MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumxp2 Structured version   Visualization version   GIF version

Theorem gsumxp2 19092
Description: Write a group sum over a cartesian product as a double sum in two ways. This corresponds to the first equation in [Lang] p. 6. (Contributed by AV, 27-Dec-2023.)
Hypotheses
Ref Expression
gsumxp2.b 𝐵 = (Base‘𝐺)
gsumxp2.z 0 = (0g𝐺)
gsumxp2.g (𝜑𝐺 ∈ CMnd)
gsumxp2.a (𝜑𝐴𝑉)
gsumxp2.r (𝜑𝐶𝑊)
gsumxp2.f (𝜑𝐹:(𝐴 × 𝐶)⟶𝐵)
gsumxp2.w (𝜑𝐹 finSupp 0 )
Assertion
Ref Expression
gsumxp2 (𝜑 → (𝐺 Σg (𝑘𝐶 ↦ (𝐺 Σg (𝑗𝐴 ↦ (𝑗𝐹𝑘))))) = (𝐺 Σg (𝑗𝐴 ↦ (𝐺 Σg (𝑘𝐶 ↦ (𝑗𝐹𝑘))))))
Distinct variable groups:   𝐴,𝑗,𝑘   𝐵,𝑗,𝑘   𝐶,𝑗,𝑘   𝑗,𝐺,𝑘   𝑗,𝐹,𝑘   𝑗,𝑉   𝑘,𝑊   0 ,𝑗,𝑘   𝜑,𝑗,𝑘
Allowed substitution hints:   𝑉(𝑘)   𝑊(𝑗)

Proof of Theorem gsumxp2
StepHypRef Expression
1 gsumxp2.b . . 3 𝐵 = (Base‘𝐺)
2 gsumxp2.z . . 3 0 = (0g𝐺)
3 gsumxp2.g . . 3 (𝜑𝐺 ∈ CMnd)
4 gsumxp2.a . . 3 (𝜑𝐴𝑉)
5 gsumxp2.r . . 3 (𝜑𝐶𝑊)
6 gsumxp2.f . . . 4 (𝜑𝐹:(𝐴 × 𝐶)⟶𝐵)
76fovrnda 7311 . . 3 ((𝜑 ∧ (𝑗𝐴𝑘𝐶)) → (𝑗𝐹𝑘) ∈ 𝐵)
8 gsumxp2.w . . . 4 (𝜑𝐹 finSupp 0 )
98fsuppimpd 8832 . . 3 (𝜑 → (𝐹 supp 0 ) ∈ Fin)
10 simpl 485 . . . . . . 7 ((𝜑 ∧ (𝑗𝐴𝑘𝐶)) → 𝜑)
11 opelxpi 5585 . . . . . . . . 9 ((𝑗𝐴𝑘𝐶) → ⟨𝑗, 𝑘⟩ ∈ (𝐴 × 𝐶))
1211ad2antlr 725 . . . . . . . 8 (((𝜑 ∧ (𝑗𝐴𝑘𝐶)) ∧ ¬ ⟨𝑗, 𝑘⟩ ∈ (𝐹 supp 0 )) → ⟨𝑗, 𝑘⟩ ∈ (𝐴 × 𝐶))
13 simpr 487 . . . . . . . 8 (((𝜑 ∧ (𝑗𝐴𝑘𝐶)) ∧ ¬ ⟨𝑗, 𝑘⟩ ∈ (𝐹 supp 0 )) → ¬ ⟨𝑗, 𝑘⟩ ∈ (𝐹 supp 0 ))
1412, 13eldifd 3945 . . . . . . 7 (((𝜑 ∧ (𝑗𝐴𝑘𝐶)) ∧ ¬ ⟨𝑗, 𝑘⟩ ∈ (𝐹 supp 0 )) → ⟨𝑗, 𝑘⟩ ∈ ((𝐴 × 𝐶) ∖ (𝐹 supp 0 )))
15 ssidd 3988 . . . . . . . 8 (𝜑 → (𝐹 supp 0 ) ⊆ (𝐹 supp 0 ))
164, 5xpexd 7466 . . . . . . . 8 (𝜑 → (𝐴 × 𝐶) ∈ V)
172fvexi 6677 . . . . . . . . 9 0 ∈ V
1817a1i 11 . . . . . . . 8 (𝜑0 ∈ V)
196, 15, 16, 18suppssr 7853 . . . . . . 7 ((𝜑 ∧ ⟨𝑗, 𝑘⟩ ∈ ((𝐴 × 𝐶) ∖ (𝐹 supp 0 ))) → (𝐹‘⟨𝑗, 𝑘⟩) = 0 )
2010, 14, 19syl2an2r 683 . . . . . 6 (((𝜑 ∧ (𝑗𝐴𝑘𝐶)) ∧ ¬ ⟨𝑗, 𝑘⟩ ∈ (𝐹 supp 0 )) → (𝐹‘⟨𝑗, 𝑘⟩) = 0 )
2120ex 415 . . . . 5 ((𝜑 ∧ (𝑗𝐴𝑘𝐶)) → (¬ ⟨𝑗, 𝑘⟩ ∈ (𝐹 supp 0 ) → (𝐹‘⟨𝑗, 𝑘⟩) = 0 ))
22 df-br 5058 . . . . . 6 (𝑗(𝐹 supp 0 )𝑘 ↔ ⟨𝑗, 𝑘⟩ ∈ (𝐹 supp 0 ))
2322notbii 322 . . . . 5 𝑗(𝐹 supp 0 )𝑘 ↔ ¬ ⟨𝑗, 𝑘⟩ ∈ (𝐹 supp 0 ))
24 df-ov 7151 . . . . . 6 (𝑗𝐹𝑘) = (𝐹‘⟨𝑗, 𝑘⟩)
2524eqeq1i 2824 . . . . 5 ((𝑗𝐹𝑘) = 0 ↔ (𝐹‘⟨𝑗, 𝑘⟩) = 0 )
2621, 23, 253imtr4g 298 . . . 4 ((𝜑 ∧ (𝑗𝐴𝑘𝐶)) → (¬ 𝑗(𝐹 supp 0 )𝑘 → (𝑗𝐹𝑘) = 0 ))
2726impr 457 . . 3 ((𝜑 ∧ ((𝑗𝐴𝑘𝐶) ∧ ¬ 𝑗(𝐹 supp 0 )𝑘)) → (𝑗𝐹𝑘) = 0 )
281, 2, 3, 4, 5, 7, 9, 27gsumcom3 19090 . 2 (𝜑 → (𝐺 Σg (𝑗𝐴 ↦ (𝐺 Σg (𝑘𝐶 ↦ (𝑗𝐹𝑘))))) = (𝐺 Σg (𝑘𝐶 ↦ (𝐺 Σg (𝑗𝐴 ↦ (𝑗𝐹𝑘))))))
2928eqcomd 2825 1 (𝜑 → (𝐺 Σg (𝑘𝐶 ↦ (𝐺 Σg (𝑗𝐴 ↦ (𝑗𝐹𝑘))))) = (𝐺 Σg (𝑗𝐴 ↦ (𝐺 Σg (𝑘𝐶 ↦ (𝑗𝐹𝑘))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1531  wcel 2108  Vcvv 3493  cdif 3931  cop 4565   class class class wbr 5057  cmpt 5137   × cxp 5546  wf 6344  cfv 6348  (class class class)co 7148   supp csupp 7822   finSupp cfsupp 8825  Basecbs 16475  0gc0g 16705   Σg cgsu 16706  CMndccmn 18898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-of 7401  df-om 7573  df-1st 7681  df-2nd 7682  df-supp 7823  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-fsupp 8826  df-oi 8966  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12885  df-fzo 13026  df-seq 13362  df-hash 13683  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-0g 16707  df-gsum 16708  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator