![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > el2mpocl | Structured version Visualization version GIF version |
Description: If the operation value of the operation value of two nested maps-to notation is not empty, all involved arguments belong to the corresponding base classes of the maps-to notations. Using implicit substitution. (Contributed by AV, 21-May-2021.) |
Ref | Expression |
---|---|
el2mpocl.o | ⊢ 𝑂 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ (𝑠 ∈ 𝐶, 𝑡 ∈ 𝐷 ↦ 𝐸)) |
el2mpocl.e | ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝐶 = 𝐹 ∧ 𝐷 = 𝐺)) |
Ref | Expression |
---|---|
el2mpocl | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉) → (𝑊 ∈ (𝑆(𝑋𝑂𝑌)𝑇) → ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ (𝑆 ∈ 𝐹 ∧ 𝑇 ∈ 𝐺)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | el2mpocl.o | . . 3 ⊢ 𝑂 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ (𝑠 ∈ 𝐶, 𝑡 ∈ 𝐷 ↦ 𝐸)) | |
2 | 1 | el2mpocsbcl 8126 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉) → (𝑊 ∈ (𝑆(𝑋𝑂𝑌)𝑇) → ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ (𝑆 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐶 ∧ 𝑇 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐷)))) |
3 | simpl 482 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐴) | |
4 | simplr 768 | . . . . . . . 8 ⊢ (((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ 𝑥 = 𝑋) → 𝑌 ∈ 𝐵) | |
5 | el2mpocl.e | . . . . . . . . . 10 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝐶 = 𝐹 ∧ 𝐷 = 𝐺)) | |
6 | 5 | simpld 494 | . . . . . . . . 9 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 𝐶 = 𝐹) |
7 | 6 | adantll 713 | . . . . . . . 8 ⊢ ((((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ 𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → 𝐶 = 𝐹) |
8 | 4, 7 | csbied 3959 | . . . . . . 7 ⊢ (((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ 𝑥 = 𝑋) → ⦋𝑌 / 𝑦⦌𝐶 = 𝐹) |
9 | 3, 8 | csbied 3959 | . . . . . 6 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐶 = 𝐹) |
10 | 9 | eleq2d 2830 | . . . . 5 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (𝑆 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐶 ↔ 𝑆 ∈ 𝐹)) |
11 | 5 | simprd 495 | . . . . . . . . 9 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 𝐷 = 𝐺) |
12 | 11 | adantll 713 | . . . . . . . 8 ⊢ ((((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ 𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → 𝐷 = 𝐺) |
13 | 4, 12 | csbied 3959 | . . . . . . 7 ⊢ (((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ 𝑥 = 𝑋) → ⦋𝑌 / 𝑦⦌𝐷 = 𝐺) |
14 | 3, 13 | csbied 3959 | . . . . . 6 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐷 = 𝐺) |
15 | 14 | eleq2d 2830 | . . . . 5 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (𝑇 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐷 ↔ 𝑇 ∈ 𝐺)) |
16 | 10, 15 | anbi12d 631 | . . . 4 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → ((𝑆 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐶 ∧ 𝑇 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐷) ↔ (𝑆 ∈ 𝐹 ∧ 𝑇 ∈ 𝐺))) |
17 | 16 | biimpd 229 | . . 3 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → ((𝑆 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐶 ∧ 𝑇 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐷) → (𝑆 ∈ 𝐹 ∧ 𝑇 ∈ 𝐺))) |
18 | 17 | imdistani 568 | . 2 ⊢ (((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ (𝑆 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐶 ∧ 𝑇 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐷)) → ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ (𝑆 ∈ 𝐹 ∧ 𝑇 ∈ 𝐺))) |
19 | 2, 18 | syl6 35 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉) → (𝑊 ∈ (𝑆(𝑋𝑂𝑌)𝑇) → ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ (𝑆 ∈ 𝐹 ∧ 𝑇 ∈ 𝐺)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ⦋csb 3921 (class class class)co 7448 ∈ cmpo 7450 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 |
This theorem is referenced by: wwlksonvtx 29888 wspthnonp 29892 |
Copyright terms: Public domain | W3C validator |