MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpofrlmd Structured version   Visualization version   GIF version

Theorem mpofrlmd 21323
Description: Elements of the free module are mappings with two arguments defined by their operation values. (Contributed by AV, 20-Feb-2019.) (Proof shortened by AV, 3-Jul-2022.)
Hypotheses
Ref Expression
mpofrlmd.f 𝐹 = (𝑅 freeLMod (𝑁 × 𝑀))
mpofrlmd.v 𝑉 = (Base‘𝐹)
mpofrlmd.s ((𝑖 = 𝑎𝑗 = 𝑏) → 𝐴 = 𝐵)
mpofrlmd.a ((𝜑𝑖𝑁𝑗𝑀) → 𝐴𝑋)
mpofrlmd.b ((𝜑𝑎𝑁𝑏𝑀) → 𝐵𝑌)
mpofrlmd.e (𝜑 → (𝑁𝑈𝑀𝑊𝑍𝑉))
Assertion
Ref Expression
mpofrlmd (𝜑 → (𝑍 = (𝑎𝑁, 𝑏𝑀𝐵) ↔ ∀𝑖𝑁𝑗𝑀 (𝑖𝑍𝑗) = 𝐴))
Distinct variable groups:   𝐴,𝑎,𝑏   𝐵,𝑖,𝑗   𝑀,𝑎,𝑏,𝑖,𝑗   𝑁,𝑎,𝑏,𝑖,𝑗   𝑖,𝑍,𝑗   𝜑,𝑎,𝑏,𝑖,𝑗
Allowed substitution hints:   𝐴(𝑖,𝑗)   𝐵(𝑎,𝑏)   𝑅(𝑖,𝑗,𝑎,𝑏)   𝑈(𝑖,𝑗,𝑎,𝑏)   𝐹(𝑖,𝑗,𝑎,𝑏)   𝑉(𝑖,𝑗,𝑎,𝑏)   𝑊(𝑖,𝑗,𝑎,𝑏)   𝑋(𝑖,𝑗,𝑎,𝑏)   𝑌(𝑖,𝑗,𝑎,𝑏)   𝑍(𝑎,𝑏)

Proof of Theorem mpofrlmd
StepHypRef Expression
1 mpofrlmd.e . . . 4 (𝜑 → (𝑁𝑈𝑀𝑊𝑍𝑉))
2 xpexg 7733 . . . . . 6 ((𝑁𝑈𝑀𝑊) → (𝑁 × 𝑀) ∈ V)
32anim1i 615 . . . . 5 (((𝑁𝑈𝑀𝑊) ∧ 𝑍𝑉) → ((𝑁 × 𝑀) ∈ V ∧ 𝑍𝑉))
433impa 1110 . . . 4 ((𝑁𝑈𝑀𝑊𝑍𝑉) → ((𝑁 × 𝑀) ∈ V ∧ 𝑍𝑉))
51, 4syl 17 . . 3 (𝜑 → ((𝑁 × 𝑀) ∈ V ∧ 𝑍𝑉))
6 mpofrlmd.f . . . 4 𝐹 = (𝑅 freeLMod (𝑁 × 𝑀))
7 eqid 2732 . . . 4 (Base‘𝑅) = (Base‘𝑅)
8 mpofrlmd.v . . . 4 𝑉 = (Base‘𝐹)
96, 7, 8frlmbasf 21306 . . 3 (((𝑁 × 𝑀) ∈ V ∧ 𝑍𝑉) → 𝑍:(𝑁 × 𝑀)⟶(Base‘𝑅))
10 ffn 6714 . . 3 (𝑍:(𝑁 × 𝑀)⟶(Base‘𝑅) → 𝑍 Fn (𝑁 × 𝑀))
115, 9, 103syl 18 . 2 (𝜑𝑍 Fn (𝑁 × 𝑀))
12 mpofrlmd.s . 2 ((𝑖 = 𝑎𝑗 = 𝑏) → 𝐴 = 𝐵)
13 mpofrlmd.a . 2 ((𝜑𝑖𝑁𝑗𝑀) → 𝐴𝑋)
14 mpofrlmd.b . 2 ((𝜑𝑎𝑁𝑏𝑀) → 𝐵𝑌)
1511, 12, 13, 14fnmpoovd 8069 1 (𝜑 → (𝑍 = (𝑎𝑁, 𝑏𝑀𝐵) ↔ ∀𝑖𝑁𝑗𝑀 (𝑖𝑍𝑗) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3061  Vcvv 3474   × cxp 5673   Fn wfn 6535  wf 6536  cfv 6540  (class class class)co 7405  cmpo 7407  Basecbs 17140   freeLMod cfrlm 21292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-map 8818  df-ixp 8888  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fsupp 9358  df-sup 9433  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-fz 13481  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-sca 17209  df-vsca 17210  df-ip 17211  df-tset 17212  df-ple 17213  df-ds 17215  df-hom 17217  df-cco 17218  df-0g 17383  df-prds 17389  df-pws 17391  df-sra 20777  df-rgmod 20778  df-dsmm 21278  df-frlm 21293
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator