Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fovrnd | Structured version Visualization version GIF version |
Description: An operation's value belongs to its codomain. (Contributed by Mario Carneiro, 29-Dec-2016.) |
Ref | Expression |
---|---|
fovrnd.1 | ⊢ (𝜑 → 𝐹:(𝑅 × 𝑆)⟶𝐶) |
fovrnd.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑅) |
fovrnd.3 | ⊢ (𝜑 → 𝐵 ∈ 𝑆) |
Ref | Expression |
---|---|
fovrnd | ⊢ (𝜑 → (𝐴𝐹𝐵) ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fovrnd.1 | . 2 ⊢ (𝜑 → 𝐹:(𝑅 × 𝑆)⟶𝐶) | |
2 | fovrnd.2 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑅) | |
3 | fovrnd.3 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑆) | |
4 | fovrn 7420 | . 2 ⊢ ((𝐹:(𝑅 × 𝑆)⟶𝐶 ∧ 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) ∈ 𝐶) | |
5 | 1, 2, 3, 4 | syl3anc 1369 | 1 ⊢ (𝜑 → (𝐴𝐹𝐵) ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 × cxp 5578 ⟶wf 6414 (class class class)co 7255 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-ov 7258 |
This theorem is referenced by: eroveu 8559 fseqenlem1 9711 rlimcn2 15228 homarel 17667 curf1cl 17862 curf2cl 17865 hofcllem 17892 yonedalem3b 17913 gasubg 18823 gacan 18826 gapm 18827 gastacos 18831 orbsta 18834 galactghm 18927 sylow1lem2 19119 sylow2alem2 19138 sylow3lem1 19147 efgcpbllemb 19276 frgpuplem 19293 frlmbas3 20893 mamucl 21458 mamuass 21459 mamudi 21460 mamudir 21461 mamuvs1 21462 mamuvs2 21463 mamulid 21498 mamurid 21499 mamutpos 21515 matgsumcl 21517 mavmulcl 21604 mavmulass 21606 mdetleib2 21645 mdetf 21652 mdetdiaglem 21655 mdetrlin 21659 mdetrsca 21660 mdetralt 21665 mdetunilem7 21675 maducoeval2 21697 madugsum 21700 madurid 21701 tsmsxplem2 23213 isxmet2d 23388 ismet2 23394 prdsxmetlem 23429 comet 23575 ipcn 24315 ovoliunlem2 24572 itg1addlem4 24768 itg1addlem4OLD 24769 itg1addlem5 24770 mbfi1fseqlem5 24789 limccnp2 24961 midcl 27042 fedgmullem2 31613 pstmxmet 31749 cvmlift2lem9 33173 isbnd3 35869 prdsbnd 35878 iscringd 36083 rmxycomplete 40655 rmxyadd 40659 2arympt 45883 |
Copyright terms: Public domain | W3C validator |