Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fuco112xa Structured version   Visualization version   GIF version

Theorem fuco112xa 48988
Description: The object part of the functor composition bifunctor maps two functors to their composition, expressed explicitly for the morphism part of the composed functor. A morphism is mapped by two functors in succession. (Contributed by Zhi Wang, 3-Oct-2025.)
Hypotheses
Ref Expression
fuco11.o (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
fuco11.f (𝜑𝐹(𝐶 Func 𝐷)𝐺)
fuco11.k (𝜑𝐾(𝐷 Func 𝐸)𝐿)
fuco11.u (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)
fuco111x.x (𝜑𝑋 ∈ (Base‘𝐶))
fuco112x.y (𝜑𝑌 ∈ (Base‘𝐶))
fuco112xa.a (𝜑𝐴 ∈ (𝑋(Hom ‘𝐶)𝑌))
Assertion
Ref Expression
fuco112xa (𝜑 → ((𝑋(2nd ‘(𝑂𝑈))𝑌)‘𝐴) = (((𝐹𝑋)𝐿(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝐴)))

Proof of Theorem fuco112xa
StepHypRef Expression
1 fuco11.o . . . 4 (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
2 fuco11.f . . . 4 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
3 fuco11.k . . . 4 (𝜑𝐾(𝐷 Func 𝐸)𝐿)
4 fuco11.u . . . 4 (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)
5 fuco111x.x . . . 4 (𝜑𝑋 ∈ (Base‘𝐶))
6 fuco112x.y . . . 4 (𝜑𝑌 ∈ (Base‘𝐶))
71, 2, 3, 4, 5, 6fuco112x 48987 . . 3 (𝜑 → (𝑋(2nd ‘(𝑂𝑈))𝑌) = (((𝐹𝑋)𝐿(𝐹𝑌)) ∘ (𝑋𝐺𝑌)))
87fveq1d 6889 . 2 (𝜑 → ((𝑋(2nd ‘(𝑂𝑈))𝑌)‘𝐴) = ((((𝐹𝑋)𝐿(𝐹𝑌)) ∘ (𝑋𝐺𝑌))‘𝐴))
9 eqid 2734 . . . 4 (Base‘𝐶) = (Base‘𝐶)
10 eqid 2734 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
11 eqid 2734 . . . 4 (Hom ‘𝐷) = (Hom ‘𝐷)
129, 10, 11, 2, 5, 6funcf2 17885 . . 3 (𝜑 → (𝑋𝐺𝑌):(𝑋(Hom ‘𝐶)𝑌)⟶((𝐹𝑋)(Hom ‘𝐷)(𝐹𝑌)))
13 fuco112xa.a . . 3 (𝜑𝐴 ∈ (𝑋(Hom ‘𝐶)𝑌))
1412, 13fvco3d 6990 . 2 (𝜑 → ((((𝐹𝑋)𝐿(𝐹𝑌)) ∘ (𝑋𝐺𝑌))‘𝐴) = (((𝐹𝑋)𝐿(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝐴)))
158, 14eqtrd 2769 1 (𝜑 → ((𝑋(2nd ‘(𝑂𝑈))𝑌)‘𝐴) = (((𝐹𝑋)𝐿(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  cop 4614   class class class wbr 5125  ccom 5671  cfv 6542  (class class class)co 7414  2nd c2nd 7996  Basecbs 17230  Hom chom 17285   Func cfunc 17871  F cfuco 48971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-id 5560  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-1st 7997  df-2nd 7998  df-map 8851  df-ixp 8921  df-func 17875  df-cofu 17877  df-fuco 48972
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator