![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ofoacl | Structured version Visualization version GIF version |
Description: Closure law for component wise addition of ordinal-yielding functions. (Contributed by RP, 5-Jan-2025.) |
Ref | Expression |
---|---|
ofoacl | ⊢ (((𝐴 ∈ 𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ (𝐹 ∈ (𝐶 ↑m 𝐴) ∧ 𝐺 ∈ (𝐶 ↑m 𝐴))) → (𝐹 ∘f +o 𝐺) ∈ (𝐶 ↑m 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovres 7582 | . . 3 ⊢ ((𝐹 ∈ (𝐶 ↑m 𝐴) ∧ 𝐺 ∈ (𝐶 ↑m 𝐴)) → (𝐹( ∘f +o ↾ ((𝐶 ↑m 𝐴) × (𝐶 ↑m 𝐴)))𝐺) = (𝐹 ∘f +o 𝐺)) | |
2 | 1 | adantl 480 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ (𝐹 ∈ (𝐶 ↑m 𝐴) ∧ 𝐺 ∈ (𝐶 ↑m 𝐴))) → (𝐹( ∘f +o ↾ ((𝐶 ↑m 𝐴) × (𝐶 ↑m 𝐴)))𝐺) = (𝐹 ∘f +o 𝐺)) |
3 | id 22 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ 𝑉) | |
4 | inidm 4218 | . . . . . . 7 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
5 | 4 | a1i 11 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ 𝐴) = 𝐴) |
6 | 5 | eqcomd 2732 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → 𝐴 = (𝐴 ∩ 𝐴)) |
7 | 3, 3, 6 | 3jca 1125 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ∧ 𝐴 = (𝐴 ∩ 𝐴))) |
8 | ofoaf 43056 | . . . 4 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ∧ 𝐴 = (𝐴 ∩ 𝐴)) ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) → ( ∘f +o ↾ ((𝐶 ↑m 𝐴) × (𝐶 ↑m 𝐴))):((𝐶 ↑m 𝐴) × (𝐶 ↑m 𝐴))⟶(𝐶 ↑m 𝐴)) | |
9 | 7, 8 | sylan 578 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) → ( ∘f +o ↾ ((𝐶 ↑m 𝐴) × (𝐶 ↑m 𝐴))):((𝐶 ↑m 𝐴) × (𝐶 ↑m 𝐴))⟶(𝐶 ↑m 𝐴)) |
10 | 9 | fovcdmda 7587 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ (𝐹 ∈ (𝐶 ↑m 𝐴) ∧ 𝐺 ∈ (𝐶 ↑m 𝐴))) → (𝐹( ∘f +o ↾ ((𝐶 ↑m 𝐴) × (𝐶 ↑m 𝐴)))𝐺) ∈ (𝐶 ↑m 𝐴)) |
11 | 2, 10 | eqeltrrd 2827 | 1 ⊢ (((𝐴 ∈ 𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ (𝐹 ∈ (𝐶 ↑m 𝐴) ∧ 𝐺 ∈ (𝐶 ↑m 𝐴))) → (𝐹 ∘f +o 𝐺) ∈ (𝐶 ↑m 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 ∩ cin 3946 × cxp 5671 ↾ cres 5675 Oncon0 6366 ⟶wf 6540 (class class class)co 7414 ∘f cof 7678 ωcom 7866 +o coa 8483 ↑o coe 8485 ↑m cmap 8845 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7736 ax-inf2 9675 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rmo 3365 df-reu 3366 df-rab 3421 df-v 3465 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4324 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4907 df-int 4948 df-iun 4996 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6303 df-ord 6369 df-on 6370 df-lim 6371 df-suc 6372 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7680 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8286 df-wrecs 8317 df-recs 8391 df-rdg 8430 df-1o 8486 df-2o 8487 df-oadd 8490 df-omul 8491 df-oexp 8492 df-map 8847 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |