MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumxp2 Structured version   Visualization version   GIF version

Theorem gsumxp2 19757
Description: Write a group sum over a cartesian product as a double sum in two ways. This corresponds to the first equation in [Lang] p. 6. (Contributed by AV, 27-Dec-2023.)
Hypotheses
Ref Expression
gsumxp2.b 𝐵 = (Base‘𝐺)
gsumxp2.z 0 = (0g𝐺)
gsumxp2.g (𝜑𝐺 ∈ CMnd)
gsumxp2.a (𝜑𝐴𝑉)
gsumxp2.r (𝜑𝐶𝑊)
gsumxp2.f (𝜑𝐹:(𝐴 × 𝐶)⟶𝐵)
gsumxp2.w (𝜑𝐹 finSupp 0 )
Assertion
Ref Expression
gsumxp2 (𝜑 → (𝐺 Σg (𝑘𝐶 ↦ (𝐺 Σg (𝑗𝐴 ↦ (𝑗𝐹𝑘))))) = (𝐺 Σg (𝑗𝐴 ↦ (𝐺 Σg (𝑘𝐶 ↦ (𝑗𝐹𝑘))))))
Distinct variable groups:   𝐴,𝑗,𝑘   𝐵,𝑗,𝑘   𝐶,𝑗,𝑘   𝑗,𝐺,𝑘   𝑗,𝐹,𝑘   𝑗,𝑉   𝑘,𝑊   0 ,𝑗,𝑘   𝜑,𝑗,𝑘
Allowed substitution hints:   𝑉(𝑘)   𝑊(𝑗)

Proof of Theorem gsumxp2
StepHypRef Expression
1 gsumxp2.b . . 3 𝐵 = (Base‘𝐺)
2 gsumxp2.z . . 3 0 = (0g𝐺)
3 gsumxp2.g . . 3 (𝜑𝐺 ∈ CMnd)
4 gsumxp2.a . . 3 (𝜑𝐴𝑉)
5 gsumxp2.r . . 3 (𝜑𝐶𝑊)
6 gsumxp2.f . . . 4 (𝜑𝐹:(𝐴 × 𝐶)⟶𝐵)
76fovcdmda 7525 . . 3 ((𝜑 ∧ (𝑗𝐴𝑘𝐶)) → (𝑗𝐹𝑘) ∈ 𝐵)
8 gsumxp2.w . . . 4 (𝜑𝐹 finSupp 0 )
98fsuppimpd 9312 . . 3 (𝜑 → (𝐹 supp 0 ) ∈ Fin)
10 simpl 483 . . . . . . 7 ((𝜑 ∧ (𝑗𝐴𝑘𝐶)) → 𝜑)
11 opelxpi 5670 . . . . . . . . 9 ((𝑗𝐴𝑘𝐶) → ⟨𝑗, 𝑘⟩ ∈ (𝐴 × 𝐶))
1211ad2antlr 725 . . . . . . . 8 (((𝜑 ∧ (𝑗𝐴𝑘𝐶)) ∧ ¬ ⟨𝑗, 𝑘⟩ ∈ (𝐹 supp 0 )) → ⟨𝑗, 𝑘⟩ ∈ (𝐴 × 𝐶))
13 simpr 485 . . . . . . . 8 (((𝜑 ∧ (𝑗𝐴𝑘𝐶)) ∧ ¬ ⟨𝑗, 𝑘⟩ ∈ (𝐹 supp 0 )) → ¬ ⟨𝑗, 𝑘⟩ ∈ (𝐹 supp 0 ))
1412, 13eldifd 3921 . . . . . . 7 (((𝜑 ∧ (𝑗𝐴𝑘𝐶)) ∧ ¬ ⟨𝑗, 𝑘⟩ ∈ (𝐹 supp 0 )) → ⟨𝑗, 𝑘⟩ ∈ ((𝐴 × 𝐶) ∖ (𝐹 supp 0 )))
15 ssidd 3967 . . . . . . . 8 (𝜑 → (𝐹 supp 0 ) ⊆ (𝐹 supp 0 ))
164, 5xpexd 7685 . . . . . . . 8 (𝜑 → (𝐴 × 𝐶) ∈ V)
172fvexi 6856 . . . . . . . . 9 0 ∈ V
1817a1i 11 . . . . . . . 8 (𝜑0 ∈ V)
196, 15, 16, 18suppssr 8127 . . . . . . 7 ((𝜑 ∧ ⟨𝑗, 𝑘⟩ ∈ ((𝐴 × 𝐶) ∖ (𝐹 supp 0 ))) → (𝐹‘⟨𝑗, 𝑘⟩) = 0 )
2010, 14, 19syl2an2r 683 . . . . . 6 (((𝜑 ∧ (𝑗𝐴𝑘𝐶)) ∧ ¬ ⟨𝑗, 𝑘⟩ ∈ (𝐹 supp 0 )) → (𝐹‘⟨𝑗, 𝑘⟩) = 0 )
2120ex 413 . . . . 5 ((𝜑 ∧ (𝑗𝐴𝑘𝐶)) → (¬ ⟨𝑗, 𝑘⟩ ∈ (𝐹 supp 0 ) → (𝐹‘⟨𝑗, 𝑘⟩) = 0 ))
22 df-br 5106 . . . . . 6 (𝑗(𝐹 supp 0 )𝑘 ↔ ⟨𝑗, 𝑘⟩ ∈ (𝐹 supp 0 ))
2322notbii 319 . . . . 5 𝑗(𝐹 supp 0 )𝑘 ↔ ¬ ⟨𝑗, 𝑘⟩ ∈ (𝐹 supp 0 ))
24 df-ov 7360 . . . . . 6 (𝑗𝐹𝑘) = (𝐹‘⟨𝑗, 𝑘⟩)
2524eqeq1i 2741 . . . . 5 ((𝑗𝐹𝑘) = 0 ↔ (𝐹‘⟨𝑗, 𝑘⟩) = 0 )
2621, 23, 253imtr4g 295 . . . 4 ((𝜑 ∧ (𝑗𝐴𝑘𝐶)) → (¬ 𝑗(𝐹 supp 0 )𝑘 → (𝑗𝐹𝑘) = 0 ))
2726impr 455 . . 3 ((𝜑 ∧ ((𝑗𝐴𝑘𝐶) ∧ ¬ 𝑗(𝐹 supp 0 )𝑘)) → (𝑗𝐹𝑘) = 0 )
281, 2, 3, 4, 5, 7, 9, 27gsumcom3 19755 . 2 (𝜑 → (𝐺 Σg (𝑗𝐴 ↦ (𝐺 Σg (𝑘𝐶 ↦ (𝑗𝐹𝑘))))) = (𝐺 Σg (𝑘𝐶 ↦ (𝐺 Σg (𝑗𝐴 ↦ (𝑗𝐹𝑘))))))
2928eqcomd 2742 1 (𝜑 → (𝐺 Σg (𝑘𝐶 ↦ (𝐺 Σg (𝑗𝐴 ↦ (𝑗𝐹𝑘))))) = (𝐺 Σg (𝑗𝐴 ↦ (𝐺 Σg (𝑘𝐶 ↦ (𝑗𝐹𝑘))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1541  wcel 2106  Vcvv 3445  cdif 3907  cop 4592   class class class wbr 5105  cmpt 5188   × cxp 5631  wf 6492  cfv 6496  (class class class)co 7357   supp csupp 8092   finSupp cfsupp 9305  Basecbs 17083  0gc0g 17321   Σg cgsu 17322  CMndccmn 19562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-fzo 13568  df-seq 13907  df-hash 14231  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-0g 17323  df-gsum 17324  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator