MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  el2mpocl Structured version   Visualization version   GIF version

Theorem el2mpocl 8068
Description: If the operation value of the operation value of two nested maps-to notation is not empty, all involved arguments belong to the corresponding base classes of the maps-to notations. Using implicit substitution. (Contributed by AV, 21-May-2021.)
Hypotheses
Ref Expression
el2mpocl.o 𝑂 = (𝑥𝐴, 𝑦𝐵 ↦ (𝑠𝐶, 𝑡𝐷𝐸))
el2mpocl.e ((𝑥 = 𝑋𝑦 = 𝑌) → (𝐶 = 𝐹𝐷 = 𝐺))
Assertion
Ref Expression
el2mpocl (∀𝑥𝐴𝑦𝐵 (𝐶𝑈𝐷𝑉) → (𝑊 ∈ (𝑆(𝑋𝑂𝑌)𝑇) → ((𝑋𝐴𝑌𝐵) ∧ (𝑆𝐹𝑇𝐺))))
Distinct variable groups:   𝐴,𝑠,𝑡,𝑥,𝑦   𝐵,𝑠,𝑡,𝑥,𝑦   𝐶,𝑠,𝑡   𝐷,𝑠,𝑡   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝑥,𝑈,𝑦   𝑥,𝑉,𝑦   𝑋,𝑠,𝑡,𝑥,𝑦   𝑌,𝑠,𝑡,𝑥,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝑆(𝑥,𝑦,𝑡,𝑠)   𝑇(𝑥,𝑦,𝑡,𝑠)   𝑈(𝑡,𝑠)   𝐸(𝑥,𝑦,𝑡,𝑠)   𝐹(𝑡,𝑠)   𝐺(𝑡,𝑠)   𝑂(𝑥,𝑦,𝑡,𝑠)   𝑉(𝑡,𝑠)   𝑊(𝑥,𝑦,𝑡,𝑠)

Proof of Theorem el2mpocl
StepHypRef Expression
1 el2mpocl.o . . 3 𝑂 = (𝑥𝐴, 𝑦𝐵 ↦ (𝑠𝐶, 𝑡𝐷𝐸))
21el2mpocsbcl 8067 . 2 (∀𝑥𝐴𝑦𝐵 (𝐶𝑈𝐷𝑉) → (𝑊 ∈ (𝑆(𝑋𝑂𝑌)𝑇) → ((𝑋𝐴𝑌𝐵) ∧ (𝑆𝑋 / 𝑥𝑌 / 𝑦𝐶𝑇𝑋 / 𝑥𝑌 / 𝑦𝐷))))
3 simpl 482 . . . . . . 7 ((𝑋𝐴𝑌𝐵) → 𝑋𝐴)
4 simplr 768 . . . . . . . 8 (((𝑋𝐴𝑌𝐵) ∧ 𝑥 = 𝑋) → 𝑌𝐵)
5 el2mpocl.e . . . . . . . . . 10 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝐶 = 𝐹𝐷 = 𝐺))
65simpld 494 . . . . . . . . 9 ((𝑥 = 𝑋𝑦 = 𝑌) → 𝐶 = 𝐹)
76adantll 714 . . . . . . . 8 ((((𝑋𝐴𝑌𝐵) ∧ 𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → 𝐶 = 𝐹)
84, 7csbied 3901 . . . . . . 7 (((𝑋𝐴𝑌𝐵) ∧ 𝑥 = 𝑋) → 𝑌 / 𝑦𝐶 = 𝐹)
93, 8csbied 3901 . . . . . 6 ((𝑋𝐴𝑌𝐵) → 𝑋 / 𝑥𝑌 / 𝑦𝐶 = 𝐹)
109eleq2d 2815 . . . . 5 ((𝑋𝐴𝑌𝐵) → (𝑆𝑋 / 𝑥𝑌 / 𝑦𝐶𝑆𝐹))
115simprd 495 . . . . . . . . 9 ((𝑥 = 𝑋𝑦 = 𝑌) → 𝐷 = 𝐺)
1211adantll 714 . . . . . . . 8 ((((𝑋𝐴𝑌𝐵) ∧ 𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → 𝐷 = 𝐺)
134, 12csbied 3901 . . . . . . 7 (((𝑋𝐴𝑌𝐵) ∧ 𝑥 = 𝑋) → 𝑌 / 𝑦𝐷 = 𝐺)
143, 13csbied 3901 . . . . . 6 ((𝑋𝐴𝑌𝐵) → 𝑋 / 𝑥𝑌 / 𝑦𝐷 = 𝐺)
1514eleq2d 2815 . . . . 5 ((𝑋𝐴𝑌𝐵) → (𝑇𝑋 / 𝑥𝑌 / 𝑦𝐷𝑇𝐺))
1610, 15anbi12d 632 . . . 4 ((𝑋𝐴𝑌𝐵) → ((𝑆𝑋 / 𝑥𝑌 / 𝑦𝐶𝑇𝑋 / 𝑥𝑌 / 𝑦𝐷) ↔ (𝑆𝐹𝑇𝐺)))
1716biimpd 229 . . 3 ((𝑋𝐴𝑌𝐵) → ((𝑆𝑋 / 𝑥𝑌 / 𝑦𝐶𝑇𝑋 / 𝑥𝑌 / 𝑦𝐷) → (𝑆𝐹𝑇𝐺)))
1817imdistani 568 . 2 (((𝑋𝐴𝑌𝐵) ∧ (𝑆𝑋 / 𝑥𝑌 / 𝑦𝐶𝑇𝑋 / 𝑥𝑌 / 𝑦𝐷)) → ((𝑋𝐴𝑌𝐵) ∧ (𝑆𝐹𝑇𝐺)))
192, 18syl6 35 1 (∀𝑥𝐴𝑦𝐵 (𝐶𝑈𝐷𝑉) → (𝑊 ∈ (𝑆(𝑋𝑂𝑌)𝑇) → ((𝑋𝐴𝑌𝐵) ∧ (𝑆𝐹𝑇𝐺))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3045  csb 3865  (class class class)co 7390  cmpo 7392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972
This theorem is referenced by:  wwlksonvtx  29792  wspthnonp  29796
  Copyright terms: Public domain W3C validator