![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > naddcnfcl | Structured version Visualization version GIF version |
Description: Closure law for component-wise ordinal addition of Cantor normal forms. (Contributed by RP, 2-Jan-2025.) |
Ref | Expression |
---|---|
naddcnfcl | ⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆)) → (𝐹 ∘f +o 𝐺) ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovres 7582 | . . 3 ⊢ ((𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆) → (𝐹( ∘f +o ↾ (𝑆 × 𝑆))𝐺) = (𝐹 ∘f +o 𝐺)) | |
2 | 1 | adantl 480 | . 2 ⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆)) → (𝐹( ∘f +o ↾ (𝑆 × 𝑆))𝐺) = (𝐹 ∘f +o 𝐺)) |
3 | naddcnff 42828 | . . 3 ⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ( ∘f +o ↾ (𝑆 × 𝑆)):(𝑆 × 𝑆)⟶𝑆) | |
4 | 3 | fovcdmda 7587 | . 2 ⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆)) → (𝐹( ∘f +o ↾ (𝑆 × 𝑆))𝐺) ∈ 𝑆) |
5 | 2, 4 | eqeltrrd 2826 | 1 ⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆)) → (𝐹 ∘f +o 𝐺) ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 × cxp 5668 dom cdm 5670 ↾ cres 5672 Oncon0 6362 (class class class)co 7414 ∘f cof 7678 ωcom 7866 +o coa 8480 CNF ccnf 9682 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5357 ax-pr 5421 ax-un 7736 ax-inf2 9662 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-pss 3958 df-nul 4317 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-iun 4991 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5568 df-eprel 5574 df-po 5582 df-so 5583 df-fr 5625 df-we 5627 df-xp 5676 df-rel 5677 df-cnv 5678 df-co 5679 df-dm 5680 df-rn 5681 df-res 5682 df-ima 5683 df-pred 6298 df-ord 6365 df-on 6366 df-lim 6367 df-suc 6368 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7680 df-om 7867 df-1st 7989 df-2nd 7990 df-supp 8162 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-seqom 8465 df-1o 8483 df-oadd 8487 df-map 8843 df-en 8961 df-fin 8964 df-fsupp 9384 df-cnf 9683 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |