Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmhmfgima Structured version   Visualization version   GIF version

Theorem lmhmfgima 43083
Description: A homomorphism maps finitely generated submodules to finitely generated submodules. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Hypotheses
Ref Expression
lmhmfgima.y 𝑌 = (𝑇s (𝐹𝐴))
lmhmfgima.x 𝑋 = (𝑆s 𝐴)
lmhmfgima.u 𝑈 = (LSubSp‘𝑆)
lmhmfgima.xf (𝜑𝑋 ∈ LFinGen)
lmhmfgima.a (𝜑𝐴𝑈)
lmhmfgima.f (𝜑𝐹 ∈ (𝑆 LMHom 𝑇))
Assertion
Ref Expression
lmhmfgima (𝜑𝑌 ∈ LFinGen)

Proof of Theorem lmhmfgima
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 lmhmfgima.y . 2 𝑌 = (𝑇s (𝐹𝐴))
2 lmhmfgima.xf . . . 4 (𝜑𝑋 ∈ LFinGen)
3 lmhmfgima.f . . . . . 6 (𝜑𝐹 ∈ (𝑆 LMHom 𝑇))
4 lmhmlmod1 20996 . . . . . 6 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod)
53, 4syl 17 . . . . 5 (𝜑𝑆 ∈ LMod)
6 lmhmfgima.a . . . . 5 (𝜑𝐴𝑈)
7 lmhmfgima.x . . . . . 6 𝑋 = (𝑆s 𝐴)
8 lmhmfgima.u . . . . . 6 𝑈 = (LSubSp‘𝑆)
9 eqid 2736 . . . . . 6 (LSpan‘𝑆) = (LSpan‘𝑆)
10 eqid 2736 . . . . . 6 (Base‘𝑆) = (Base‘𝑆)
117, 8, 9, 10islssfg2 43070 . . . . 5 ((𝑆 ∈ LMod ∧ 𝐴𝑈) → (𝑋 ∈ LFinGen ↔ ∃𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)((LSpan‘𝑆)‘𝑥) = 𝐴))
125, 6, 11syl2anc 584 . . . 4 (𝜑 → (𝑋 ∈ LFinGen ↔ ∃𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)((LSpan‘𝑆)‘𝑥) = 𝐴))
132, 12mpbid 232 . . 3 (𝜑 → ∃𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)((LSpan‘𝑆)‘𝑥) = 𝐴)
14 inss1 4217 . . . . . . . . . 10 (𝒫 (Base‘𝑆) ∩ Fin) ⊆ 𝒫 (Base‘𝑆)
1514sseli 3959 . . . . . . . . 9 (𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin) → 𝑥 ∈ 𝒫 (Base‘𝑆))
1615elpwid 4589 . . . . . . . 8 (𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin) → 𝑥 ⊆ (Base‘𝑆))
17 eqid 2736 . . . . . . . . 9 (LSpan‘𝑇) = (LSpan‘𝑇)
1810, 9, 17lmhmlsp 21012 . . . . . . . 8 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑥 ⊆ (Base‘𝑆)) → (𝐹 “ ((LSpan‘𝑆)‘𝑥)) = ((LSpan‘𝑇)‘(𝐹𝑥)))
193, 16, 18syl2an 596 . . . . . . 7 ((𝜑𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)) → (𝐹 “ ((LSpan‘𝑆)‘𝑥)) = ((LSpan‘𝑇)‘(𝐹𝑥)))
2019oveq2d 7426 . . . . . 6 ((𝜑𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)) → (𝑇s (𝐹 “ ((LSpan‘𝑆)‘𝑥))) = (𝑇s ((LSpan‘𝑇)‘(𝐹𝑥))))
21 lmhmlmod2 20995 . . . . . . . . 9 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑇 ∈ LMod)
223, 21syl 17 . . . . . . . 8 (𝜑𝑇 ∈ LMod)
2322adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)) → 𝑇 ∈ LMod)
24 imassrn 6063 . . . . . . . . 9 (𝐹𝑥) ⊆ ran 𝐹
25 eqid 2736 . . . . . . . . . . . 12 (Base‘𝑇) = (Base‘𝑇)
2610, 25lmhmf 20997 . . . . . . . . . . 11 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
273, 26syl 17 . . . . . . . . . 10 (𝜑𝐹:(Base‘𝑆)⟶(Base‘𝑇))
2827frnd 6719 . . . . . . . . 9 (𝜑 → ran 𝐹 ⊆ (Base‘𝑇))
2924, 28sstrid 3975 . . . . . . . 8 (𝜑 → (𝐹𝑥) ⊆ (Base‘𝑇))
3029adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)) → (𝐹𝑥) ⊆ (Base‘𝑇))
31 inss2 4218 . . . . . . . . . 10 (𝒫 (Base‘𝑆) ∩ Fin) ⊆ Fin
3231sseli 3959 . . . . . . . . 9 (𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin) → 𝑥 ∈ Fin)
3332adantl 481 . . . . . . . 8 ((𝜑𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)) → 𝑥 ∈ Fin)
3427ffund 6715 . . . . . . . . . 10 (𝜑 → Fun 𝐹)
3534adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)) → Fun 𝐹)
3616adantl 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)) → 𝑥 ⊆ (Base‘𝑆))
3727fdmd 6721 . . . . . . . . . . 11 (𝜑 → dom 𝐹 = (Base‘𝑆))
3837adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)) → dom 𝐹 = (Base‘𝑆))
3936, 38sseqtrrd 4001 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)) → 𝑥 ⊆ dom 𝐹)
40 fores 6805 . . . . . . . . 9 ((Fun 𝐹𝑥 ⊆ dom 𝐹) → (𝐹𝑥):𝑥onto→(𝐹𝑥))
4135, 39, 40syl2anc 584 . . . . . . . 8 ((𝜑𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)) → (𝐹𝑥):𝑥onto→(𝐹𝑥))
42 fofi 9328 . . . . . . . 8 ((𝑥 ∈ Fin ∧ (𝐹𝑥):𝑥onto→(𝐹𝑥)) → (𝐹𝑥) ∈ Fin)
4333, 41, 42syl2anc 584 . . . . . . 7 ((𝜑𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)) → (𝐹𝑥) ∈ Fin)
44 eqid 2736 . . . . . . . 8 (𝑇s ((LSpan‘𝑇)‘(𝐹𝑥))) = (𝑇s ((LSpan‘𝑇)‘(𝐹𝑥)))
4517, 25, 44islssfgi 43071 . . . . . . 7 ((𝑇 ∈ LMod ∧ (𝐹𝑥) ⊆ (Base‘𝑇) ∧ (𝐹𝑥) ∈ Fin) → (𝑇s ((LSpan‘𝑇)‘(𝐹𝑥))) ∈ LFinGen)
4623, 30, 43, 45syl3anc 1373 . . . . . 6 ((𝜑𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)) → (𝑇s ((LSpan‘𝑇)‘(𝐹𝑥))) ∈ LFinGen)
4720, 46eqeltrd 2835 . . . . 5 ((𝜑𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)) → (𝑇s (𝐹 “ ((LSpan‘𝑆)‘𝑥))) ∈ LFinGen)
48 imaeq2 6048 . . . . . . 7 (((LSpan‘𝑆)‘𝑥) = 𝐴 → (𝐹 “ ((LSpan‘𝑆)‘𝑥)) = (𝐹𝐴))
4948oveq2d 7426 . . . . . 6 (((LSpan‘𝑆)‘𝑥) = 𝐴 → (𝑇s (𝐹 “ ((LSpan‘𝑆)‘𝑥))) = (𝑇s (𝐹𝐴)))
5049eleq1d 2820 . . . . 5 (((LSpan‘𝑆)‘𝑥) = 𝐴 → ((𝑇s (𝐹 “ ((LSpan‘𝑆)‘𝑥))) ∈ LFinGen ↔ (𝑇s (𝐹𝐴)) ∈ LFinGen))
5147, 50syl5ibcom 245 . . . 4 ((𝜑𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)) → (((LSpan‘𝑆)‘𝑥) = 𝐴 → (𝑇s (𝐹𝐴)) ∈ LFinGen))
5251rexlimdva 3142 . . 3 (𝜑 → (∃𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)((LSpan‘𝑆)‘𝑥) = 𝐴 → (𝑇s (𝐹𝐴)) ∈ LFinGen))
5313, 52mpd 15 . 2 (𝜑 → (𝑇s (𝐹𝐴)) ∈ LFinGen)
541, 53eqeltrid 2839 1 (𝜑𝑌 ∈ LFinGen)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3061  cin 3930  wss 3931  𝒫 cpw 4580  dom cdm 5659  ran crn 5660  cres 5661  cima 5662  Fun wfun 6530  wf 6532  ontowfo 6534  cfv 6536  (class class class)co 7410  Fincfn 8964  Basecbs 17233  s cress 17256  LModclmod 20822  LSubSpclss 20893  LSpanclspn 20933   LMHom clmhm 20982  LFinGenclfig 43066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-sca 17292  df-vsca 17293  df-0g 17460  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-grp 18924  df-minusg 18925  df-sbg 18926  df-subg 19111  df-ghm 19201  df-mgp 20106  df-ur 20147  df-ring 20200  df-lmod 20824  df-lss 20894  df-lsp 20934  df-lmhm 20985  df-lfig 43067
This theorem is referenced by:  lnmepi  43084
  Copyright terms: Public domain W3C validator