Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fovrnd | Structured version Visualization version GIF version |
Description: An operation's value belongs to its codomain. (Contributed by Mario Carneiro, 29-Dec-2016.) |
Ref | Expression |
---|---|
fovrnd.1 | ⊢ (𝜑 → 𝐹:(𝑅 × 𝑆)⟶𝐶) |
fovrnd.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑅) |
fovrnd.3 | ⊢ (𝜑 → 𝐵 ∈ 𝑆) |
Ref | Expression |
---|---|
fovrnd | ⊢ (𝜑 → (𝐴𝐹𝐵) ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fovrnd.1 | . 2 ⊢ (𝜑 → 𝐹:(𝑅 × 𝑆)⟶𝐶) | |
2 | fovrnd.2 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑅) | |
3 | fovrnd.3 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑆) | |
4 | fovrn 7378 | . 2 ⊢ ((𝐹:(𝑅 × 𝑆)⟶𝐶 ∧ 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) ∈ 𝐶) | |
5 | 1, 2, 3, 4 | syl3anc 1373 | 1 ⊢ (𝜑 → (𝐴𝐹𝐵) ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2110 × cxp 5549 ⟶wf 6376 (class class class)co 7213 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-fv 6388 df-ov 7216 |
This theorem is referenced by: eroveu 8494 fseqenlem1 9638 rlimcn2 15152 homarel 17542 curf1cl 17736 curf2cl 17739 hofcllem 17766 yonedalem3b 17787 gasubg 18696 gacan 18699 gapm 18700 gastacos 18704 orbsta 18707 galactghm 18796 sylow1lem2 18988 sylow2alem2 19007 sylow3lem1 19016 efgcpbllemb 19145 frgpuplem 19162 frlmbas3 20738 mamucl 21298 mamuass 21299 mamudi 21300 mamudir 21301 mamuvs1 21302 mamuvs2 21303 mamulid 21338 mamurid 21339 mamutpos 21355 matgsumcl 21357 mavmulcl 21444 mavmulass 21446 mdetleib2 21485 mdetf 21492 mdetdiaglem 21495 mdetrlin 21499 mdetrsca 21500 mdetralt 21505 mdetunilem7 21515 maducoeval2 21537 madugsum 21540 madurid 21541 tsmsxplem2 23051 isxmet2d 23225 ismet2 23231 prdsxmetlem 23266 comet 23411 ipcn 24143 ovoliunlem2 24400 itg1addlem4 24596 itg1addlem4OLD 24597 itg1addlem5 24598 mbfi1fseqlem5 24617 limccnp2 24789 midcl 26868 fedgmullem2 31425 pstmxmet 31561 cvmlift2lem9 32986 isbnd3 35679 prdsbnd 35688 iscringd 35893 rmxycomplete 40442 rmxyadd 40446 2arympt 45668 |
Copyright terms: Public domain | W3C validator |