![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > el2mpocl | Structured version Visualization version GIF version |
Description: If the operation value of the operation value of two nested maps-to notation is not empty, all involved arguments belong to the corresponding base classes of the maps-to notations. Using implicit substitution. (Contributed by AV, 21-May-2021.) |
Ref | Expression |
---|---|
el2mpocl.o | ⊢ 𝑂 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ (𝑠 ∈ 𝐶, 𝑡 ∈ 𝐷 ↦ 𝐸)) |
el2mpocl.e | ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝐶 = 𝐹 ∧ 𝐷 = 𝐺)) |
Ref | Expression |
---|---|
el2mpocl | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉) → (𝑊 ∈ (𝑆(𝑋𝑂𝑌)𝑇) → ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ (𝑆 ∈ 𝐹 ∧ 𝑇 ∈ 𝐺)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | el2mpocl.o | . . 3 ⊢ 𝑂 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ (𝑠 ∈ 𝐶, 𝑡 ∈ 𝐷 ↦ 𝐸)) | |
2 | 1 | el2mpocsbcl 8071 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉) → (𝑊 ∈ (𝑆(𝑋𝑂𝑌)𝑇) → ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ (𝑆 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐶 ∧ 𝑇 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐷)))) |
3 | simpl 484 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐴) | |
4 | simplr 768 | . . . . . . . 8 ⊢ (((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ 𝑥 = 𝑋) → 𝑌 ∈ 𝐵) | |
5 | el2mpocl.e | . . . . . . . . . 10 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝐶 = 𝐹 ∧ 𝐷 = 𝐺)) | |
6 | 5 | simpld 496 | . . . . . . . . 9 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 𝐶 = 𝐹) |
7 | 6 | adantll 713 | . . . . . . . 8 ⊢ ((((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ 𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → 𝐶 = 𝐹) |
8 | 4, 7 | csbied 3932 | . . . . . . 7 ⊢ (((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ 𝑥 = 𝑋) → ⦋𝑌 / 𝑦⦌𝐶 = 𝐹) |
9 | 3, 8 | csbied 3932 | . . . . . 6 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐶 = 𝐹) |
10 | 9 | eleq2d 2820 | . . . . 5 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (𝑆 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐶 ↔ 𝑆 ∈ 𝐹)) |
11 | 5 | simprd 497 | . . . . . . . . 9 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 𝐷 = 𝐺) |
12 | 11 | adantll 713 | . . . . . . . 8 ⊢ ((((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ 𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → 𝐷 = 𝐺) |
13 | 4, 12 | csbied 3932 | . . . . . . 7 ⊢ (((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ 𝑥 = 𝑋) → ⦋𝑌 / 𝑦⦌𝐷 = 𝐺) |
14 | 3, 13 | csbied 3932 | . . . . . 6 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐷 = 𝐺) |
15 | 14 | eleq2d 2820 | . . . . 5 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (𝑇 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐷 ↔ 𝑇 ∈ 𝐺)) |
16 | 10, 15 | anbi12d 632 | . . . 4 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → ((𝑆 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐶 ∧ 𝑇 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐷) ↔ (𝑆 ∈ 𝐹 ∧ 𝑇 ∈ 𝐺))) |
17 | 16 | biimpd 228 | . . 3 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → ((𝑆 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐶 ∧ 𝑇 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐷) → (𝑆 ∈ 𝐹 ∧ 𝑇 ∈ 𝐺))) |
18 | 17 | imdistani 570 | . 2 ⊢ (((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ (𝑆 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐶 ∧ 𝑇 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐷)) → ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ (𝑆 ∈ 𝐹 ∧ 𝑇 ∈ 𝐺))) |
19 | 2, 18 | syl6 35 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉) → (𝑊 ∈ (𝑆(𝑋𝑂𝑌)𝑇) → ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ (𝑆 ∈ 𝐹 ∧ 𝑇 ∈ 𝐺)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∀wral 3062 ⦋csb 3894 (class class class)co 7409 ∈ cmpo 7411 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-1st 7975 df-2nd 7976 |
This theorem is referenced by: wwlksonvtx 29109 wspthnonp 29113 |
Copyright terms: Public domain | W3C validator |