Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fuco112xa Structured version   Visualization version   GIF version

Theorem fuco112xa 49228
Description: The object part of the functor composition bifunctor maps two functors to their composition, expressed explicitly for the morphism part of the composed functor. A morphism is mapped by two functors in succession. (Contributed by Zhi Wang, 3-Oct-2025.)
Hypotheses
Ref Expression
fuco11.o (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
fuco11.f (𝜑𝐹(𝐶 Func 𝐷)𝐺)
fuco11.k (𝜑𝐾(𝐷 Func 𝐸)𝐿)
fuco11.u (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)
fuco111x.x (𝜑𝑋 ∈ (Base‘𝐶))
fuco112x.y (𝜑𝑌 ∈ (Base‘𝐶))
fuco112xa.a (𝜑𝐴 ∈ (𝑋(Hom ‘𝐶)𝑌))
Assertion
Ref Expression
fuco112xa (𝜑 → ((𝑋(2nd ‘(𝑂𝑈))𝑌)‘𝐴) = (((𝐹𝑋)𝐿(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝐴)))

Proof of Theorem fuco112xa
StepHypRef Expression
1 fuco11.o . . . 4 (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
2 fuco11.f . . . 4 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
3 fuco11.k . . . 4 (𝜑𝐾(𝐷 Func 𝐸)𝐿)
4 fuco11.u . . . 4 (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)
5 fuco111x.x . . . 4 (𝜑𝑋 ∈ (Base‘𝐶))
6 fuco112x.y . . . 4 (𝜑𝑌 ∈ (Base‘𝐶))
71, 2, 3, 4, 5, 6fuco112x 49227 . . 3 (𝜑 → (𝑋(2nd ‘(𝑂𝑈))𝑌) = (((𝐹𝑋)𝐿(𝐹𝑌)) ∘ (𝑋𝐺𝑌)))
87fveq1d 6867 . 2 (𝜑 → ((𝑋(2nd ‘(𝑂𝑈))𝑌)‘𝐴) = ((((𝐹𝑋)𝐿(𝐹𝑌)) ∘ (𝑋𝐺𝑌))‘𝐴))
9 eqid 2730 . . . 4 (Base‘𝐶) = (Base‘𝐶)
10 eqid 2730 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
11 eqid 2730 . . . 4 (Hom ‘𝐷) = (Hom ‘𝐷)
129, 10, 11, 2, 5, 6funcf2 17836 . . 3 (𝜑 → (𝑋𝐺𝑌):(𝑋(Hom ‘𝐶)𝑌)⟶((𝐹𝑋)(Hom ‘𝐷)(𝐹𝑌)))
13 fuco112xa.a . . 3 (𝜑𝐴 ∈ (𝑋(Hom ‘𝐶)𝑌))
1412, 13fvco3d 6968 . 2 (𝜑 → ((((𝐹𝑋)𝐿(𝐹𝑌)) ∘ (𝑋𝐺𝑌))‘𝐴) = (((𝐹𝑋)𝐿(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝐴)))
158, 14eqtrd 2765 1 (𝜑 → ((𝑋(2nd ‘(𝑂𝑈))𝑌)‘𝐴) = (((𝐹𝑋)𝐿(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cop 4603   class class class wbr 5115  ccom 5650  cfv 6519  (class class class)co 7394  2nd c2nd 7976  Basecbs 17185  Hom chom 17237   Func cfunc 17822  F cfuco 49211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-id 5541  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-ov 7397  df-oprab 7398  df-mpo 7399  df-1st 7977  df-2nd 7978  df-map 8805  df-ixp 8875  df-func 17826  df-cofu 17828  df-fuco 49212
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator