Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ofoacl | Structured version Visualization version GIF version |
Description: Closure law for component wise addition of ordinal-yielding functions. (Contributed by RP, 5-Jan-2025.) |
Ref | Expression |
---|---|
ofoacl | ⊢ (((𝐴 ∈ 𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ (𝐹 ∈ (𝐶 ↑m 𝐴) ∧ 𝐺 ∈ (𝐶 ↑m 𝐴))) → (𝐹 ∘f +o 𝐺) ∈ (𝐶 ↑m 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovres 7470 | . . 3 ⊢ ((𝐹 ∈ (𝐶 ↑m 𝐴) ∧ 𝐺 ∈ (𝐶 ↑m 𝐴)) → (𝐹( ∘f +o ↾ ((𝐶 ↑m 𝐴) × (𝐶 ↑m 𝐴)))𝐺) = (𝐹 ∘f +o 𝐺)) | |
2 | 1 | adantl 483 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ (𝐹 ∈ (𝐶 ↑m 𝐴) ∧ 𝐺 ∈ (𝐶 ↑m 𝐴))) → (𝐹( ∘f +o ↾ ((𝐶 ↑m 𝐴) × (𝐶 ↑m 𝐴)))𝐺) = (𝐹 ∘f +o 𝐺)) |
3 | id 22 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ 𝑉) | |
4 | inidm 4158 | . . . . . . 7 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
5 | 4 | a1i 11 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ 𝐴) = 𝐴) |
6 | 5 | eqcomd 2742 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → 𝐴 = (𝐴 ∩ 𝐴)) |
7 | 3, 3, 6 | 3jca 1128 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ∧ 𝐴 = (𝐴 ∩ 𝐴))) |
8 | ofoaf 41246 | . . . 4 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ∧ 𝐴 = (𝐴 ∩ 𝐴)) ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) → ( ∘f +o ↾ ((𝐶 ↑m 𝐴) × (𝐶 ↑m 𝐴))):((𝐶 ↑m 𝐴) × (𝐶 ↑m 𝐴))⟶(𝐶 ↑m 𝐴)) | |
9 | 7, 8 | sylan 581 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) → ( ∘f +o ↾ ((𝐶 ↑m 𝐴) × (𝐶 ↑m 𝐴))):((𝐶 ↑m 𝐴) × (𝐶 ↑m 𝐴))⟶(𝐶 ↑m 𝐴)) |
10 | 9 | fovcdmda 7475 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ (𝐹 ∈ (𝐶 ↑m 𝐴) ∧ 𝐺 ∈ (𝐶 ↑m 𝐴))) → (𝐹( ∘f +o ↾ ((𝐶 ↑m 𝐴) × (𝐶 ↑m 𝐴)))𝐺) ∈ (𝐶 ↑m 𝐴)) |
11 | 2, 10 | eqeltrrd 2838 | 1 ⊢ (((𝐴 ∈ 𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ (𝐹 ∈ (𝐶 ↑m 𝐴) ∧ 𝐺 ∈ (𝐶 ↑m 𝐴))) → (𝐹 ∘f +o 𝐺) ∈ (𝐶 ↑m 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1087 = wceq 1539 ∈ wcel 2104 ∩ cin 3891 × cxp 5598 ↾ cres 5602 Oncon0 6281 ⟶wf 6454 (class class class)co 7307 ∘f cof 7563 ωcom 7744 +o coa 8325 ↑o coe 8327 ↑m cmap 8646 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-inf2 9447 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3331 df-reu 3332 df-rab 3333 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-int 4887 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-ov 7310 df-oprab 7311 df-mpo 7312 df-of 7565 df-om 7745 df-1st 7863 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-2o 8329 df-oadd 8332 df-omul 8333 df-oexp 8334 df-map 8648 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |