| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fuco112xa | Structured version Visualization version GIF version | ||
| Description: The object part of the functor composition bifunctor maps two functors to their composition, expressed explicitly for the morphism part of the composed functor. A morphism is mapped by two functors in succession. (Contributed by Zhi Wang, 3-Oct-2025.) |
| Ref | Expression |
|---|---|
| fuco11.o | ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) |
| fuco11.f | ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) |
| fuco11.k | ⊢ (𝜑 → 𝐾(𝐷 Func 𝐸)𝐿) |
| fuco11.u | ⊢ (𝜑 → 𝑈 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) |
| fuco111x.x | ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) |
| fuco112x.y | ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐶)) |
| fuco112xa.a | ⊢ (𝜑 → 𝐴 ∈ (𝑋(Hom ‘𝐶)𝑌)) |
| Ref | Expression |
|---|---|
| fuco112xa | ⊢ (𝜑 → ((𝑋(2nd ‘(𝑂‘𝑈))𝑌)‘𝐴) = (((𝐹‘𝑋)𝐿(𝐹‘𝑌))‘((𝑋𝐺𝑌)‘𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fuco11.o | . . . 4 ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) | |
| 2 | fuco11.f | . . . 4 ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) | |
| 3 | fuco11.k | . . . 4 ⊢ (𝜑 → 𝐾(𝐷 Func 𝐸)𝐿) | |
| 4 | fuco11.u | . . . 4 ⊢ (𝜑 → 𝑈 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) | |
| 5 | fuco111x.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) | |
| 6 | fuco112x.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐶)) | |
| 7 | 1, 2, 3, 4, 5, 6 | fuco112x 49227 | . . 3 ⊢ (𝜑 → (𝑋(2nd ‘(𝑂‘𝑈))𝑌) = (((𝐹‘𝑋)𝐿(𝐹‘𝑌)) ∘ (𝑋𝐺𝑌))) |
| 8 | 7 | fveq1d 6867 | . 2 ⊢ (𝜑 → ((𝑋(2nd ‘(𝑂‘𝑈))𝑌)‘𝐴) = ((((𝐹‘𝑋)𝐿(𝐹‘𝑌)) ∘ (𝑋𝐺𝑌))‘𝐴)) |
| 9 | eqid 2730 | . . . 4 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 10 | eqid 2730 | . . . 4 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 11 | eqid 2730 | . . . 4 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
| 12 | 9, 10, 11, 2, 5, 6 | funcf2 17836 | . . 3 ⊢ (𝜑 → (𝑋𝐺𝑌):(𝑋(Hom ‘𝐶)𝑌)⟶((𝐹‘𝑋)(Hom ‘𝐷)(𝐹‘𝑌))) |
| 13 | fuco112xa.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ (𝑋(Hom ‘𝐶)𝑌)) | |
| 14 | 12, 13 | fvco3d 6968 | . 2 ⊢ (𝜑 → ((((𝐹‘𝑋)𝐿(𝐹‘𝑌)) ∘ (𝑋𝐺𝑌))‘𝐴) = (((𝐹‘𝑋)𝐿(𝐹‘𝑌))‘((𝑋𝐺𝑌)‘𝐴))) |
| 15 | 8, 14 | eqtrd 2765 | 1 ⊢ (𝜑 → ((𝑋(2nd ‘(𝑂‘𝑈))𝑌)‘𝐴) = (((𝐹‘𝑋)𝐿(𝐹‘𝑌))‘((𝑋𝐺𝑌)‘𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 〈cop 4603 class class class wbr 5115 ∘ ccom 5650 ‘cfv 6519 (class class class)co 7394 2nd c2nd 7976 Basecbs 17185 Hom chom 17237 Func cfunc 17822 ∘F cfuco 49211 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-id 5541 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-ov 7397 df-oprab 7398 df-mpo 7399 df-1st 7977 df-2nd 7978 df-map 8805 df-ixp 8875 df-func 17826 df-cofu 17828 df-fuco 49212 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |