![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fthi | Structured version Visualization version GIF version |
Description: The morphism map of a faithful functor is an injection. (Contributed by Mario Carneiro, 27-Jan-2017.) |
Ref | Expression |
---|---|
isfth.b | ⊢ 𝐵 = (Base‘𝐶) |
isfth.h | ⊢ 𝐻 = (Hom ‘𝐶) |
isfth.j | ⊢ 𝐽 = (Hom ‘𝐷) |
fthf1.f | ⊢ (𝜑 → 𝐹(𝐶 Faith 𝐷)𝐺) |
fthf1.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
fthf1.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
fthi.r | ⊢ (𝜑 → 𝑅 ∈ (𝑋𝐻𝑌)) |
fthi.s | ⊢ (𝜑 → 𝑆 ∈ (𝑋𝐻𝑌)) |
Ref | Expression |
---|---|
fthi | ⊢ (𝜑 → (((𝑋𝐺𝑌)‘𝑅) = ((𝑋𝐺𝑌)‘𝑆) ↔ 𝑅 = 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfth.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
2 | isfth.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
3 | isfth.j | . . 3 ⊢ 𝐽 = (Hom ‘𝐷) | |
4 | fthf1.f | . . 3 ⊢ (𝜑 → 𝐹(𝐶 Faith 𝐷)𝐺) | |
5 | fthf1.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
6 | fthf1.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
7 | 1, 2, 3, 4, 5, 6 | fthf1 17980 | . 2 ⊢ (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)–1-1→((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
8 | fthi.r | . 2 ⊢ (𝜑 → 𝑅 ∈ (𝑋𝐻𝑌)) | |
9 | fthi.s | . 2 ⊢ (𝜑 → 𝑆 ∈ (𝑋𝐻𝑌)) | |
10 | f1fveq 7289 | . 2 ⊢ (((𝑋𝐺𝑌):(𝑋𝐻𝑌)–1-1→((𝐹‘𝑋)𝐽(𝐹‘𝑌)) ∧ (𝑅 ∈ (𝑋𝐻𝑌) ∧ 𝑆 ∈ (𝑋𝐻𝑌))) → (((𝑋𝐺𝑌)‘𝑅) = ((𝑋𝐺𝑌)‘𝑆) ↔ 𝑅 = 𝑆)) | |
11 | 7, 8, 9, 10 | syl12anc 837 | 1 ⊢ (𝜑 → (((𝑋𝐺𝑌)‘𝑅) = ((𝑋𝐺𝑌)‘𝑆) ↔ 𝑅 = 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1539 ∈ wcel 2108 class class class wbr 5151 –1-1→wf1 6566 ‘cfv 6569 (class class class)co 7438 Basecbs 17254 Hom chom 17318 Faith cfth 17966 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fv 6577 df-ov 7441 df-oprab 7442 df-mpo 7443 df-1st 8022 df-2nd 8023 df-map 8876 df-ixp 8946 df-func 17918 df-fth 17968 |
This theorem is referenced by: fthsect 17988 fthmon 17990 |
Copyright terms: Public domain | W3C validator |