![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fovrnd | Structured version Visualization version GIF version |
Description: An operation's value belongs to its codomain. (Contributed by Mario Carneiro, 29-Dec-2016.) |
Ref | Expression |
---|---|
fovrnd.1 | ⊢ (𝜑 → 𝐹:(𝑅 × 𝑆)⟶𝐶) |
fovrnd.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑅) |
fovrnd.3 | ⊢ (𝜑 → 𝐵 ∈ 𝑆) |
Ref | Expression |
---|---|
fovrnd | ⊢ (𝜑 → (𝐴𝐹𝐵) ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fovrnd.1 | . 2 ⊢ (𝜑 → 𝐹:(𝑅 × 𝑆)⟶𝐶) | |
2 | fovrnd.2 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑅) | |
3 | fovrnd.3 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑆) | |
4 | fovrn 7134 | . 2 ⊢ ((𝐹:(𝑅 × 𝑆)⟶𝐶 ∧ 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) ∈ 𝐶) | |
5 | 1, 2, 3, 4 | syl3anc 1351 | 1 ⊢ (𝜑 → (𝐴𝐹𝐵) ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2050 × cxp 5405 ⟶wf 6184 (class class class)co 6976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-sep 5060 ax-nul 5067 ax-pr 5186 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ral 3093 df-rex 3094 df-rab 3097 df-v 3417 df-sbc 3682 df-dif 3832 df-un 3834 df-in 3836 df-ss 3843 df-nul 4179 df-if 4351 df-sn 4442 df-pr 4444 df-op 4448 df-uni 4713 df-br 4930 df-opab 4992 df-id 5312 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-fv 6196 df-ov 6979 |
This theorem is referenced by: eroveu 8192 fseqenlem1 9244 rlimcn2 14808 homarel 17154 curf1cl 17336 curf2cl 17339 hofcllem 17366 yonedalem3b 17387 gasubg 18203 gacan 18206 gapm 18207 gastacos 18211 orbsta 18214 galactghm 18292 sylow1lem2 18485 sylow2alem2 18504 sylow3lem1 18513 efgcpbllemb 18641 frgpuplem 18658 frlmbas3 20622 mamucl 20714 mamuass 20715 mamudi 20716 mamudir 20717 mamuvs1 20718 mamuvs2 20719 mamulid 20754 mamurid 20755 mamutpos 20771 matgsumcl 20773 mavmulcl 20860 mavmulass 20862 mdetleib2 20901 mdetf 20908 mdetdiaglem 20911 mdetrlin 20915 mdetrsca 20916 mdetralt 20921 mdetunilem7 20931 maducoeval2 20953 madugsum 20956 madurid 20957 tsmsxplem2 22465 isxmet2d 22640 ismet2 22646 prdsxmetlem 22681 comet 22826 ipcn 23552 ovoliunlem2 23807 itg1addlem4 24003 itg1addlem5 24004 mbfi1fseqlem5 24023 limccnp2 24193 midcl 26265 fedgmullem2 30661 pstmxmet 30787 cvmlift2lem9 32149 isbnd3 34510 prdsbnd 34519 iscringd 34724 rmxycomplete 38916 rmxyadd 38920 |
Copyright terms: Public domain | W3C validator |