Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fthi Structured version   Visualization version   GIF version

Theorem fthi 17247
 Description: The morphism map of a faithful functor is an injection. (Contributed by Mario Carneiro, 27-Jan-2017.)
Hypotheses
Ref Expression
isfth.b 𝐵 = (Base‘𝐶)
isfth.h 𝐻 = (Hom ‘𝐶)
isfth.j 𝐽 = (Hom ‘𝐷)
fthf1.f (𝜑𝐹(𝐶 Faith 𝐷)𝐺)
fthf1.x (𝜑𝑋𝐵)
fthf1.y (𝜑𝑌𝐵)
fthi.r (𝜑𝑅 ∈ (𝑋𝐻𝑌))
fthi.s (𝜑𝑆 ∈ (𝑋𝐻𝑌))
Assertion
Ref Expression
fthi (𝜑 → (((𝑋𝐺𝑌)‘𝑅) = ((𝑋𝐺𝑌)‘𝑆) ↔ 𝑅 = 𝑆))

Proof of Theorem fthi
StepHypRef Expression
1 isfth.b . . 3 𝐵 = (Base‘𝐶)
2 isfth.h . . 3 𝐻 = (Hom ‘𝐶)
3 isfth.j . . 3 𝐽 = (Hom ‘𝐷)
4 fthf1.f . . 3 (𝜑𝐹(𝐶 Faith 𝐷)𝐺)
5 fthf1.x . . 3 (𝜑𝑋𝐵)
6 fthf1.y . . 3 (𝜑𝑌𝐵)
71, 2, 3, 4, 5, 6fthf1 17246 . 2 (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)–1-1→((𝐹𝑋)𝐽(𝐹𝑌)))
8 fthi.r . 2 (𝜑𝑅 ∈ (𝑋𝐻𝑌))
9 fthi.s . 2 (𝜑𝑆 ∈ (𝑋𝐻𝑌))
10 f1fveq 7012 . 2 (((𝑋𝐺𝑌):(𝑋𝐻𝑌)–1-1→((𝐹𝑋)𝐽(𝐹𝑌)) ∧ (𝑅 ∈ (𝑋𝐻𝑌) ∧ 𝑆 ∈ (𝑋𝐻𝑌))) → (((𝑋𝐺𝑌)‘𝑅) = ((𝑋𝐺𝑌)‘𝑆) ↔ 𝑅 = 𝑆))
117, 8, 9, 10syl12anc 835 1 (𝜑 → (((𝑋𝐺𝑌)‘𝑅) = ((𝑋𝐺𝑌)‘𝑆) ↔ 𝑅 = 𝑆))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   = wceq 1538   ∈ wcel 2111   class class class wbr 5032  –1-1→wf1 6332  ‘cfv 6335  (class class class)co 7150  Basecbs 16541  Hom chom 16634   Faith cfth 17232 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-op 4529  df-uni 4799  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-id 5430  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-ov 7153  df-oprab 7154  df-mpo 7155  df-1st 7693  df-2nd 7694  df-map 8418  df-ixp 8480  df-func 17187  df-fth 17234 This theorem is referenced by:  fthsect  17254  fthmon  17256
 Copyright terms: Public domain W3C validator