Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofoacl Structured version   Visualization version   GIF version

Theorem ofoacl 41256
Description: Closure law for component wise addition of ordinal-yielding functions. (Contributed by RP, 5-Jan-2025.)
Assertion
Ref Expression
ofoacl (((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ (𝐹 ∈ (𝐶m 𝐴) ∧ 𝐺 ∈ (𝐶m 𝐴))) → (𝐹f +o 𝐺) ∈ (𝐶m 𝐴))

Proof of Theorem ofoacl
StepHypRef Expression
1 ovres 7478 . . 3 ((𝐹 ∈ (𝐶m 𝐴) ∧ 𝐺 ∈ (𝐶m 𝐴)) → (𝐹( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴)))𝐺) = (𝐹f +o 𝐺))
21adantl 482 . 2 (((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ (𝐹 ∈ (𝐶m 𝐴) ∧ 𝐺 ∈ (𝐶m 𝐴))) → (𝐹( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴)))𝐺) = (𝐹f +o 𝐺))
3 id 22 . . . . 5 (𝐴𝑉𝐴𝑉)
4 inidm 4163 . . . . . . 7 (𝐴𝐴) = 𝐴
54a1i 11 . . . . . 6 (𝐴𝑉 → (𝐴𝐴) = 𝐴)
65eqcomd 2743 . . . . 5 (𝐴𝑉𝐴 = (𝐴𝐴))
73, 3, 63jca 1127 . . . 4 (𝐴𝑉 → (𝐴𝑉𝐴𝑉𝐴 = (𝐴𝐴)))
8 ofoaf 41254 . . . 4 (((𝐴𝑉𝐴𝑉𝐴 = (𝐴𝐴)) ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) → ( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴))):((𝐶m 𝐴) × (𝐶m 𝐴))⟶(𝐶m 𝐴))
97, 8sylan 580 . . 3 ((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) → ( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴))):((𝐶m 𝐴) × (𝐶m 𝐴))⟶(𝐶m 𝐴))
109fovcdmda 7483 . 2 (((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ (𝐹 ∈ (𝐶m 𝐴) ∧ 𝐺 ∈ (𝐶m 𝐴))) → (𝐹( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴)))𝐺) ∈ (𝐶m 𝐴))
112, 10eqeltrrd 2839 1 (((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ (𝐹 ∈ (𝐶m 𝐴) ∧ 𝐺 ∈ (𝐶m 𝐴))) → (𝐹f +o 𝐺) ∈ (𝐶m 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1540  wcel 2105  cin 3896   × cxp 5605  cres 5609  Oncon0 6288  wf 6461  (class class class)co 7315  f cof 7571  ωcom 7757   +o coa 8341  o coe 8343  m cmap 8663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-rep 5224  ax-sep 5238  ax-nul 5245  ax-pow 5303  ax-pr 5367  ax-un 7628  ax-inf2 9470
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4268  df-if 4472  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-int 4893  df-iun 4939  df-br 5088  df-opab 5150  df-mpt 5171  df-tr 5205  df-id 5507  df-eprel 5513  df-po 5521  df-so 5522  df-fr 5562  df-we 5564  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-pred 6224  df-ord 6291  df-on 6292  df-lim 6293  df-suc 6294  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-ov 7318  df-oprab 7319  df-mpo 7320  df-of 7573  df-om 7758  df-1st 7876  df-2nd 7877  df-frecs 8144  df-wrecs 8175  df-recs 8249  df-rdg 8288  df-1o 8344  df-2o 8345  df-oadd 8348  df-omul 8349  df-oexp 8350  df-map 8665
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator