![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gsumxp2 | Structured version Visualization version GIF version |
Description: Write a group sum over a cartesian product as a double sum in two ways. This corresponds to the first equation in [Lang] p. 6. (Contributed by AV, 27-Dec-2023.) |
Ref | Expression |
---|---|
gsumxp2.b | ⊢ 𝐵 = (Base‘𝐺) |
gsumxp2.z | ⊢ 0 = (0g‘𝐺) |
gsumxp2.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
gsumxp2.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
gsumxp2.r | ⊢ (𝜑 → 𝐶 ∈ 𝑊) |
gsumxp2.f | ⊢ (𝜑 → 𝐹:(𝐴 × 𝐶)⟶𝐵) |
gsumxp2.w | ⊢ (𝜑 → 𝐹 finSupp 0 ) |
Ref | Expression |
---|---|
gsumxp2 | ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ 𝐶 ↦ (𝐺 Σg (𝑗 ∈ 𝐴 ↦ (𝑗𝐹𝑘))))) = (𝐺 Σg (𝑗 ∈ 𝐴 ↦ (𝐺 Σg (𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumxp2.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | gsumxp2.z | . . 3 ⊢ 0 = (0g‘𝐺) | |
3 | gsumxp2.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
4 | gsumxp2.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
5 | gsumxp2.r | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑊) | |
6 | gsumxp2.f | . . . 4 ⊢ (𝜑 → 𝐹:(𝐴 × 𝐶)⟶𝐵) | |
7 | 6 | fovcdmda 7572 | . . 3 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶)) → (𝑗𝐹𝑘) ∈ 𝐵) |
8 | gsumxp2.w | . . . 4 ⊢ (𝜑 → 𝐹 finSupp 0 ) | |
9 | 8 | fsuppimpd 9366 | . . 3 ⊢ (𝜑 → (𝐹 supp 0 ) ∈ Fin) |
10 | simpl 482 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶)) → 𝜑) | |
11 | opelxpi 5704 | . . . . . . . . 9 ⊢ ((𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶) → ⟨𝑗, 𝑘⟩ ∈ (𝐴 × 𝐶)) | |
12 | 11 | ad2antlr 724 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶)) ∧ ¬ ⟨𝑗, 𝑘⟩ ∈ (𝐹 supp 0 )) → ⟨𝑗, 𝑘⟩ ∈ (𝐴 × 𝐶)) |
13 | simpr 484 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶)) ∧ ¬ ⟨𝑗, 𝑘⟩ ∈ (𝐹 supp 0 )) → ¬ ⟨𝑗, 𝑘⟩ ∈ (𝐹 supp 0 )) | |
14 | 12, 13 | eldifd 3952 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶)) ∧ ¬ ⟨𝑗, 𝑘⟩ ∈ (𝐹 supp 0 )) → ⟨𝑗, 𝑘⟩ ∈ ((𝐴 × 𝐶) ∖ (𝐹 supp 0 ))) |
15 | ssidd 3998 | . . . . . . . 8 ⊢ (𝜑 → (𝐹 supp 0 ) ⊆ (𝐹 supp 0 )) | |
16 | 4, 5 | xpexd 7732 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 × 𝐶) ∈ V) |
17 | 2 | fvexi 6896 | . . . . . . . . 9 ⊢ 0 ∈ V |
18 | 17 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → 0 ∈ V) |
19 | 6, 15, 16, 18 | suppssr 8176 | . . . . . . 7 ⊢ ((𝜑 ∧ ⟨𝑗, 𝑘⟩ ∈ ((𝐴 × 𝐶) ∖ (𝐹 supp 0 ))) → (𝐹‘⟨𝑗, 𝑘⟩) = 0 ) |
20 | 10, 14, 19 | syl2an2r 682 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶)) ∧ ¬ ⟨𝑗, 𝑘⟩ ∈ (𝐹 supp 0 )) → (𝐹‘⟨𝑗, 𝑘⟩) = 0 ) |
21 | 20 | ex 412 | . . . . 5 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶)) → (¬ ⟨𝑗, 𝑘⟩ ∈ (𝐹 supp 0 ) → (𝐹‘⟨𝑗, 𝑘⟩) = 0 )) |
22 | df-br 5140 | . . . . . 6 ⊢ (𝑗(𝐹 supp 0 )𝑘 ↔ ⟨𝑗, 𝑘⟩ ∈ (𝐹 supp 0 )) | |
23 | 22 | notbii 320 | . . . . 5 ⊢ (¬ 𝑗(𝐹 supp 0 )𝑘 ↔ ¬ ⟨𝑗, 𝑘⟩ ∈ (𝐹 supp 0 )) |
24 | df-ov 7405 | . . . . . 6 ⊢ (𝑗𝐹𝑘) = (𝐹‘⟨𝑗, 𝑘⟩) | |
25 | 24 | eqeq1i 2729 | . . . . 5 ⊢ ((𝑗𝐹𝑘) = 0 ↔ (𝐹‘⟨𝑗, 𝑘⟩) = 0 ) |
26 | 21, 23, 25 | 3imtr4g 296 | . . . 4 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶)) → (¬ 𝑗(𝐹 supp 0 )𝑘 → (𝑗𝐹𝑘) = 0 )) |
27 | 26 | impr 454 | . . 3 ⊢ ((𝜑 ∧ ((𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶) ∧ ¬ 𝑗(𝐹 supp 0 )𝑘)) → (𝑗𝐹𝑘) = 0 ) |
28 | 1, 2, 3, 4, 5, 7, 9, 27 | gsumcom3 19890 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑗 ∈ 𝐴 ↦ (𝐺 Σg (𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘))))) = (𝐺 Σg (𝑘 ∈ 𝐶 ↦ (𝐺 Σg (𝑗 ∈ 𝐴 ↦ (𝑗𝐹𝑘)))))) |
29 | 28 | eqcomd 2730 | 1 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ 𝐶 ↦ (𝐺 Σg (𝑗 ∈ 𝐴 ↦ (𝑗𝐹𝑘))))) = (𝐺 Σg (𝑗 ∈ 𝐴 ↦ (𝐺 Σg (𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘)))))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 Vcvv 3466 ∖ cdif 3938 ⟨cop 4627 class class class wbr 5139 ↦ cmpt 5222 × cxp 5665 ⟶wf 6530 ‘cfv 6534 (class class class)co 7402 supp csupp 8141 finSupp cfsupp 9358 Basecbs 17145 0gc0g 17386 Σg cgsu 17387 CMndccmn 19692 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-int 4942 df-iun 4990 df-iin 4991 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-se 5623 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-isom 6543 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-of 7664 df-om 7850 df-1st 7969 df-2nd 7970 df-supp 8142 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8700 df-en 8937 df-dom 8938 df-sdom 8939 df-fin 8940 df-fsupp 9359 df-oi 9502 df-card 9931 df-pnf 11248 df-mnf 11249 df-xr 11250 df-ltxr 11251 df-le 11252 df-sub 11444 df-neg 11445 df-nn 12211 df-2 12273 df-n0 12471 df-z 12557 df-uz 12821 df-fz 13483 df-fzo 13626 df-seq 13965 df-hash 14289 df-sets 17098 df-slot 17116 df-ndx 17128 df-base 17146 df-ress 17175 df-plusg 17211 df-0g 17388 df-gsum 17389 df-mre 17531 df-mrc 17532 df-acs 17534 df-mgm 18565 df-sgrp 18644 df-mnd 18660 df-submnd 18706 df-mulg 18988 df-cntz 19225 df-cmn 19694 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |