MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumxp2 Structured version   Visualization version   GIF version

Theorem gsumxp2 19892
Description: Write a group sum over a cartesian product as a double sum in two ways. This corresponds to the first equation in [Lang] p. 6. (Contributed by AV, 27-Dec-2023.)
Hypotheses
Ref Expression
gsumxp2.b 𝐵 = (Base‘𝐺)
gsumxp2.z 0 = (0g𝐺)
gsumxp2.g (𝜑𝐺 ∈ CMnd)
gsumxp2.a (𝜑𝐴𝑉)
gsumxp2.r (𝜑𝐶𝑊)
gsumxp2.f (𝜑𝐹:(𝐴 × 𝐶)⟶𝐵)
gsumxp2.w (𝜑𝐹 finSupp 0 )
Assertion
Ref Expression
gsumxp2 (𝜑 → (𝐺 Σg (𝑘𝐶 ↦ (𝐺 Σg (𝑗𝐴 ↦ (𝑗𝐹𝑘))))) = (𝐺 Σg (𝑗𝐴 ↦ (𝐺 Σg (𝑘𝐶 ↦ (𝑗𝐹𝑘))))))
Distinct variable groups:   𝐴,𝑗,𝑘   𝐵,𝑗,𝑘   𝐶,𝑗,𝑘   𝑗,𝐺,𝑘   𝑗,𝐹,𝑘   𝑗,𝑉   𝑘,𝑊   0 ,𝑗,𝑘   𝜑,𝑗,𝑘
Allowed substitution hints:   𝑉(𝑘)   𝑊(𝑗)

Proof of Theorem gsumxp2
StepHypRef Expression
1 gsumxp2.b . . 3 𝐵 = (Base‘𝐺)
2 gsumxp2.z . . 3 0 = (0g𝐺)
3 gsumxp2.g . . 3 (𝜑𝐺 ∈ CMnd)
4 gsumxp2.a . . 3 (𝜑𝐴𝑉)
5 gsumxp2.r . . 3 (𝜑𝐶𝑊)
6 gsumxp2.f . . . 4 (𝜑𝐹:(𝐴 × 𝐶)⟶𝐵)
76fovcdmda 7572 . . 3 ((𝜑 ∧ (𝑗𝐴𝑘𝐶)) → (𝑗𝐹𝑘) ∈ 𝐵)
8 gsumxp2.w . . . 4 (𝜑𝐹 finSupp 0 )
98fsuppimpd 9366 . . 3 (𝜑 → (𝐹 supp 0 ) ∈ Fin)
10 simpl 482 . . . . . . 7 ((𝜑 ∧ (𝑗𝐴𝑘𝐶)) → 𝜑)
11 opelxpi 5704 . . . . . . . . 9 ((𝑗𝐴𝑘𝐶) → ⟨𝑗, 𝑘⟩ ∈ (𝐴 × 𝐶))
1211ad2antlr 724 . . . . . . . 8 (((𝜑 ∧ (𝑗𝐴𝑘𝐶)) ∧ ¬ ⟨𝑗, 𝑘⟩ ∈ (𝐹 supp 0 )) → ⟨𝑗, 𝑘⟩ ∈ (𝐴 × 𝐶))
13 simpr 484 . . . . . . . 8 (((𝜑 ∧ (𝑗𝐴𝑘𝐶)) ∧ ¬ ⟨𝑗, 𝑘⟩ ∈ (𝐹 supp 0 )) → ¬ ⟨𝑗, 𝑘⟩ ∈ (𝐹 supp 0 ))
1412, 13eldifd 3952 . . . . . . 7 (((𝜑 ∧ (𝑗𝐴𝑘𝐶)) ∧ ¬ ⟨𝑗, 𝑘⟩ ∈ (𝐹 supp 0 )) → ⟨𝑗, 𝑘⟩ ∈ ((𝐴 × 𝐶) ∖ (𝐹 supp 0 )))
15 ssidd 3998 . . . . . . . 8 (𝜑 → (𝐹 supp 0 ) ⊆ (𝐹 supp 0 ))
164, 5xpexd 7732 . . . . . . . 8 (𝜑 → (𝐴 × 𝐶) ∈ V)
172fvexi 6896 . . . . . . . . 9 0 ∈ V
1817a1i 11 . . . . . . . 8 (𝜑0 ∈ V)
196, 15, 16, 18suppssr 8176 . . . . . . 7 ((𝜑 ∧ ⟨𝑗, 𝑘⟩ ∈ ((𝐴 × 𝐶) ∖ (𝐹 supp 0 ))) → (𝐹‘⟨𝑗, 𝑘⟩) = 0 )
2010, 14, 19syl2an2r 682 . . . . . 6 (((𝜑 ∧ (𝑗𝐴𝑘𝐶)) ∧ ¬ ⟨𝑗, 𝑘⟩ ∈ (𝐹 supp 0 )) → (𝐹‘⟨𝑗, 𝑘⟩) = 0 )
2120ex 412 . . . . 5 ((𝜑 ∧ (𝑗𝐴𝑘𝐶)) → (¬ ⟨𝑗, 𝑘⟩ ∈ (𝐹 supp 0 ) → (𝐹‘⟨𝑗, 𝑘⟩) = 0 ))
22 df-br 5140 . . . . . 6 (𝑗(𝐹 supp 0 )𝑘 ↔ ⟨𝑗, 𝑘⟩ ∈ (𝐹 supp 0 ))
2322notbii 320 . . . . 5 𝑗(𝐹 supp 0 )𝑘 ↔ ¬ ⟨𝑗, 𝑘⟩ ∈ (𝐹 supp 0 ))
24 df-ov 7405 . . . . . 6 (𝑗𝐹𝑘) = (𝐹‘⟨𝑗, 𝑘⟩)
2524eqeq1i 2729 . . . . 5 ((𝑗𝐹𝑘) = 0 ↔ (𝐹‘⟨𝑗, 𝑘⟩) = 0 )
2621, 23, 253imtr4g 296 . . . 4 ((𝜑 ∧ (𝑗𝐴𝑘𝐶)) → (¬ 𝑗(𝐹 supp 0 )𝑘 → (𝑗𝐹𝑘) = 0 ))
2726impr 454 . . 3 ((𝜑 ∧ ((𝑗𝐴𝑘𝐶) ∧ ¬ 𝑗(𝐹 supp 0 )𝑘)) → (𝑗𝐹𝑘) = 0 )
281, 2, 3, 4, 5, 7, 9, 27gsumcom3 19890 . 2 (𝜑 → (𝐺 Σg (𝑗𝐴 ↦ (𝐺 Σg (𝑘𝐶 ↦ (𝑗𝐹𝑘))))) = (𝐺 Σg (𝑘𝐶 ↦ (𝐺 Σg (𝑗𝐴 ↦ (𝑗𝐹𝑘))))))
2928eqcomd 2730 1 (𝜑 → (𝐺 Σg (𝑘𝐶 ↦ (𝐺 Σg (𝑗𝐴 ↦ (𝑗𝐹𝑘))))) = (𝐺 Σg (𝑗𝐴 ↦ (𝐺 Σg (𝑘𝐶 ↦ (𝑗𝐹𝑘))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1533  wcel 2098  Vcvv 3466  cdif 3938  cop 4627   class class class wbr 5139  cmpt 5222   × cxp 5665  wf 6530  cfv 6534  (class class class)co 7402   supp csupp 8141   finSupp cfsupp 9358  Basecbs 17145  0gc0g 17386   Σg cgsu 17387  CMndccmn 19692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-int 4942  df-iun 4990  df-iin 4991  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-se 5623  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-isom 6543  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-of 7664  df-om 7850  df-1st 7969  df-2nd 7970  df-supp 8142  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8700  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-fsupp 9359  df-oi 9502  df-card 9931  df-pnf 11248  df-mnf 11249  df-xr 11250  df-ltxr 11251  df-le 11252  df-sub 11444  df-neg 11445  df-nn 12211  df-2 12273  df-n0 12471  df-z 12557  df-uz 12821  df-fz 13483  df-fzo 13626  df-seq 13965  df-hash 14289  df-sets 17098  df-slot 17116  df-ndx 17128  df-base 17146  df-ress 17175  df-plusg 17211  df-0g 17388  df-gsum 17389  df-mre 17531  df-mrc 17532  df-acs 17534  df-mgm 18565  df-sgrp 18644  df-mnd 18660  df-submnd 18706  df-mulg 18988  df-cntz 19225  df-cmn 19694
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator