| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fthi | Structured version Visualization version GIF version | ||
| Description: The morphism map of a faithful functor is an injection. (Contributed by Mario Carneiro, 27-Jan-2017.) |
| Ref | Expression |
|---|---|
| isfth.b | ⊢ 𝐵 = (Base‘𝐶) |
| isfth.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| isfth.j | ⊢ 𝐽 = (Hom ‘𝐷) |
| fthf1.f | ⊢ (𝜑 → 𝐹(𝐶 Faith 𝐷)𝐺) |
| fthf1.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| fthf1.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| fthi.r | ⊢ (𝜑 → 𝑅 ∈ (𝑋𝐻𝑌)) |
| fthi.s | ⊢ (𝜑 → 𝑆 ∈ (𝑋𝐻𝑌)) |
| Ref | Expression |
|---|---|
| fthi | ⊢ (𝜑 → (((𝑋𝐺𝑌)‘𝑅) = ((𝑋𝐺𝑌)‘𝑆) ↔ 𝑅 = 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfth.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
| 2 | isfth.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 3 | isfth.j | . . 3 ⊢ 𝐽 = (Hom ‘𝐷) | |
| 4 | fthf1.f | . . 3 ⊢ (𝜑 → 𝐹(𝐶 Faith 𝐷)𝐺) | |
| 5 | fthf1.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 6 | fthf1.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 7 | 1, 2, 3, 4, 5, 6 | fthf1 17826 | . 2 ⊢ (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)–1-1→((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
| 8 | fthi.r | . 2 ⊢ (𝜑 → 𝑅 ∈ (𝑋𝐻𝑌)) | |
| 9 | fthi.s | . 2 ⊢ (𝜑 → 𝑆 ∈ (𝑋𝐻𝑌)) | |
| 10 | f1fveq 7196 | . 2 ⊢ (((𝑋𝐺𝑌):(𝑋𝐻𝑌)–1-1→((𝐹‘𝑋)𝐽(𝐹‘𝑌)) ∧ (𝑅 ∈ (𝑋𝐻𝑌) ∧ 𝑆 ∈ (𝑋𝐻𝑌))) → (((𝑋𝐺𝑌)‘𝑅) = ((𝑋𝐺𝑌)‘𝑆) ↔ 𝑅 = 𝑆)) | |
| 11 | 7, 8, 9, 10 | syl12anc 836 | 1 ⊢ (𝜑 → (((𝑋𝐺𝑌)‘𝑅) = ((𝑋𝐺𝑌)‘𝑆) ↔ 𝑅 = 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 class class class wbr 5089 –1-1→wf1 6478 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 Hom chom 17172 Faith cfth 17812 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-map 8752 df-ixp 8822 df-func 17765 df-fth 17814 |
| This theorem is referenced by: fthsect 17834 fthmon 17836 fthcomf 49257 |
| Copyright terms: Public domain | W3C validator |