MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fovrnda Structured version   Visualization version   GIF version

Theorem fovrnda 7316
Description: An operation's value belongs to its codomain. (Contributed by Mario Carneiro, 29-Dec-2016.)
Hypothesis
Ref Expression
fovrnd.1 (𝜑𝐹:(𝑅 × 𝑆)⟶𝐶)
Assertion
Ref Expression
fovrnda ((𝜑 ∧ (𝐴𝑅𝐵𝑆)) → (𝐴𝐹𝐵) ∈ 𝐶)

Proof of Theorem fovrnda
StepHypRef Expression
1 fovrnd.1 . . 3 (𝜑𝐹:(𝑅 × 𝑆)⟶𝐶)
2 fovrn 7315 . . 3 ((𝐹:(𝑅 × 𝑆)⟶𝐶𝐴𝑅𝐵𝑆) → (𝐴𝐹𝐵) ∈ 𝐶)
31, 2syl3an1 1161 . 2 ((𝜑𝐴𝑅𝐵𝑆) → (𝐴𝐹𝐵) ∈ 𝐶)
433expb 1118 1 ((𝜑 ∧ (𝐴𝑅𝐵𝑆)) → (𝐴𝐹𝐵) ∈ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 400  wcel 2112   × cxp 5523  wf 6332  (class class class)co 7151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5170  ax-nul 5177  ax-pr 5299
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ral 3076  df-rex 3077  df-v 3412  df-sbc 3698  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-nul 4227  df-if 4422  df-sn 4524  df-pr 4526  df-op 4530  df-uni 4800  df-br 5034  df-opab 5096  df-id 5431  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-fv 6344  df-ov 7154
This theorem is referenced by:  eroprf  8406  yonedalem3  17589  yonedainv  17590  gass  18491  gsumxp2  19161  mamulid  21134  mamurid  21135  maducoeval2  21333  madutpos  21335  madugsum  21336  madurid  21337  isxmet2d  23022  prdsxmetlem  23063  rrxds  24086  ofrn  30491  fedgmullem2  31225  metideq  31357  sibfof  31819
  Copyright terms: Public domain W3C validator