Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fuco112xa Structured version   Visualization version   GIF version

Theorem fuco112xa 49458
Description: The object part of the functor composition bifunctor maps two functors to their composition, expressed explicitly for the morphism part of the composed functor. A morphism is mapped by two functors in succession. (Contributed by Zhi Wang, 3-Oct-2025.)
Hypotheses
Ref Expression
fuco11.o (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
fuco11.f (𝜑𝐹(𝐶 Func 𝐷)𝐺)
fuco11.k (𝜑𝐾(𝐷 Func 𝐸)𝐿)
fuco11.u (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)
fuco111x.x (𝜑𝑋 ∈ (Base‘𝐶))
fuco112x.y (𝜑𝑌 ∈ (Base‘𝐶))
fuco112xa.a (𝜑𝐴 ∈ (𝑋(Hom ‘𝐶)𝑌))
Assertion
Ref Expression
fuco112xa (𝜑 → ((𝑋(2nd ‘(𝑂𝑈))𝑌)‘𝐴) = (((𝐹𝑋)𝐿(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝐴)))

Proof of Theorem fuco112xa
StepHypRef Expression
1 fuco11.o . . . 4 (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
2 fuco11.f . . . 4 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
3 fuco11.k . . . 4 (𝜑𝐾(𝐷 Func 𝐸)𝐿)
4 fuco11.u . . . 4 (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)
5 fuco111x.x . . . 4 (𝜑𝑋 ∈ (Base‘𝐶))
6 fuco112x.y . . . 4 (𝜑𝑌 ∈ (Base‘𝐶))
71, 2, 3, 4, 5, 6fuco112x 49457 . . 3 (𝜑 → (𝑋(2nd ‘(𝑂𝑈))𝑌) = (((𝐹𝑋)𝐿(𝐹𝑌)) ∘ (𝑋𝐺𝑌)))
87fveq1d 6830 . 2 (𝜑 → ((𝑋(2nd ‘(𝑂𝑈))𝑌)‘𝐴) = ((((𝐹𝑋)𝐿(𝐹𝑌)) ∘ (𝑋𝐺𝑌))‘𝐴))
9 eqid 2733 . . . 4 (Base‘𝐶) = (Base‘𝐶)
10 eqid 2733 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
11 eqid 2733 . . . 4 (Hom ‘𝐷) = (Hom ‘𝐷)
129, 10, 11, 2, 5, 6funcf2 17777 . . 3 (𝜑 → (𝑋𝐺𝑌):(𝑋(Hom ‘𝐶)𝑌)⟶((𝐹𝑋)(Hom ‘𝐷)(𝐹𝑌)))
13 fuco112xa.a . . 3 (𝜑𝐴 ∈ (𝑋(Hom ‘𝐶)𝑌))
1412, 13fvco3d 6928 . 2 (𝜑 → ((((𝐹𝑋)𝐿(𝐹𝑌)) ∘ (𝑋𝐺𝑌))‘𝐴) = (((𝐹𝑋)𝐿(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝐴)))
158, 14eqtrd 2768 1 (𝜑 → ((𝑋(2nd ‘(𝑂𝑈))𝑌)‘𝐴) = (((𝐹𝑋)𝐿(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  cop 4581   class class class wbr 5093  ccom 5623  cfv 6486  (class class class)co 7352  2nd c2nd 7926  Basecbs 17122  Hom chom 17174   Func cfunc 17763  F cfuco 49441
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-map 8758  df-ixp 8828  df-func 17767  df-cofu 17769  df-fuco 49442
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator