Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumxp2 Structured version   Visualization version   GIF version

Theorem gsumxp2 19092
 Description: Write a group sum over a cartesian product as a double sum in two ways. This corresponds to the first equation in [Lang] p. 6. (Contributed by AV, 27-Dec-2023.)
Hypotheses
Ref Expression
gsumxp2.b 𝐵 = (Base‘𝐺)
gsumxp2.z 0 = (0g𝐺)
gsumxp2.g (𝜑𝐺 ∈ CMnd)
gsumxp2.a (𝜑𝐴𝑉)
gsumxp2.r (𝜑𝐶𝑊)
gsumxp2.f (𝜑𝐹:(𝐴 × 𝐶)⟶𝐵)
gsumxp2.w (𝜑𝐹 finSupp 0 )
Assertion
Ref Expression
gsumxp2 (𝜑 → (𝐺 Σg (𝑘𝐶 ↦ (𝐺 Σg (𝑗𝐴 ↦ (𝑗𝐹𝑘))))) = (𝐺 Σg (𝑗𝐴 ↦ (𝐺 Σg (𝑘𝐶 ↦ (𝑗𝐹𝑘))))))
Distinct variable groups:   𝐴,𝑗,𝑘   𝐵,𝑗,𝑘   𝐶,𝑗,𝑘   𝑗,𝐺,𝑘   𝑗,𝐹,𝑘   𝑗,𝑉   𝑘,𝑊   0 ,𝑗,𝑘   𝜑,𝑗,𝑘
Allowed substitution hints:   𝑉(𝑘)   𝑊(𝑗)

Proof of Theorem gsumxp2
StepHypRef Expression
1 gsumxp2.b . . 3 𝐵 = (Base‘𝐺)
2 gsumxp2.z . . 3 0 = (0g𝐺)
3 gsumxp2.g . . 3 (𝜑𝐺 ∈ CMnd)
4 gsumxp2.a . . 3 (𝜑𝐴𝑉)
5 gsumxp2.r . . 3 (𝜑𝐶𝑊)
6 gsumxp2.f . . . 4 (𝜑𝐹:(𝐴 × 𝐶)⟶𝐵)
76fovrnda 7311 . . 3 ((𝜑 ∧ (𝑗𝐴𝑘𝐶)) → (𝑗𝐹𝑘) ∈ 𝐵)
8 gsumxp2.w . . . 4 (𝜑𝐹 finSupp 0 )
98fsuppimpd 8832 . . 3 (𝜑 → (𝐹 supp 0 ) ∈ Fin)
10 simpl 485 . . . . . . 7 ((𝜑 ∧ (𝑗𝐴𝑘𝐶)) → 𝜑)
11 opelxpi 5585 . . . . . . . . 9 ((𝑗𝐴𝑘𝐶) → ⟨𝑗, 𝑘⟩ ∈ (𝐴 × 𝐶))
1211ad2antlr 725 . . . . . . . 8 (((𝜑 ∧ (𝑗𝐴𝑘𝐶)) ∧ ¬ ⟨𝑗, 𝑘⟩ ∈ (𝐹 supp 0 )) → ⟨𝑗, 𝑘⟩ ∈ (𝐴 × 𝐶))
13 simpr 487 . . . . . . . 8 (((𝜑 ∧ (𝑗𝐴𝑘𝐶)) ∧ ¬ ⟨𝑗, 𝑘⟩ ∈ (𝐹 supp 0 )) → ¬ ⟨𝑗, 𝑘⟩ ∈ (𝐹 supp 0 ))
1412, 13eldifd 3945 . . . . . . 7 (((𝜑 ∧ (𝑗𝐴𝑘𝐶)) ∧ ¬ ⟨𝑗, 𝑘⟩ ∈ (𝐹 supp 0 )) → ⟨𝑗, 𝑘⟩ ∈ ((𝐴 × 𝐶) ∖ (𝐹 supp 0 )))
15 ssidd 3988 . . . . . . . 8 (𝜑 → (𝐹 supp 0 ) ⊆ (𝐹 supp 0 ))
164, 5xpexd 7466 . . . . . . . 8 (𝜑 → (𝐴 × 𝐶) ∈ V)
172fvexi 6677 . . . . . . . . 9 0 ∈ V
1817a1i 11 . . . . . . . 8 (𝜑0 ∈ V)
196, 15, 16, 18suppssr 7853 . . . . . . 7 ((𝜑 ∧ ⟨𝑗, 𝑘⟩ ∈ ((𝐴 × 𝐶) ∖ (𝐹 supp 0 ))) → (𝐹‘⟨𝑗, 𝑘⟩) = 0 )
2010, 14, 19syl2an2r 683 . . . . . 6 (((𝜑 ∧ (𝑗𝐴𝑘𝐶)) ∧ ¬ ⟨𝑗, 𝑘⟩ ∈ (𝐹 supp 0 )) → (𝐹‘⟨𝑗, 𝑘⟩) = 0 )
2120ex 415 . . . . 5 ((𝜑 ∧ (𝑗𝐴𝑘𝐶)) → (¬ ⟨𝑗, 𝑘⟩ ∈ (𝐹 supp 0 ) → (𝐹‘⟨𝑗, 𝑘⟩) = 0 ))
22 df-br 5058 . . . . . 6 (𝑗(𝐹 supp 0 )𝑘 ↔ ⟨𝑗, 𝑘⟩ ∈ (𝐹 supp 0 ))
2322notbii 322 . . . . 5 𝑗(𝐹 supp 0 )𝑘 ↔ ¬ ⟨𝑗, 𝑘⟩ ∈ (𝐹 supp 0 ))
24 df-ov 7151 . . . . . 6 (𝑗𝐹𝑘) = (𝐹‘⟨𝑗, 𝑘⟩)
2524eqeq1i 2824 . . . . 5 ((𝑗𝐹𝑘) = 0 ↔ (𝐹‘⟨𝑗, 𝑘⟩) = 0 )
2621, 23, 253imtr4g 298 . . . 4 ((𝜑 ∧ (𝑗𝐴𝑘𝐶)) → (¬ 𝑗(𝐹 supp 0 )𝑘 → (𝑗𝐹𝑘) = 0 ))
2726impr 457 . . 3 ((𝜑 ∧ ((𝑗𝐴𝑘𝐶) ∧ ¬ 𝑗(𝐹 supp 0 )𝑘)) → (𝑗𝐹𝑘) = 0 )
281, 2, 3, 4, 5, 7, 9, 27gsumcom3 19090 . 2 (𝜑 → (𝐺 Σg (𝑗𝐴 ↦ (𝐺 Σg (𝑘𝐶 ↦ (𝑗𝐹𝑘))))) = (𝐺 Σg (𝑘𝐶 ↦ (𝐺 Σg (𝑗𝐴 ↦ (𝑗𝐹𝑘))))))
2928eqcomd 2825 1 (𝜑 → (𝐺 Σg (𝑘𝐶 ↦ (𝐺 Σg (𝑗𝐴 ↦ (𝑗𝐹𝑘))))) = (𝐺 Σg (𝑗𝐴 ↦ (𝐺 Σg (𝑘𝐶 ↦ (𝑗𝐹𝑘))))))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 398   = wceq 1531   ∈ wcel 2108  Vcvv 3493   ∖ cdif 3931  ⟨cop 4565   class class class wbr 5057   ↦ cmpt 5137   × cxp 5546  ⟶wf 6344  ‘cfv 6348  (class class class)co 7148   supp csupp 7822   finSupp cfsupp 8825  Basecbs 16475  0gc0g 16705   Σg cgsu 16706  CMndccmn 18898 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-of 7401  df-om 7573  df-1st 7681  df-2nd 7682  df-supp 7823  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-fsupp 8826  df-oi 8966  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12885  df-fzo 13026  df-seq 13362  df-hash 13683  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-0g 16707  df-gsum 16708  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator