Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpofrlmd | Structured version Visualization version GIF version |
Description: Elements of the free module are mappings with two arguments defined by their operation values. (Contributed by AV, 20-Feb-2019.) (Proof shortened by AV, 3-Jul-2022.) |
Ref | Expression |
---|---|
mpofrlmd.f | ⊢ 𝐹 = (𝑅 freeLMod (𝑁 × 𝑀)) |
mpofrlmd.v | ⊢ 𝑉 = (Base‘𝐹) |
mpofrlmd.s | ⊢ ((𝑖 = 𝑎 ∧ 𝑗 = 𝑏) → 𝐴 = 𝐵) |
mpofrlmd.a | ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑀) → 𝐴 ∈ 𝑋) |
mpofrlmd.b | ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑀) → 𝐵 ∈ 𝑌) |
mpofrlmd.e | ⊢ (𝜑 → (𝑁 ∈ 𝑈 ∧ 𝑀 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉)) |
Ref | Expression |
---|---|
mpofrlmd | ⊢ (𝜑 → (𝑍 = (𝑎 ∈ 𝑁, 𝑏 ∈ 𝑀 ↦ 𝐵) ↔ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑀 (𝑖𝑍𝑗) = 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpofrlmd.e | . . . 4 ⊢ (𝜑 → (𝑁 ∈ 𝑈 ∧ 𝑀 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉)) | |
2 | xpexg 7578 | . . . . . 6 ⊢ ((𝑁 ∈ 𝑈 ∧ 𝑀 ∈ 𝑊) → (𝑁 × 𝑀) ∈ V) | |
3 | 2 | anim1i 614 | . . . . 5 ⊢ (((𝑁 ∈ 𝑈 ∧ 𝑀 ∈ 𝑊) ∧ 𝑍 ∈ 𝑉) → ((𝑁 × 𝑀) ∈ V ∧ 𝑍 ∈ 𝑉)) |
4 | 3 | 3impa 1108 | . . . 4 ⊢ ((𝑁 ∈ 𝑈 ∧ 𝑀 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) → ((𝑁 × 𝑀) ∈ V ∧ 𝑍 ∈ 𝑉)) |
5 | 1, 4 | syl 17 | . . 3 ⊢ (𝜑 → ((𝑁 × 𝑀) ∈ V ∧ 𝑍 ∈ 𝑉)) |
6 | mpofrlmd.f | . . . 4 ⊢ 𝐹 = (𝑅 freeLMod (𝑁 × 𝑀)) | |
7 | eqid 2738 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
8 | mpofrlmd.v | . . . 4 ⊢ 𝑉 = (Base‘𝐹) | |
9 | 6, 7, 8 | frlmbasf 20877 | . . 3 ⊢ (((𝑁 × 𝑀) ∈ V ∧ 𝑍 ∈ 𝑉) → 𝑍:(𝑁 × 𝑀)⟶(Base‘𝑅)) |
10 | ffn 6584 | . . 3 ⊢ (𝑍:(𝑁 × 𝑀)⟶(Base‘𝑅) → 𝑍 Fn (𝑁 × 𝑀)) | |
11 | 5, 9, 10 | 3syl 18 | . 2 ⊢ (𝜑 → 𝑍 Fn (𝑁 × 𝑀)) |
12 | mpofrlmd.s | . 2 ⊢ ((𝑖 = 𝑎 ∧ 𝑗 = 𝑏) → 𝐴 = 𝐵) | |
13 | mpofrlmd.a | . 2 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑀) → 𝐴 ∈ 𝑋) | |
14 | mpofrlmd.b | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑀) → 𝐵 ∈ 𝑌) | |
15 | 11, 12, 13, 14 | fnmpoovd 7898 | 1 ⊢ (𝜑 → (𝑍 = (𝑎 ∈ 𝑁, 𝑏 ∈ 𝑀 ↦ 𝐵) ↔ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑀 (𝑖𝑍𝑗) = 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∀wral 3063 Vcvv 3422 × cxp 5578 Fn wfn 6413 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 Basecbs 16840 freeLMod cfrlm 20863 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-sup 9131 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-fz 13169 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-hom 16912 df-cco 16913 df-0g 17069 df-prds 17075 df-pws 17077 df-sra 20349 df-rgmod 20350 df-dsmm 20849 df-frlm 20864 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |