MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumxp2 Structured version   Visualization version   GIF version

Theorem gsumxp2 19900
Description: Write a group sum over a cartesian product as a double sum in two ways. This corresponds to the first equation in [Lang] p. 6. (Contributed by AV, 27-Dec-2023.)
Hypotheses
Ref Expression
gsumxp2.b 𝐵 = (Base‘𝐺)
gsumxp2.z 0 = (0g𝐺)
gsumxp2.g (𝜑𝐺 ∈ CMnd)
gsumxp2.a (𝜑𝐴𝑉)
gsumxp2.r (𝜑𝐶𝑊)
gsumxp2.f (𝜑𝐹:(𝐴 × 𝐶)⟶𝐵)
gsumxp2.w (𝜑𝐹 finSupp 0 )
Assertion
Ref Expression
gsumxp2 (𝜑 → (𝐺 Σg (𝑘𝐶 ↦ (𝐺 Σg (𝑗𝐴 ↦ (𝑗𝐹𝑘))))) = (𝐺 Σg (𝑗𝐴 ↦ (𝐺 Σg (𝑘𝐶 ↦ (𝑗𝐹𝑘))))))
Distinct variable groups:   𝐴,𝑗,𝑘   𝐵,𝑗,𝑘   𝐶,𝑗,𝑘   𝑗,𝐺,𝑘   𝑗,𝐹,𝑘   𝑗,𝑉   𝑘,𝑊   0 ,𝑗,𝑘   𝜑,𝑗,𝑘
Allowed substitution hints:   𝑉(𝑘)   𝑊(𝑗)

Proof of Theorem gsumxp2
StepHypRef Expression
1 gsumxp2.b . . 3 𝐵 = (Base‘𝐺)
2 gsumxp2.z . . 3 0 = (0g𝐺)
3 gsumxp2.g . . 3 (𝜑𝐺 ∈ CMnd)
4 gsumxp2.a . . 3 (𝜑𝐴𝑉)
5 gsumxp2.r . . 3 (𝜑𝐶𝑊)
6 gsumxp2.f . . . 4 (𝜑𝐹:(𝐴 × 𝐶)⟶𝐵)
76fovcdmda 7526 . . 3 ((𝜑 ∧ (𝑗𝐴𝑘𝐶)) → (𝑗𝐹𝑘) ∈ 𝐵)
8 gsumxp2.w . . . 4 (𝜑𝐹 finSupp 0 )
98fsuppimpd 9264 . . 3 (𝜑 → (𝐹 supp 0 ) ∈ Fin)
10 simpl 482 . . . . . . 7 ((𝜑 ∧ (𝑗𝐴𝑘𝐶)) → 𝜑)
11 opelxpi 5658 . . . . . . . . 9 ((𝑗𝐴𝑘𝐶) → ⟨𝑗, 𝑘⟩ ∈ (𝐴 × 𝐶))
1211ad2antlr 727 . . . . . . . 8 (((𝜑 ∧ (𝑗𝐴𝑘𝐶)) ∧ ¬ ⟨𝑗, 𝑘⟩ ∈ (𝐹 supp 0 )) → ⟨𝑗, 𝑘⟩ ∈ (𝐴 × 𝐶))
13 simpr 484 . . . . . . . 8 (((𝜑 ∧ (𝑗𝐴𝑘𝐶)) ∧ ¬ ⟨𝑗, 𝑘⟩ ∈ (𝐹 supp 0 )) → ¬ ⟨𝑗, 𝑘⟩ ∈ (𝐹 supp 0 ))
1412, 13eldifd 3909 . . . . . . 7 (((𝜑 ∧ (𝑗𝐴𝑘𝐶)) ∧ ¬ ⟨𝑗, 𝑘⟩ ∈ (𝐹 supp 0 )) → ⟨𝑗, 𝑘⟩ ∈ ((𝐴 × 𝐶) ∖ (𝐹 supp 0 )))
15 ssidd 3954 . . . . . . . 8 (𝜑 → (𝐹 supp 0 ) ⊆ (𝐹 supp 0 ))
164, 5xpexd 7693 . . . . . . . 8 (𝜑 → (𝐴 × 𝐶) ∈ V)
172fvexi 6845 . . . . . . . . 9 0 ∈ V
1817a1i 11 . . . . . . . 8 (𝜑0 ∈ V)
196, 15, 16, 18suppssr 8134 . . . . . . 7 ((𝜑 ∧ ⟨𝑗, 𝑘⟩ ∈ ((𝐴 × 𝐶) ∖ (𝐹 supp 0 ))) → (𝐹‘⟨𝑗, 𝑘⟩) = 0 )
2010, 14, 19syl2an2r 685 . . . . . 6 (((𝜑 ∧ (𝑗𝐴𝑘𝐶)) ∧ ¬ ⟨𝑗, 𝑘⟩ ∈ (𝐹 supp 0 )) → (𝐹‘⟨𝑗, 𝑘⟩) = 0 )
2120ex 412 . . . . 5 ((𝜑 ∧ (𝑗𝐴𝑘𝐶)) → (¬ ⟨𝑗, 𝑘⟩ ∈ (𝐹 supp 0 ) → (𝐹‘⟨𝑗, 𝑘⟩) = 0 ))
22 df-br 5096 . . . . . 6 (𝑗(𝐹 supp 0 )𝑘 ↔ ⟨𝑗, 𝑘⟩ ∈ (𝐹 supp 0 ))
2322notbii 320 . . . . 5 𝑗(𝐹 supp 0 )𝑘 ↔ ¬ ⟨𝑗, 𝑘⟩ ∈ (𝐹 supp 0 ))
24 df-ov 7358 . . . . . 6 (𝑗𝐹𝑘) = (𝐹‘⟨𝑗, 𝑘⟩)
2524eqeq1i 2738 . . . . 5 ((𝑗𝐹𝑘) = 0 ↔ (𝐹‘⟨𝑗, 𝑘⟩) = 0 )
2621, 23, 253imtr4g 296 . . . 4 ((𝜑 ∧ (𝑗𝐴𝑘𝐶)) → (¬ 𝑗(𝐹 supp 0 )𝑘 → (𝑗𝐹𝑘) = 0 ))
2726impr 454 . . 3 ((𝜑 ∧ ((𝑗𝐴𝑘𝐶) ∧ ¬ 𝑗(𝐹 supp 0 )𝑘)) → (𝑗𝐹𝑘) = 0 )
281, 2, 3, 4, 5, 7, 9, 27gsumcom3 19898 . 2 (𝜑 → (𝐺 Σg (𝑗𝐴 ↦ (𝐺 Σg (𝑘𝐶 ↦ (𝑗𝐹𝑘))))) = (𝐺 Σg (𝑘𝐶 ↦ (𝐺 Σg (𝑗𝐴 ↦ (𝑗𝐹𝑘))))))
2928eqcomd 2739 1 (𝜑 → (𝐺 Σg (𝑘𝐶 ↦ (𝐺 Σg (𝑗𝐴 ↦ (𝑗𝐹𝑘))))) = (𝐺 Σg (𝑗𝐴 ↦ (𝐺 Σg (𝑘𝐶 ↦ (𝑗𝐹𝑘))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2113  Vcvv 3437  cdif 3895  cop 4583   class class class wbr 5095  cmpt 5176   × cxp 5619  wf 6485  cfv 6489  (class class class)co 7355   supp csupp 8099   finSupp cfsupp 9256  Basecbs 17127  0gc0g 17350   Σg cgsu 17351  CMndccmn 19700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-of 7619  df-om 7806  df-1st 7930  df-2nd 7931  df-supp 8100  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9257  df-oi 9407  df-card 9843  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-2 12199  df-n0 12393  df-z 12480  df-uz 12743  df-fz 13415  df-fzo 13562  df-seq 13916  df-hash 14245  df-sets 17082  df-slot 17100  df-ndx 17112  df-base 17128  df-ress 17149  df-plusg 17181  df-0g 17352  df-gsum 17353  df-mre 17496  df-mrc 17497  df-acs 17499  df-mgm 18556  df-sgrp 18635  df-mnd 18651  df-submnd 18700  df-mulg 18989  df-cntz 19237  df-cmn 19702
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator