![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > el2mpocl | Structured version Visualization version GIF version |
Description: If the operation value of the operation value of two nested maps-to notation is not empty, all involved arguments belong to the corresponding base classes of the maps-to notations. Using implicit substitution. (Contributed by AV, 21-May-2021.) |
Ref | Expression |
---|---|
el2mpocl.o | ⊢ 𝑂 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ (𝑠 ∈ 𝐶, 𝑡 ∈ 𝐷 ↦ 𝐸)) |
el2mpocl.e | ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝐶 = 𝐹 ∧ 𝐷 = 𝐺)) |
Ref | Expression |
---|---|
el2mpocl | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉) → (𝑊 ∈ (𝑆(𝑋𝑂𝑌)𝑇) → ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ (𝑆 ∈ 𝐹 ∧ 𝑇 ∈ 𝐺)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | el2mpocl.o | . . 3 ⊢ 𝑂 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ (𝑠 ∈ 𝐶, 𝑡 ∈ 𝐷 ↦ 𝐸)) | |
2 | 1 | el2mpocsbcl 8021 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉) → (𝑊 ∈ (𝑆(𝑋𝑂𝑌)𝑇) → ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ (𝑆 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐶 ∧ 𝑇 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐷)))) |
3 | simpl 484 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐴) | |
4 | simplr 768 | . . . . . . . 8 ⊢ (((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ 𝑥 = 𝑋) → 𝑌 ∈ 𝐵) | |
5 | el2mpocl.e | . . . . . . . . . 10 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝐶 = 𝐹 ∧ 𝐷 = 𝐺)) | |
6 | 5 | simpld 496 | . . . . . . . . 9 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 𝐶 = 𝐹) |
7 | 6 | adantll 713 | . . . . . . . 8 ⊢ ((((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ 𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → 𝐶 = 𝐹) |
8 | 4, 7 | csbied 3897 | . . . . . . 7 ⊢ (((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ 𝑥 = 𝑋) → ⦋𝑌 / 𝑦⦌𝐶 = 𝐹) |
9 | 3, 8 | csbied 3897 | . . . . . 6 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐶 = 𝐹) |
10 | 9 | eleq2d 2820 | . . . . 5 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (𝑆 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐶 ↔ 𝑆 ∈ 𝐹)) |
11 | 5 | simprd 497 | . . . . . . . . 9 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 𝐷 = 𝐺) |
12 | 11 | adantll 713 | . . . . . . . 8 ⊢ ((((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ 𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → 𝐷 = 𝐺) |
13 | 4, 12 | csbied 3897 | . . . . . . 7 ⊢ (((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ 𝑥 = 𝑋) → ⦋𝑌 / 𝑦⦌𝐷 = 𝐺) |
14 | 3, 13 | csbied 3897 | . . . . . 6 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐷 = 𝐺) |
15 | 14 | eleq2d 2820 | . . . . 5 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (𝑇 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐷 ↔ 𝑇 ∈ 𝐺)) |
16 | 10, 15 | anbi12d 632 | . . . 4 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → ((𝑆 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐶 ∧ 𝑇 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐷) ↔ (𝑆 ∈ 𝐹 ∧ 𝑇 ∈ 𝐺))) |
17 | 16 | biimpd 228 | . . 3 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → ((𝑆 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐶 ∧ 𝑇 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐷) → (𝑆 ∈ 𝐹 ∧ 𝑇 ∈ 𝐺))) |
18 | 17 | imdistani 570 | . 2 ⊢ (((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ (𝑆 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐶 ∧ 𝑇 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐷)) → ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ (𝑆 ∈ 𝐹 ∧ 𝑇 ∈ 𝐺))) |
19 | 2, 18 | syl6 35 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉) → (𝑊 ∈ (𝑆(𝑋𝑂𝑌)𝑇) → ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ (𝑆 ∈ 𝐹 ∧ 𝑇 ∈ 𝐺)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∀wral 3061 ⦋csb 3859 (class class class)co 7361 ∈ cmpo 7363 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5246 ax-sep 5260 ax-nul 5267 ax-pow 5324 ax-pr 5388 ax-un 7676 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3353 df-rab 3407 df-v 3449 df-sbc 3744 df-csb 3860 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4287 df-if 4491 df-pw 4566 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-iun 4960 df-br 5110 df-opab 5172 df-mpt 5193 df-id 5535 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-res 5649 df-ima 5650 df-iota 6452 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-ov 7364 df-oprab 7365 df-mpo 7366 df-1st 7925 df-2nd 7926 |
This theorem is referenced by: wwlksonvtx 28849 wspthnonp 28853 |
Copyright terms: Public domain | W3C validator |