| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gsumxp2 | Structured version Visualization version GIF version | ||
| Description: Write a group sum over a cartesian product as a double sum in two ways. This corresponds to the first equation in [Lang] p. 6. (Contributed by AV, 27-Dec-2023.) |
| Ref | Expression |
|---|---|
| gsumxp2.b | ⊢ 𝐵 = (Base‘𝐺) |
| gsumxp2.z | ⊢ 0 = (0g‘𝐺) |
| gsumxp2.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| gsumxp2.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| gsumxp2.r | ⊢ (𝜑 → 𝐶 ∈ 𝑊) |
| gsumxp2.f | ⊢ (𝜑 → 𝐹:(𝐴 × 𝐶)⟶𝐵) |
| gsumxp2.w | ⊢ (𝜑 → 𝐹 finSupp 0 ) |
| Ref | Expression |
|---|---|
| gsumxp2 | ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ 𝐶 ↦ (𝐺 Σg (𝑗 ∈ 𝐴 ↦ (𝑗𝐹𝑘))))) = (𝐺 Σg (𝑗 ∈ 𝐴 ↦ (𝐺 Σg (𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘)))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumxp2.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | gsumxp2.z | . . 3 ⊢ 0 = (0g‘𝐺) | |
| 3 | gsumxp2.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
| 4 | gsumxp2.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 5 | gsumxp2.r | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑊) | |
| 6 | gsumxp2.f | . . . 4 ⊢ (𝜑 → 𝐹:(𝐴 × 𝐶)⟶𝐵) | |
| 7 | 6 | fovcdmda 7526 | . . 3 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶)) → (𝑗𝐹𝑘) ∈ 𝐵) |
| 8 | gsumxp2.w | . . . 4 ⊢ (𝜑 → 𝐹 finSupp 0 ) | |
| 9 | 8 | fsuppimpd 9264 | . . 3 ⊢ (𝜑 → (𝐹 supp 0 ) ∈ Fin) |
| 10 | simpl 482 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶)) → 𝜑) | |
| 11 | opelxpi 5658 | . . . . . . . . 9 ⊢ ((𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶) → 〈𝑗, 𝑘〉 ∈ (𝐴 × 𝐶)) | |
| 12 | 11 | ad2antlr 727 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶)) ∧ ¬ 〈𝑗, 𝑘〉 ∈ (𝐹 supp 0 )) → 〈𝑗, 𝑘〉 ∈ (𝐴 × 𝐶)) |
| 13 | simpr 484 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶)) ∧ ¬ 〈𝑗, 𝑘〉 ∈ (𝐹 supp 0 )) → ¬ 〈𝑗, 𝑘〉 ∈ (𝐹 supp 0 )) | |
| 14 | 12, 13 | eldifd 3909 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶)) ∧ ¬ 〈𝑗, 𝑘〉 ∈ (𝐹 supp 0 )) → 〈𝑗, 𝑘〉 ∈ ((𝐴 × 𝐶) ∖ (𝐹 supp 0 ))) |
| 15 | ssidd 3954 | . . . . . . . 8 ⊢ (𝜑 → (𝐹 supp 0 ) ⊆ (𝐹 supp 0 )) | |
| 16 | 4, 5 | xpexd 7693 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 × 𝐶) ∈ V) |
| 17 | 2 | fvexi 6845 | . . . . . . . . 9 ⊢ 0 ∈ V |
| 18 | 17 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → 0 ∈ V) |
| 19 | 6, 15, 16, 18 | suppssr 8134 | . . . . . . 7 ⊢ ((𝜑 ∧ 〈𝑗, 𝑘〉 ∈ ((𝐴 × 𝐶) ∖ (𝐹 supp 0 ))) → (𝐹‘〈𝑗, 𝑘〉) = 0 ) |
| 20 | 10, 14, 19 | syl2an2r 685 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶)) ∧ ¬ 〈𝑗, 𝑘〉 ∈ (𝐹 supp 0 )) → (𝐹‘〈𝑗, 𝑘〉) = 0 ) |
| 21 | 20 | ex 412 | . . . . 5 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶)) → (¬ 〈𝑗, 𝑘〉 ∈ (𝐹 supp 0 ) → (𝐹‘〈𝑗, 𝑘〉) = 0 )) |
| 22 | df-br 5096 | . . . . . 6 ⊢ (𝑗(𝐹 supp 0 )𝑘 ↔ 〈𝑗, 𝑘〉 ∈ (𝐹 supp 0 )) | |
| 23 | 22 | notbii 320 | . . . . 5 ⊢ (¬ 𝑗(𝐹 supp 0 )𝑘 ↔ ¬ 〈𝑗, 𝑘〉 ∈ (𝐹 supp 0 )) |
| 24 | df-ov 7358 | . . . . . 6 ⊢ (𝑗𝐹𝑘) = (𝐹‘〈𝑗, 𝑘〉) | |
| 25 | 24 | eqeq1i 2738 | . . . . 5 ⊢ ((𝑗𝐹𝑘) = 0 ↔ (𝐹‘〈𝑗, 𝑘〉) = 0 ) |
| 26 | 21, 23, 25 | 3imtr4g 296 | . . . 4 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶)) → (¬ 𝑗(𝐹 supp 0 )𝑘 → (𝑗𝐹𝑘) = 0 )) |
| 27 | 26 | impr 454 | . . 3 ⊢ ((𝜑 ∧ ((𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶) ∧ ¬ 𝑗(𝐹 supp 0 )𝑘)) → (𝑗𝐹𝑘) = 0 ) |
| 28 | 1, 2, 3, 4, 5, 7, 9, 27 | gsumcom3 19898 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑗 ∈ 𝐴 ↦ (𝐺 Σg (𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘))))) = (𝐺 Σg (𝑘 ∈ 𝐶 ↦ (𝐺 Σg (𝑗 ∈ 𝐴 ↦ (𝑗𝐹𝑘)))))) |
| 29 | 28 | eqcomd 2739 | 1 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ 𝐶 ↦ (𝐺 Σg (𝑗 ∈ 𝐴 ↦ (𝑗𝐹𝑘))))) = (𝐺 Σg (𝑗 ∈ 𝐴 ↦ (𝐺 Σg (𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘)))))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ∖ cdif 3895 〈cop 4583 class class class wbr 5095 ↦ cmpt 5176 × cxp 5619 ⟶wf 6485 ‘cfv 6489 (class class class)co 7355 supp csupp 8099 finSupp cfsupp 9256 Basecbs 17127 0gc0g 17350 Σg cgsu 17351 CMndccmn 19700 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-isom 6498 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-of 7619 df-om 7806 df-1st 7930 df-2nd 7931 df-supp 8100 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-2o 8395 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9257 df-oi 9407 df-card 9843 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-2 12199 df-n0 12393 df-z 12480 df-uz 12743 df-fz 13415 df-fzo 13562 df-seq 13916 df-hash 14245 df-sets 17082 df-slot 17100 df-ndx 17112 df-base 17128 df-ress 17149 df-plusg 17181 df-0g 17352 df-gsum 17353 df-mre 17496 df-mrc 17497 df-acs 17499 df-mgm 18556 df-sgrp 18635 df-mnd 18651 df-submnd 18700 df-mulg 18989 df-cntz 19237 df-cmn 19702 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |