![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fthi | Structured version Visualization version GIF version |
Description: The morphism map of a faithful functor is an injection. (Contributed by Mario Carneiro, 27-Jan-2017.) |
Ref | Expression |
---|---|
isfth.b | ⊢ 𝐵 = (Base‘𝐶) |
isfth.h | ⊢ 𝐻 = (Hom ‘𝐶) |
isfth.j | ⊢ 𝐽 = (Hom ‘𝐷) |
fthf1.f | ⊢ (𝜑 → 𝐹(𝐶 Faith 𝐷)𝐺) |
fthf1.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
fthf1.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
fthi.r | ⊢ (𝜑 → 𝑅 ∈ (𝑋𝐻𝑌)) |
fthi.s | ⊢ (𝜑 → 𝑆 ∈ (𝑋𝐻𝑌)) |
Ref | Expression |
---|---|
fthi | ⊢ (𝜑 → (((𝑋𝐺𝑌)‘𝑅) = ((𝑋𝐺𝑌)‘𝑆) ↔ 𝑅 = 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfth.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
2 | isfth.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
3 | isfth.j | . . 3 ⊢ 𝐽 = (Hom ‘𝐷) | |
4 | fthf1.f | . . 3 ⊢ (𝜑 → 𝐹(𝐶 Faith 𝐷)𝐺) | |
5 | fthf1.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
6 | fthf1.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
7 | 1, 2, 3, 4, 5, 6 | fthf1 17986 | . 2 ⊢ (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)–1-1→((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
8 | fthi.r | . 2 ⊢ (𝜑 → 𝑅 ∈ (𝑋𝐻𝑌)) | |
9 | fthi.s | . 2 ⊢ (𝜑 → 𝑆 ∈ (𝑋𝐻𝑌)) | |
10 | f1fveq 7301 | . 2 ⊢ (((𝑋𝐺𝑌):(𝑋𝐻𝑌)–1-1→((𝐹‘𝑋)𝐽(𝐹‘𝑌)) ∧ (𝑅 ∈ (𝑋𝐻𝑌) ∧ 𝑆 ∈ (𝑋𝐻𝑌))) → (((𝑋𝐺𝑌)‘𝑅) = ((𝑋𝐺𝑌)‘𝑆) ↔ 𝑅 = 𝑆)) | |
11 | 7, 8, 9, 10 | syl12anc 836 | 1 ⊢ (𝜑 → (((𝑋𝐺𝑌)‘𝑅) = ((𝑋𝐺𝑌)‘𝑆) ↔ 𝑅 = 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 class class class wbr 5166 –1-1→wf1 6572 ‘cfv 6575 (class class class)co 7450 Basecbs 17260 Hom chom 17324 Faith cfth 17972 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fv 6583 df-ov 7453 df-oprab 7454 df-mpo 7455 df-1st 8032 df-2nd 8033 df-map 8888 df-ixp 8958 df-func 17924 df-fth 17974 |
This theorem is referenced by: fthsect 17994 fthmon 17996 |
Copyright terms: Public domain | W3C validator |