| Step | Hyp | Ref
| Expression |
| 1 | | lmhmfgima.y |
. 2
⊢ 𝑌 = (𝑇 ↾s (𝐹 “ 𝐴)) |
| 2 | | lmhmfgima.xf |
. . . 4
⊢ (𝜑 → 𝑋 ∈ LFinGen) |
| 3 | | lmhmfgima.f |
. . . . . 6
⊢ (𝜑 → 𝐹 ∈ (𝑆 LMHom 𝑇)) |
| 4 | | lmhmlmod1 21033 |
. . . . . 6
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod) |
| 5 | 3, 4 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑆 ∈ LMod) |
| 6 | | lmhmfgima.a |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ 𝑈) |
| 7 | | lmhmfgima.x |
. . . . . 6
⊢ 𝑋 = (𝑆 ↾s 𝐴) |
| 8 | | lmhmfgima.u |
. . . . . 6
⊢ 𝑈 = (LSubSp‘𝑆) |
| 9 | | eqid 2736 |
. . . . . 6
⊢
(LSpan‘𝑆) =
(LSpan‘𝑆) |
| 10 | | eqid 2736 |
. . . . . 6
⊢
(Base‘𝑆) =
(Base‘𝑆) |
| 11 | 7, 8, 9, 10 | islssfg2 43088 |
. . . . 5
⊢ ((𝑆 ∈ LMod ∧ 𝐴 ∈ 𝑈) → (𝑋 ∈ LFinGen ↔ ∃𝑥 ∈ (𝒫
(Base‘𝑆) ∩
Fin)((LSpan‘𝑆)‘𝑥) = 𝐴)) |
| 12 | 5, 6, 11 | syl2anc 584 |
. . . 4
⊢ (𝜑 → (𝑋 ∈ LFinGen ↔ ∃𝑥 ∈ (𝒫
(Base‘𝑆) ∩
Fin)((LSpan‘𝑆)‘𝑥) = 𝐴)) |
| 13 | 2, 12 | mpbid 232 |
. . 3
⊢ (𝜑 → ∃𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)((LSpan‘𝑆)‘𝑥) = 𝐴) |
| 14 | | inss1 4236 |
. . . . . . . . . 10
⊢
(𝒫 (Base‘𝑆) ∩ Fin) ⊆ 𝒫
(Base‘𝑆) |
| 15 | 14 | sseli 3978 |
. . . . . . . . 9
⊢ (𝑥 ∈ (𝒫
(Base‘𝑆) ∩ Fin)
→ 𝑥 ∈ 𝒫
(Base‘𝑆)) |
| 16 | 15 | elpwid 4608 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝒫
(Base‘𝑆) ∩ Fin)
→ 𝑥 ⊆
(Base‘𝑆)) |
| 17 | | eqid 2736 |
. . . . . . . . 9
⊢
(LSpan‘𝑇) =
(LSpan‘𝑇) |
| 18 | 10, 9, 17 | lmhmlsp 21049 |
. . . . . . . 8
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑥 ⊆ (Base‘𝑆)) → (𝐹 “ ((LSpan‘𝑆)‘𝑥)) = ((LSpan‘𝑇)‘(𝐹 “ 𝑥))) |
| 19 | 3, 16, 18 | syl2an 596 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)) → (𝐹 “ ((LSpan‘𝑆)‘𝑥)) = ((LSpan‘𝑇)‘(𝐹 “ 𝑥))) |
| 20 | 19 | oveq2d 7448 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)) → (𝑇 ↾s (𝐹 “ ((LSpan‘𝑆)‘𝑥))) = (𝑇 ↾s ((LSpan‘𝑇)‘(𝐹 “ 𝑥)))) |
| 21 | | lmhmlmod2 21032 |
. . . . . . . . 9
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑇 ∈ LMod) |
| 22 | 3, 21 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑇 ∈ LMod) |
| 23 | 22 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)) → 𝑇 ∈ LMod) |
| 24 | | imassrn 6088 |
. . . . . . . . 9
⊢ (𝐹 “ 𝑥) ⊆ ran 𝐹 |
| 25 | | eqid 2736 |
. . . . . . . . . . . 12
⊢
(Base‘𝑇) =
(Base‘𝑇) |
| 26 | 10, 25 | lmhmf 21034 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇)) |
| 27 | 3, 26 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹:(Base‘𝑆)⟶(Base‘𝑇)) |
| 28 | 27 | frnd 6743 |
. . . . . . . . 9
⊢ (𝜑 → ran 𝐹 ⊆ (Base‘𝑇)) |
| 29 | 24, 28 | sstrid 3994 |
. . . . . . . 8
⊢ (𝜑 → (𝐹 “ 𝑥) ⊆ (Base‘𝑇)) |
| 30 | 29 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)) → (𝐹 “ 𝑥) ⊆ (Base‘𝑇)) |
| 31 | | inss2 4237 |
. . . . . . . . . 10
⊢
(𝒫 (Base‘𝑆) ∩ Fin) ⊆ Fin |
| 32 | 31 | sseli 3978 |
. . . . . . . . 9
⊢ (𝑥 ∈ (𝒫
(Base‘𝑆) ∩ Fin)
→ 𝑥 ∈
Fin) |
| 33 | 32 | adantl 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)) → 𝑥 ∈ Fin) |
| 34 | 27 | ffund 6739 |
. . . . . . . . . 10
⊢ (𝜑 → Fun 𝐹) |
| 35 | 34 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)) → Fun 𝐹) |
| 36 | 16 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)) → 𝑥 ⊆ (Base‘𝑆)) |
| 37 | 27 | fdmd 6745 |
. . . . . . . . . . 11
⊢ (𝜑 → dom 𝐹 = (Base‘𝑆)) |
| 38 | 37 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)) → dom 𝐹 = (Base‘𝑆)) |
| 39 | 36, 38 | sseqtrrd 4020 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)) → 𝑥 ⊆ dom 𝐹) |
| 40 | | fores 6829 |
. . . . . . . . 9
⊢ ((Fun
𝐹 ∧ 𝑥 ⊆ dom 𝐹) → (𝐹 ↾ 𝑥):𝑥–onto→(𝐹 “ 𝑥)) |
| 41 | 35, 39, 40 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)) → (𝐹 ↾ 𝑥):𝑥–onto→(𝐹 “ 𝑥)) |
| 42 | | fofi 9352 |
. . . . . . . 8
⊢ ((𝑥 ∈ Fin ∧ (𝐹 ↾ 𝑥):𝑥–onto→(𝐹 “ 𝑥)) → (𝐹 “ 𝑥) ∈ Fin) |
| 43 | 33, 41, 42 | syl2anc 584 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)) → (𝐹 “ 𝑥) ∈ Fin) |
| 44 | | eqid 2736 |
. . . . . . . 8
⊢ (𝑇 ↾s
((LSpan‘𝑇)‘(𝐹 “ 𝑥))) = (𝑇 ↾s ((LSpan‘𝑇)‘(𝐹 “ 𝑥))) |
| 45 | 17, 25, 44 | islssfgi 43089 |
. . . . . . 7
⊢ ((𝑇 ∈ LMod ∧ (𝐹 “ 𝑥) ⊆ (Base‘𝑇) ∧ (𝐹 “ 𝑥) ∈ Fin) → (𝑇 ↾s ((LSpan‘𝑇)‘(𝐹 “ 𝑥))) ∈ LFinGen) |
| 46 | 23, 30, 43, 45 | syl3anc 1372 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)) → (𝑇 ↾s
((LSpan‘𝑇)‘(𝐹 “ 𝑥))) ∈ LFinGen) |
| 47 | 20, 46 | eqeltrd 2840 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)) → (𝑇 ↾s (𝐹 “ ((LSpan‘𝑆)‘𝑥))) ∈ LFinGen) |
| 48 | | imaeq2 6073 |
. . . . . . 7
⊢
(((LSpan‘𝑆)‘𝑥) = 𝐴 → (𝐹 “ ((LSpan‘𝑆)‘𝑥)) = (𝐹 “ 𝐴)) |
| 49 | 48 | oveq2d 7448 |
. . . . . 6
⊢
(((LSpan‘𝑆)‘𝑥) = 𝐴 → (𝑇 ↾s (𝐹 “ ((LSpan‘𝑆)‘𝑥))) = (𝑇 ↾s (𝐹 “ 𝐴))) |
| 50 | 49 | eleq1d 2825 |
. . . . 5
⊢
(((LSpan‘𝑆)‘𝑥) = 𝐴 → ((𝑇 ↾s (𝐹 “ ((LSpan‘𝑆)‘𝑥))) ∈ LFinGen ↔ (𝑇 ↾s (𝐹 “ 𝐴)) ∈ LFinGen)) |
| 51 | 47, 50 | syl5ibcom 245 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)) →
(((LSpan‘𝑆)‘𝑥) = 𝐴 → (𝑇 ↾s (𝐹 “ 𝐴)) ∈ LFinGen)) |
| 52 | 51 | rexlimdva 3154 |
. . 3
⊢ (𝜑 → (∃𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)((LSpan‘𝑆)‘𝑥) = 𝐴 → (𝑇 ↾s (𝐹 “ 𝐴)) ∈ LFinGen)) |
| 53 | 13, 52 | mpd 15 |
. 2
⊢ (𝜑 → (𝑇 ↾s (𝐹 “ 𝐴)) ∈ LFinGen) |
| 54 | 1, 53 | eqeltrid 2844 |
1
⊢ (𝜑 → 𝑌 ∈ LFinGen) |