10954 ax-pre-lttri 10955 ax-pre-lttrn 10956 ax-pre-ltadd 10957 ax-pre-mulgt0 10958 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3431 df-sbc 3716 df-csb 3832 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-pss 3905 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-iun 4926 df-br 5074 df-opab 5136 df-mpt 5157 df-tr 5191 df-id 5484 df-eprel 5490 df-po 5498 df-so 5499 df-fr 5539 df-we 5541 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-res 5596 df-ima 5597 df-pred 6195 df-ord 6262 df-on 6263 df-lim 6264 df-suc 6265 df-iota 6384 df-fun 6428 df-fn 6429 df-f 6430 df-f1 6431 df-fo 6432 df-f1o 6433 df-fv 6434 df-riota 7224 df-ov 7270 df-oprab 7271 df-mpo 7272 df-om 7703 df-1st 7820 df-2nd 7821 df-supp 7965 df-frecs 8084 df-wrecs 8115 df-recs 8189 df-rdg 8228 df-1o 8284 df-er 8485 df-map 8604 df-ixp 8673 df-en 8721 df-dom 8722 df-sdom 8723 df-fin 8724 df-fsupp 9116 df-sup 9188 df-pnf 11021 df-mnf 11022 df-xr 11023 df-ltxr 11024 df-le 11025 df-sub 11217 df-neg 11218 df-nn 11984 df-2 12046 df-3 12047 df-4 12048 df-5 12049 df-6 12050 df-7 12051 df-8 12052 df-9 12053 df-n0 12244 df-z 12330 df-dec 12448 df-uz 12593 df-fz 13250 df-struct 16858 df-sets 16875 df-slot 16893 df-ndx 16905 df-base 16923 df-ress 16952 df-plusg 16985 df-mulr 16986 df-sca 16988 df-vsca 16989 df-ip 16990 df-tset 16991 df-ple 16992 df-ds 16994 df-hom 16996 df-cco 16997 df-0g 17162 df-prds 17168 df-pws 17170 df-sra 20444 df-rgmod 20445 df-dsmm 20949 df-frlm 20964 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |