Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofoacl Structured version   Visualization version   GIF version

Theorem ofoacl 42107
Description: Closure law for component wise addition of ordinal-yielding functions. (Contributed by RP, 5-Jan-2025.)
Assertion
Ref Expression
ofoacl (((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ (𝐹 ∈ (𝐶m 𝐴) ∧ 𝐺 ∈ (𝐶m 𝐴))) → (𝐹f +o 𝐺) ∈ (𝐶m 𝐴))

Proof of Theorem ofoacl
StepHypRef Expression
1 ovres 7573 . . 3 ((𝐹 ∈ (𝐶m 𝐴) ∧ 𝐺 ∈ (𝐶m 𝐴)) → (𝐹( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴)))𝐺) = (𝐹f +o 𝐺))
21adantl 483 . 2 (((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ (𝐹 ∈ (𝐶m 𝐴) ∧ 𝐺 ∈ (𝐶m 𝐴))) → (𝐹( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴)))𝐺) = (𝐹f +o 𝐺))
3 id 22 . . . . 5 (𝐴𝑉𝐴𝑉)
4 inidm 4219 . . . . . . 7 (𝐴𝐴) = 𝐴
54a1i 11 . . . . . 6 (𝐴𝑉 → (𝐴𝐴) = 𝐴)
65eqcomd 2739 . . . . 5 (𝐴𝑉𝐴 = (𝐴𝐴))
73, 3, 63jca 1129 . . . 4 (𝐴𝑉 → (𝐴𝑉𝐴𝑉𝐴 = (𝐴𝐴)))
8 ofoaf 42105 . . . 4 (((𝐴𝑉𝐴𝑉𝐴 = (𝐴𝐴)) ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) → ( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴))):((𝐶m 𝐴) × (𝐶m 𝐴))⟶(𝐶m 𝐴))
97, 8sylan 581 . . 3 ((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) → ( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴))):((𝐶m 𝐴) × (𝐶m 𝐴))⟶(𝐶m 𝐴))
109fovcdmda 7578 . 2 (((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ (𝐹 ∈ (𝐶m 𝐴) ∧ 𝐺 ∈ (𝐶m 𝐴))) → (𝐹( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴)))𝐺) ∈ (𝐶m 𝐴))
112, 10eqeltrrd 2835 1 (((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ (𝐹 ∈ (𝐶m 𝐴) ∧ 𝐺 ∈ (𝐶m 𝐴))) → (𝐹f +o 𝐺) ∈ (𝐶m 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107  cin 3948   × cxp 5675  cres 5679  Oncon0 6365  wf 6540  (class class class)co 7409  f cof 7668  ωcom 7855   +o coa 8463  o coe 8465  m cmap 8820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-inf2 9636
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-of 7670  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-2o 8467  df-oadd 8470  df-omul 8471  df-oexp 8472  df-map 8822
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator