MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fthi Structured version   Visualization version   GIF version

Theorem fthi 17901
Description: The morphism map of a faithful functor is an injection. (Contributed by Mario Carneiro, 27-Jan-2017.)
Hypotheses
Ref Expression
isfth.b 𝐵 = (Base‘𝐶)
isfth.h 𝐻 = (Hom ‘𝐶)
isfth.j 𝐽 = (Hom ‘𝐷)
fthf1.f (𝜑𝐹(𝐶 Faith 𝐷)𝐺)
fthf1.x (𝜑𝑋𝐵)
fthf1.y (𝜑𝑌𝐵)
fthi.r (𝜑𝑅 ∈ (𝑋𝐻𝑌))
fthi.s (𝜑𝑆 ∈ (𝑋𝐻𝑌))
Assertion
Ref Expression
fthi (𝜑 → (((𝑋𝐺𝑌)‘𝑅) = ((𝑋𝐺𝑌)‘𝑆) ↔ 𝑅 = 𝑆))

Proof of Theorem fthi
StepHypRef Expression
1 isfth.b . . 3 𝐵 = (Base‘𝐶)
2 isfth.h . . 3 𝐻 = (Hom ‘𝐶)
3 isfth.j . . 3 𝐽 = (Hom ‘𝐷)
4 fthf1.f . . 3 (𝜑𝐹(𝐶 Faith 𝐷)𝐺)
5 fthf1.x . . 3 (𝜑𝑋𝐵)
6 fthf1.y . . 3 (𝜑𝑌𝐵)
71, 2, 3, 4, 5, 6fthf1 17900 . 2 (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)–1-1→((𝐹𝑋)𝐽(𝐹𝑌)))
8 fthi.r . 2 (𝜑𝑅 ∈ (𝑋𝐻𝑌))
9 fthi.s . 2 (𝜑𝑆 ∈ (𝑋𝐻𝑌))
10 f1fveq 7267 . 2 (((𝑋𝐺𝑌):(𝑋𝐻𝑌)–1-1→((𝐹𝑋)𝐽(𝐹𝑌)) ∧ (𝑅 ∈ (𝑋𝐻𝑌) ∧ 𝑆 ∈ (𝑋𝐻𝑌))) → (((𝑋𝐺𝑌)‘𝑅) = ((𝑋𝐺𝑌)‘𝑆) ↔ 𝑅 = 𝑆))
117, 8, 9, 10syl12anc 836 1 (𝜑 → (((𝑋𝐺𝑌)‘𝑅) = ((𝑋𝐺𝑌)‘𝑆) ↔ 𝑅 = 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1534  wcel 2099   class class class wbr 5143  1-1wf1 6540  cfv 6543  (class class class)co 7415  Basecbs 17174  Hom chom 17238   Faith cfth 17886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5360  ax-pr 5424  ax-un 7735
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-iun 4994  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5571  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fv 6551  df-ov 7418  df-oprab 7419  df-mpo 7420  df-1st 7988  df-2nd 7989  df-map 8841  df-ixp 8911  df-func 17838  df-fth 17888
This theorem is referenced by:  fthsect  17908  fthmon  17910
  Copyright terms: Public domain W3C validator