![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gsumxp2 | Structured version Visualization version GIF version |
Description: Write a group sum over a cartesian product as a double sum in two ways. This corresponds to the first equation in [Lang] p. 6. (Contributed by AV, 27-Dec-2023.) |
Ref | Expression |
---|---|
gsumxp2.b | ⊢ 𝐵 = (Base‘𝐺) |
gsumxp2.z | ⊢ 0 = (0g‘𝐺) |
gsumxp2.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
gsumxp2.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
gsumxp2.r | ⊢ (𝜑 → 𝐶 ∈ 𝑊) |
gsumxp2.f | ⊢ (𝜑 → 𝐹:(𝐴 × 𝐶)⟶𝐵) |
gsumxp2.w | ⊢ (𝜑 → 𝐹 finSupp 0 ) |
Ref | Expression |
---|---|
gsumxp2 | ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ 𝐶 ↦ (𝐺 Σg (𝑗 ∈ 𝐴 ↦ (𝑗𝐹𝑘))))) = (𝐺 Σg (𝑗 ∈ 𝐴 ↦ (𝐺 Σg (𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumxp2.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | gsumxp2.z | . . 3 ⊢ 0 = (0g‘𝐺) | |
3 | gsumxp2.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
4 | gsumxp2.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
5 | gsumxp2.r | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑊) | |
6 | gsumxp2.f | . . . 4 ⊢ (𝜑 → 𝐹:(𝐴 × 𝐶)⟶𝐵) | |
7 | 6 | fovcdmda 7596 | . . 3 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶)) → (𝑗𝐹𝑘) ∈ 𝐵) |
8 | gsumxp2.w | . . . 4 ⊢ (𝜑 → 𝐹 finSupp 0 ) | |
9 | 8 | fsuppimpd 9409 | . . 3 ⊢ (𝜑 → (𝐹 supp 0 ) ∈ Fin) |
10 | simpl 481 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶)) → 𝜑) | |
11 | opelxpi 5718 | . . . . . . . . 9 ⊢ ((𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶) → 〈𝑗, 𝑘〉 ∈ (𝐴 × 𝐶)) | |
12 | 11 | ad2antlr 725 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶)) ∧ ¬ 〈𝑗, 𝑘〉 ∈ (𝐹 supp 0 )) → 〈𝑗, 𝑘〉 ∈ (𝐴 × 𝐶)) |
13 | simpr 483 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶)) ∧ ¬ 〈𝑗, 𝑘〉 ∈ (𝐹 supp 0 )) → ¬ 〈𝑗, 𝑘〉 ∈ (𝐹 supp 0 )) | |
14 | 12, 13 | eldifd 3957 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶)) ∧ ¬ 〈𝑗, 𝑘〉 ∈ (𝐹 supp 0 )) → 〈𝑗, 𝑘〉 ∈ ((𝐴 × 𝐶) ∖ (𝐹 supp 0 ))) |
15 | ssidd 4002 | . . . . . . . 8 ⊢ (𝜑 → (𝐹 supp 0 ) ⊆ (𝐹 supp 0 )) | |
16 | 4, 5 | xpexd 7758 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 × 𝐶) ∈ V) |
17 | 2 | fvexi 6914 | . . . . . . . . 9 ⊢ 0 ∈ V |
18 | 17 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → 0 ∈ V) |
19 | 6, 15, 16, 18 | suppssr 8209 | . . . . . . 7 ⊢ ((𝜑 ∧ 〈𝑗, 𝑘〉 ∈ ((𝐴 × 𝐶) ∖ (𝐹 supp 0 ))) → (𝐹‘〈𝑗, 𝑘〉) = 0 ) |
20 | 10, 14, 19 | syl2an2r 683 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶)) ∧ ¬ 〈𝑗, 𝑘〉 ∈ (𝐹 supp 0 )) → (𝐹‘〈𝑗, 𝑘〉) = 0 ) |
21 | 20 | ex 411 | . . . . 5 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶)) → (¬ 〈𝑗, 𝑘〉 ∈ (𝐹 supp 0 ) → (𝐹‘〈𝑗, 𝑘〉) = 0 )) |
22 | df-br 5153 | . . . . . 6 ⊢ (𝑗(𝐹 supp 0 )𝑘 ↔ 〈𝑗, 𝑘〉 ∈ (𝐹 supp 0 )) | |
23 | 22 | notbii 319 | . . . . 5 ⊢ (¬ 𝑗(𝐹 supp 0 )𝑘 ↔ ¬ 〈𝑗, 𝑘〉 ∈ (𝐹 supp 0 )) |
24 | df-ov 7426 | . . . . . 6 ⊢ (𝑗𝐹𝑘) = (𝐹‘〈𝑗, 𝑘〉) | |
25 | 24 | eqeq1i 2730 | . . . . 5 ⊢ ((𝑗𝐹𝑘) = 0 ↔ (𝐹‘〈𝑗, 𝑘〉) = 0 ) |
26 | 21, 23, 25 | 3imtr4g 295 | . . . 4 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶)) → (¬ 𝑗(𝐹 supp 0 )𝑘 → (𝑗𝐹𝑘) = 0 )) |
27 | 26 | impr 453 | . . 3 ⊢ ((𝜑 ∧ ((𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶) ∧ ¬ 𝑗(𝐹 supp 0 )𝑘)) → (𝑗𝐹𝑘) = 0 ) |
28 | 1, 2, 3, 4, 5, 7, 9, 27 | gsumcom3 19971 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑗 ∈ 𝐴 ↦ (𝐺 Σg (𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘))))) = (𝐺 Σg (𝑘 ∈ 𝐶 ↦ (𝐺 Σg (𝑗 ∈ 𝐴 ↦ (𝑗𝐹𝑘)))))) |
29 | 28 | eqcomd 2731 | 1 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ 𝐶 ↦ (𝐺 Σg (𝑗 ∈ 𝐴 ↦ (𝑗𝐹𝑘))))) = (𝐺 Σg (𝑗 ∈ 𝐴 ↦ (𝐺 Σg (𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘)))))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 Vcvv 3461 ∖ cdif 3943 〈cop 4638 class class class wbr 5152 ↦ cmpt 5235 × cxp 5679 ⟶wf 6549 ‘cfv 6553 (class class class)co 7423 supp csupp 8173 finSupp cfsupp 9401 Basecbs 17208 0gc0g 17449 Σg cgsu 17450 CMndccmn 19773 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5368 ax-pr 5432 ax-un 7745 ax-cnex 11210 ax-resscn 11211 ax-1cn 11212 ax-icn 11213 ax-addcl 11214 ax-addrcl 11215 ax-mulcl 11216 ax-mulrcl 11217 ax-mulcom 11218 ax-addass 11219 ax-mulass 11220 ax-distr 11221 ax-i2m1 11222 ax-1ne0 11223 ax-1rid 11224 ax-rnegex 11225 ax-rrecex 11226 ax-cnre 11227 ax-pre-lttri 11228 ax-pre-lttrn 11229 ax-pre-ltadd 11230 ax-pre-mulgt0 11231 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4325 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-iin 5003 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5579 df-eprel 5585 df-po 5593 df-so 5594 df-fr 5636 df-se 5637 df-we 5638 df-xp 5687 df-rel 5688 df-cnv 5689 df-co 5690 df-dm 5691 df-rn 5692 df-res 5693 df-ima 5694 df-pred 6311 df-ord 6378 df-on 6379 df-lim 6380 df-suc 6381 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-isom 6562 df-riota 7379 df-ov 7426 df-oprab 7427 df-mpo 7428 df-of 7689 df-om 7876 df-1st 8002 df-2nd 8003 df-supp 8174 df-frecs 8295 df-wrecs 8326 df-recs 8400 df-rdg 8439 df-1o 8495 df-2o 8496 df-er 8733 df-en 8974 df-dom 8975 df-sdom 8976 df-fin 8977 df-fsupp 9402 df-oi 9549 df-card 9978 df-pnf 11296 df-mnf 11297 df-xr 11298 df-ltxr 11299 df-le 11300 df-sub 11492 df-neg 11493 df-nn 12260 df-2 12322 df-n0 12520 df-z 12606 df-uz 12870 df-fz 13534 df-fzo 13677 df-seq 14017 df-hash 14343 df-sets 17161 df-slot 17179 df-ndx 17191 df-base 17209 df-ress 17238 df-plusg 17274 df-0g 17451 df-gsum 17452 df-mre 17594 df-mrc 17595 df-acs 17597 df-mgm 18628 df-sgrp 18707 df-mnd 18723 df-submnd 18769 df-mulg 19057 df-cntz 19306 df-cmn 19775 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |