Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fovrnd | Structured version Visualization version GIF version |
Description: An operation's value belongs to its codomain. (Contributed by Mario Carneiro, 29-Dec-2016.) |
Ref | Expression |
---|---|
fovrnd.1 | ⊢ (𝜑 → 𝐹:(𝑅 × 𝑆)⟶𝐶) |
fovrnd.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑅) |
fovrnd.3 | ⊢ (𝜑 → 𝐵 ∈ 𝑆) |
Ref | Expression |
---|---|
fovrnd | ⊢ (𝜑 → (𝐴𝐹𝐵) ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fovrnd.1 | . 2 ⊢ (𝜑 → 𝐹:(𝑅 × 𝑆)⟶𝐶) | |
2 | fovrnd.2 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑅) | |
3 | fovrnd.3 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑆) | |
4 | fovrn 7442 | . 2 ⊢ ((𝐹:(𝑅 × 𝑆)⟶𝐶 ∧ 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) ∈ 𝐶) | |
5 | 1, 2, 3, 4 | syl3anc 1370 | 1 ⊢ (𝜑 → (𝐴𝐹𝐵) ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 × cxp 5587 ⟶wf 6429 (class class class)co 7275 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-ov 7278 |
This theorem is referenced by: eroveu 8601 fseqenlem1 9780 rlimcn2 15300 homarel 17751 curf1cl 17946 curf2cl 17949 hofcllem 17976 yonedalem3b 17997 gasubg 18908 gacan 18911 gapm 18912 gastacos 18916 orbsta 18919 galactghm 19012 sylow1lem2 19204 sylow2alem2 19223 sylow3lem1 19232 efgcpbllemb 19361 frgpuplem 19378 frlmbas3 20983 mamucl 21548 mamuass 21549 mamudi 21550 mamudir 21551 mamuvs1 21552 mamuvs2 21553 mamulid 21590 mamurid 21591 mamutpos 21607 matgsumcl 21609 mavmulcl 21696 mavmulass 21698 mdetleib2 21737 mdetf 21744 mdetdiaglem 21747 mdetrlin 21751 mdetrsca 21752 mdetralt 21757 mdetunilem7 21767 maducoeval2 21789 madugsum 21792 madurid 21793 tsmsxplem2 23305 isxmet2d 23480 ismet2 23486 prdsxmetlem 23521 comet 23669 ipcn 24410 ovoliunlem2 24667 itg1addlem4 24863 itg1addlem4OLD 24864 itg1addlem5 24865 mbfi1fseqlem5 24884 limccnp2 25056 midcl 27138 fedgmullem2 31711 pstmxmet 31847 cvmlift2lem9 33273 isbnd3 35942 prdsbnd 35951 iscringd 36156 rmxycomplete 40739 rmxyadd 40743 2arympt 45995 |
Copyright terms: Public domain | W3C validator |