| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fthi | Structured version Visualization version GIF version | ||
| Description: The morphism map of a faithful functor is an injection. (Contributed by Mario Carneiro, 27-Jan-2017.) |
| Ref | Expression |
|---|---|
| isfth.b | ⊢ 𝐵 = (Base‘𝐶) |
| isfth.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| isfth.j | ⊢ 𝐽 = (Hom ‘𝐷) |
| fthf1.f | ⊢ (𝜑 → 𝐹(𝐶 Faith 𝐷)𝐺) |
| fthf1.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| fthf1.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| fthi.r | ⊢ (𝜑 → 𝑅 ∈ (𝑋𝐻𝑌)) |
| fthi.s | ⊢ (𝜑 → 𝑆 ∈ (𝑋𝐻𝑌)) |
| Ref | Expression |
|---|---|
| fthi | ⊢ (𝜑 → (((𝑋𝐺𝑌)‘𝑅) = ((𝑋𝐺𝑌)‘𝑆) ↔ 𝑅 = 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfth.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
| 2 | isfth.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 3 | isfth.j | . . 3 ⊢ 𝐽 = (Hom ‘𝐷) | |
| 4 | fthf1.f | . . 3 ⊢ (𝜑 → 𝐹(𝐶 Faith 𝐷)𝐺) | |
| 5 | fthf1.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 6 | fthf1.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 7 | 1, 2, 3, 4, 5, 6 | fthf1 17887 | . 2 ⊢ (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)–1-1→((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
| 8 | fthi.r | . 2 ⊢ (𝜑 → 𝑅 ∈ (𝑋𝐻𝑌)) | |
| 9 | fthi.s | . 2 ⊢ (𝜑 → 𝑆 ∈ (𝑋𝐻𝑌)) | |
| 10 | f1fveq 7239 | . 2 ⊢ (((𝑋𝐺𝑌):(𝑋𝐻𝑌)–1-1→((𝐹‘𝑋)𝐽(𝐹‘𝑌)) ∧ (𝑅 ∈ (𝑋𝐻𝑌) ∧ 𝑆 ∈ (𝑋𝐻𝑌))) → (((𝑋𝐺𝑌)‘𝑅) = ((𝑋𝐺𝑌)‘𝑆) ↔ 𝑅 = 𝑆)) | |
| 11 | 7, 8, 9, 10 | syl12anc 836 | 1 ⊢ (𝜑 → (((𝑋𝐺𝑌)‘𝑅) = ((𝑋𝐺𝑌)‘𝑆) ↔ 𝑅 = 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 class class class wbr 5109 –1-1→wf1 6510 ‘cfv 6513 (class class class)co 7389 Basecbs 17185 Hom chom 17237 Faith cfth 17873 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fv 6521 df-ov 7392 df-oprab 7393 df-mpo 7394 df-1st 7970 df-2nd 7971 df-map 8803 df-ixp 8873 df-func 17826 df-fth 17875 |
| This theorem is referenced by: fthsect 17895 fthmon 17897 fthcomf 49136 |
| Copyright terms: Public domain | W3C validator |