MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fovrn Structured version   Visualization version   GIF version

Theorem fovrn 7044
Description: An operation's value belongs to its codomain. (Contributed by NM, 27-Aug-2006.)
Assertion
Ref Expression
fovrn ((𝐹:(𝑅 × 𝑆)⟶𝐶𝐴𝑅𝐵𝑆) → (𝐴𝐹𝐵) ∈ 𝐶)

Proof of Theorem fovrn
StepHypRef Expression
1 opelxpi 5360 . . 3 ((𝐴𝑅𝐵𝑆) → ⟨𝐴, 𝐵⟩ ∈ (𝑅 × 𝑆))
2 df-ov 6887 . . . 4 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
3 ffvelrn 6589 . . . 4 ((𝐹:(𝑅 × 𝑆)⟶𝐶 ∧ ⟨𝐴, 𝐵⟩ ∈ (𝑅 × 𝑆)) → (𝐹‘⟨𝐴, 𝐵⟩) ∈ 𝐶)
42, 3syl5eqel 2900 . . 3 ((𝐹:(𝑅 × 𝑆)⟶𝐶 ∧ ⟨𝐴, 𝐵⟩ ∈ (𝑅 × 𝑆)) → (𝐴𝐹𝐵) ∈ 𝐶)
51, 4sylan2 582 . 2 ((𝐹:(𝑅 × 𝑆)⟶𝐶 ∧ (𝐴𝑅𝐵𝑆)) → (𝐴𝐹𝐵) ∈ 𝐶)
653impb 1136 1 ((𝐹:(𝑅 × 𝑆)⟶𝐶𝐴𝑅𝐵𝑆) → (𝐴𝐹𝐵) ∈ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1100  wcel 2157  cop 4387   × cxp 5322  wf 6107  cfv 6111  (class class class)co 6884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422  ax-ext 2795  ax-sep 4988  ax-nul 4996  ax-pr 5109
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2062  df-mo 2635  df-eu 2642  df-clab 2804  df-cleq 2810  df-clel 2813  df-nfc 2948  df-ral 3112  df-rex 3113  df-rab 3116  df-v 3404  df-sbc 3645  df-dif 3783  df-un 3785  df-in 3787  df-ss 3794  df-nul 4128  df-if 4291  df-sn 4382  df-pr 4384  df-op 4388  df-uni 4642  df-br 4856  df-opab 4918  df-id 5232  df-xp 5330  df-rel 5331  df-cnv 5332  df-co 5333  df-dm 5334  df-rn 5335  df-iota 6074  df-fun 6113  df-fn 6114  df-f 6115  df-fv 6119  df-ov 6887
This theorem is referenced by:  fovrnda  7045  fovrnd  7046  ovmpt2elrn  7484  curry1f  7515  curry2f  7517  mapxpen  8375  axdc4lem  9572  axdc4uzlem  13026  imasmnd2  17552  grpsubcl  17720  imasgrp2  17755  imasring  18841  tsmsxplem1  22190  psmetcl  22346  xmetcl  22370  metcl  22371  blssm  22457  mbfi1fseqlem3  23721  mbfi1fseqlem4  23722  mbfi1fseqlem5  23723  grpocl  27706  grpodivcl  27745  vccl  27769  nvmcl  27852  cvmliftphtlem  31644  matunitlindflem1  33737  isbnd3  33913  clmgmOLD  33980  rngocl  34030  isdrngo2  34087
  Copyright terms: Public domain W3C validator