| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gsumxp2 | Structured version Visualization version GIF version | ||
| Description: Write a group sum over a cartesian product as a double sum in two ways. This corresponds to the first equation in [Lang] p. 6. (Contributed by AV, 27-Dec-2023.) |
| Ref | Expression |
|---|---|
| gsumxp2.b | ⊢ 𝐵 = (Base‘𝐺) |
| gsumxp2.z | ⊢ 0 = (0g‘𝐺) |
| gsumxp2.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| gsumxp2.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| gsumxp2.r | ⊢ (𝜑 → 𝐶 ∈ 𝑊) |
| gsumxp2.f | ⊢ (𝜑 → 𝐹:(𝐴 × 𝐶)⟶𝐵) |
| gsumxp2.w | ⊢ (𝜑 → 𝐹 finSupp 0 ) |
| Ref | Expression |
|---|---|
| gsumxp2 | ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ 𝐶 ↦ (𝐺 Σg (𝑗 ∈ 𝐴 ↦ (𝑗𝐹𝑘))))) = (𝐺 Σg (𝑗 ∈ 𝐴 ↦ (𝐺 Σg (𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘)))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumxp2.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | gsumxp2.z | . . 3 ⊢ 0 = (0g‘𝐺) | |
| 3 | gsumxp2.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
| 4 | gsumxp2.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 5 | gsumxp2.r | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑊) | |
| 6 | gsumxp2.f | . . . 4 ⊢ (𝜑 → 𝐹:(𝐴 × 𝐶)⟶𝐵) | |
| 7 | 6 | fovcdmda 7512 | . . 3 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶)) → (𝑗𝐹𝑘) ∈ 𝐵) |
| 8 | gsumxp2.w | . . . 4 ⊢ (𝜑 → 𝐹 finSupp 0 ) | |
| 9 | 8 | fsuppimpd 9248 | . . 3 ⊢ (𝜑 → (𝐹 supp 0 ) ∈ Fin) |
| 10 | simpl 482 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶)) → 𝜑) | |
| 11 | opelxpi 5648 | . . . . . . . . 9 ⊢ ((𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶) → 〈𝑗, 𝑘〉 ∈ (𝐴 × 𝐶)) | |
| 12 | 11 | ad2antlr 727 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶)) ∧ ¬ 〈𝑗, 𝑘〉 ∈ (𝐹 supp 0 )) → 〈𝑗, 𝑘〉 ∈ (𝐴 × 𝐶)) |
| 13 | simpr 484 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶)) ∧ ¬ 〈𝑗, 𝑘〉 ∈ (𝐹 supp 0 )) → ¬ 〈𝑗, 𝑘〉 ∈ (𝐹 supp 0 )) | |
| 14 | 12, 13 | eldifd 3908 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶)) ∧ ¬ 〈𝑗, 𝑘〉 ∈ (𝐹 supp 0 )) → 〈𝑗, 𝑘〉 ∈ ((𝐴 × 𝐶) ∖ (𝐹 supp 0 ))) |
| 15 | ssidd 3953 | . . . . . . . 8 ⊢ (𝜑 → (𝐹 supp 0 ) ⊆ (𝐹 supp 0 )) | |
| 16 | 4, 5 | xpexd 7679 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 × 𝐶) ∈ V) |
| 17 | 2 | fvexi 6831 | . . . . . . . . 9 ⊢ 0 ∈ V |
| 18 | 17 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → 0 ∈ V) |
| 19 | 6, 15, 16, 18 | suppssr 8120 | . . . . . . 7 ⊢ ((𝜑 ∧ 〈𝑗, 𝑘〉 ∈ ((𝐴 × 𝐶) ∖ (𝐹 supp 0 ))) → (𝐹‘〈𝑗, 𝑘〉) = 0 ) |
| 20 | 10, 14, 19 | syl2an2r 685 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶)) ∧ ¬ 〈𝑗, 𝑘〉 ∈ (𝐹 supp 0 )) → (𝐹‘〈𝑗, 𝑘〉) = 0 ) |
| 21 | 20 | ex 412 | . . . . 5 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶)) → (¬ 〈𝑗, 𝑘〉 ∈ (𝐹 supp 0 ) → (𝐹‘〈𝑗, 𝑘〉) = 0 )) |
| 22 | df-br 5087 | . . . . . 6 ⊢ (𝑗(𝐹 supp 0 )𝑘 ↔ 〈𝑗, 𝑘〉 ∈ (𝐹 supp 0 )) | |
| 23 | 22 | notbii 320 | . . . . 5 ⊢ (¬ 𝑗(𝐹 supp 0 )𝑘 ↔ ¬ 〈𝑗, 𝑘〉 ∈ (𝐹 supp 0 )) |
| 24 | df-ov 7344 | . . . . . 6 ⊢ (𝑗𝐹𝑘) = (𝐹‘〈𝑗, 𝑘〉) | |
| 25 | 24 | eqeq1i 2736 | . . . . 5 ⊢ ((𝑗𝐹𝑘) = 0 ↔ (𝐹‘〈𝑗, 𝑘〉) = 0 ) |
| 26 | 21, 23, 25 | 3imtr4g 296 | . . . 4 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶)) → (¬ 𝑗(𝐹 supp 0 )𝑘 → (𝑗𝐹𝑘) = 0 )) |
| 27 | 26 | impr 454 | . . 3 ⊢ ((𝜑 ∧ ((𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶) ∧ ¬ 𝑗(𝐹 supp 0 )𝑘)) → (𝑗𝐹𝑘) = 0 ) |
| 28 | 1, 2, 3, 4, 5, 7, 9, 27 | gsumcom3 19885 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑗 ∈ 𝐴 ↦ (𝐺 Σg (𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘))))) = (𝐺 Σg (𝑘 ∈ 𝐶 ↦ (𝐺 Σg (𝑗 ∈ 𝐴 ↦ (𝑗𝐹𝑘)))))) |
| 29 | 28 | eqcomd 2737 | 1 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ 𝐶 ↦ (𝐺 Σg (𝑗 ∈ 𝐴 ↦ (𝑗𝐹𝑘))))) = (𝐺 Σg (𝑗 ∈ 𝐴 ↦ (𝐺 Σg (𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘)))))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∖ cdif 3894 〈cop 4577 class class class wbr 5086 ↦ cmpt 5167 × cxp 5609 ⟶wf 6472 ‘cfv 6476 (class class class)co 7341 supp csupp 8085 finSupp cfsupp 9240 Basecbs 17115 0gc0g 17338 Σg cgsu 17339 CMndccmn 19687 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-iin 4939 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-se 5565 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-om 7792 df-1st 7916 df-2nd 7917 df-supp 8086 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fsupp 9241 df-oi 9391 df-card 9827 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-n0 12377 df-z 12464 df-uz 12728 df-fz 13403 df-fzo 13550 df-seq 13904 df-hash 14233 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-ress 17137 df-plusg 17169 df-0g 17340 df-gsum 17341 df-mre 17483 df-mrc 17484 df-acs 17486 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-submnd 18687 df-mulg 18976 df-cntz 19224 df-cmn 19689 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |