Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmhmfgima Structured version   Visualization version   GIF version

Theorem lmhmfgima 40028
Description: A homomorphism maps finitely generated submodules to finitely generated submodules. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Hypotheses
Ref Expression
lmhmfgima.y 𝑌 = (𝑇s (𝐹𝐴))
lmhmfgima.x 𝑋 = (𝑆s 𝐴)
lmhmfgima.u 𝑈 = (LSubSp‘𝑆)
lmhmfgima.xf (𝜑𝑋 ∈ LFinGen)
lmhmfgima.a (𝜑𝐴𝑈)
lmhmfgima.f (𝜑𝐹 ∈ (𝑆 LMHom 𝑇))
Assertion
Ref Expression
lmhmfgima (𝜑𝑌 ∈ LFinGen)

Proof of Theorem lmhmfgima
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 lmhmfgima.y . 2 𝑌 = (𝑇s (𝐹𝐴))
2 lmhmfgima.xf . . . 4 (𝜑𝑋 ∈ LFinGen)
3 lmhmfgima.f . . . . . 6 (𝜑𝐹 ∈ (𝑆 LMHom 𝑇))
4 lmhmlmod1 19798 . . . . . 6 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod)
53, 4syl 17 . . . . 5 (𝜑𝑆 ∈ LMod)
6 lmhmfgima.a . . . . 5 (𝜑𝐴𝑈)
7 lmhmfgima.x . . . . . 6 𝑋 = (𝑆s 𝐴)
8 lmhmfgima.u . . . . . 6 𝑈 = (LSubSp‘𝑆)
9 eqid 2798 . . . . . 6 (LSpan‘𝑆) = (LSpan‘𝑆)
10 eqid 2798 . . . . . 6 (Base‘𝑆) = (Base‘𝑆)
117, 8, 9, 10islssfg2 40015 . . . . 5 ((𝑆 ∈ LMod ∧ 𝐴𝑈) → (𝑋 ∈ LFinGen ↔ ∃𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)((LSpan‘𝑆)‘𝑥) = 𝐴))
125, 6, 11syl2anc 587 . . . 4 (𝜑 → (𝑋 ∈ LFinGen ↔ ∃𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)((LSpan‘𝑆)‘𝑥) = 𝐴))
132, 12mpbid 235 . . 3 (𝜑 → ∃𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)((LSpan‘𝑆)‘𝑥) = 𝐴)
14 inss1 4155 . . . . . . . . . 10 (𝒫 (Base‘𝑆) ∩ Fin) ⊆ 𝒫 (Base‘𝑆)
1514sseli 3911 . . . . . . . . 9 (𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin) → 𝑥 ∈ 𝒫 (Base‘𝑆))
1615elpwid 4508 . . . . . . . 8 (𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin) → 𝑥 ⊆ (Base‘𝑆))
17 eqid 2798 . . . . . . . . 9 (LSpan‘𝑇) = (LSpan‘𝑇)
1810, 9, 17lmhmlsp 19814 . . . . . . . 8 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑥 ⊆ (Base‘𝑆)) → (𝐹 “ ((LSpan‘𝑆)‘𝑥)) = ((LSpan‘𝑇)‘(𝐹𝑥)))
193, 16, 18syl2an 598 . . . . . . 7 ((𝜑𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)) → (𝐹 “ ((LSpan‘𝑆)‘𝑥)) = ((LSpan‘𝑇)‘(𝐹𝑥)))
2019oveq2d 7151 . . . . . 6 ((𝜑𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)) → (𝑇s (𝐹 “ ((LSpan‘𝑆)‘𝑥))) = (𝑇s ((LSpan‘𝑇)‘(𝐹𝑥))))
21 lmhmlmod2 19797 . . . . . . . . 9 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑇 ∈ LMod)
223, 21syl 17 . . . . . . . 8 (𝜑𝑇 ∈ LMod)
2322adantr 484 . . . . . . 7 ((𝜑𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)) → 𝑇 ∈ LMod)
24 imassrn 5907 . . . . . . . . 9 (𝐹𝑥) ⊆ ran 𝐹
25 eqid 2798 . . . . . . . . . . . 12 (Base‘𝑇) = (Base‘𝑇)
2610, 25lmhmf 19799 . . . . . . . . . . 11 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
273, 26syl 17 . . . . . . . . . 10 (𝜑𝐹:(Base‘𝑆)⟶(Base‘𝑇))
2827frnd 6494 . . . . . . . . 9 (𝜑 → ran 𝐹 ⊆ (Base‘𝑇))
2924, 28sstrid 3926 . . . . . . . 8 (𝜑 → (𝐹𝑥) ⊆ (Base‘𝑇))
3029adantr 484 . . . . . . 7 ((𝜑𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)) → (𝐹𝑥) ⊆ (Base‘𝑇))
31 inss2 4156 . . . . . . . . . 10 (𝒫 (Base‘𝑆) ∩ Fin) ⊆ Fin
3231sseli 3911 . . . . . . . . 9 (𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin) → 𝑥 ∈ Fin)
3332adantl 485 . . . . . . . 8 ((𝜑𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)) → 𝑥 ∈ Fin)
3427ffund 6491 . . . . . . . . . 10 (𝜑 → Fun 𝐹)
3534adantr 484 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)) → Fun 𝐹)
3616adantl 485 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)) → 𝑥 ⊆ (Base‘𝑆))
3727fdmd 6497 . . . . . . . . . . 11 (𝜑 → dom 𝐹 = (Base‘𝑆))
3837adantr 484 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)) → dom 𝐹 = (Base‘𝑆))
3936, 38sseqtrrd 3956 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)) → 𝑥 ⊆ dom 𝐹)
40 fores 6575 . . . . . . . . 9 ((Fun 𝐹𝑥 ⊆ dom 𝐹) → (𝐹𝑥):𝑥onto→(𝐹𝑥))
4135, 39, 40syl2anc 587 . . . . . . . 8 ((𝜑𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)) → (𝐹𝑥):𝑥onto→(𝐹𝑥))
42 fofi 8794 . . . . . . . 8 ((𝑥 ∈ Fin ∧ (𝐹𝑥):𝑥onto→(𝐹𝑥)) → (𝐹𝑥) ∈ Fin)
4333, 41, 42syl2anc 587 . . . . . . 7 ((𝜑𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)) → (𝐹𝑥) ∈ Fin)
44 eqid 2798 . . . . . . . 8 (𝑇s ((LSpan‘𝑇)‘(𝐹𝑥))) = (𝑇s ((LSpan‘𝑇)‘(𝐹𝑥)))
4517, 25, 44islssfgi 40016 . . . . . . 7 ((𝑇 ∈ LMod ∧ (𝐹𝑥) ⊆ (Base‘𝑇) ∧ (𝐹𝑥) ∈ Fin) → (𝑇s ((LSpan‘𝑇)‘(𝐹𝑥))) ∈ LFinGen)
4623, 30, 43, 45syl3anc 1368 . . . . . 6 ((𝜑𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)) → (𝑇s ((LSpan‘𝑇)‘(𝐹𝑥))) ∈ LFinGen)
4720, 46eqeltrd 2890 . . . . 5 ((𝜑𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)) → (𝑇s (𝐹 “ ((LSpan‘𝑆)‘𝑥))) ∈ LFinGen)
48 imaeq2 5892 . . . . . . 7 (((LSpan‘𝑆)‘𝑥) = 𝐴 → (𝐹 “ ((LSpan‘𝑆)‘𝑥)) = (𝐹𝐴))
4948oveq2d 7151 . . . . . 6 (((LSpan‘𝑆)‘𝑥) = 𝐴 → (𝑇s (𝐹 “ ((LSpan‘𝑆)‘𝑥))) = (𝑇s (𝐹𝐴)))
5049eleq1d 2874 . . . . 5 (((LSpan‘𝑆)‘𝑥) = 𝐴 → ((𝑇s (𝐹 “ ((LSpan‘𝑆)‘𝑥))) ∈ LFinGen ↔ (𝑇s (𝐹𝐴)) ∈ LFinGen))
5147, 50syl5ibcom 248 . . . 4 ((𝜑𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)) → (((LSpan‘𝑆)‘𝑥) = 𝐴 → (𝑇s (𝐹𝐴)) ∈ LFinGen))
5251rexlimdva 3243 . . 3 (𝜑 → (∃𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)((LSpan‘𝑆)‘𝑥) = 𝐴 → (𝑇s (𝐹𝐴)) ∈ LFinGen))
5313, 52mpd 15 . 2 (𝜑 → (𝑇s (𝐹𝐴)) ∈ LFinGen)
541, 53eqeltrid 2894 1 (𝜑𝑌 ∈ LFinGen)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wrex 3107  cin 3880  wss 3881  𝒫 cpw 4497  dom cdm 5519  ran crn 5520  cres 5521  cima 5522  Fun wfun 6318  wf 6320  ontowfo 6322  cfv 6324  (class class class)co 7135  Fincfn 8492  Basecbs 16475  s cress 16476  LModclmod 19627  LSubSpclss 19696  LSpanclspn 19736   LMHom clmhm 19784  LFinGenclfig 40011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-sca 16573  df-vsca 16574  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-minusg 18099  df-sbg 18100  df-subg 18268  df-ghm 18348  df-mgp 19233  df-ur 19245  df-ring 19292  df-lmod 19629  df-lss 19697  df-lsp 19737  df-lmhm 19787  df-lfig 40012
This theorem is referenced by:  lnmepi  40029
  Copyright terms: Public domain W3C validator