Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fuco112x Structured version   Visualization version   GIF version

Theorem fuco112x 49227
Description: The object part of the functor composition bifunctor maps two functors to their composition, expressed explicitly for the morphism part of the composed functor. (Contributed by Zhi Wang, 3-Oct-2025.)
Hypotheses
Ref Expression
fuco11.o (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
fuco11.f (𝜑𝐹(𝐶 Func 𝐷)𝐺)
fuco11.k (𝜑𝐾(𝐷 Func 𝐸)𝐿)
fuco11.u (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)
fuco111x.x (𝜑𝑋 ∈ (Base‘𝐶))
fuco112x.y (𝜑𝑌 ∈ (Base‘𝐶))
Assertion
Ref Expression
fuco112x (𝜑 → (𝑋(2nd ‘(𝑂𝑈))𝑌) = (((𝐹𝑋)𝐿(𝐹𝑌)) ∘ (𝑋𝐺𝑌)))

Proof of Theorem fuco112x
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fuco11.o . . 3 (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
2 fuco11.f . . 3 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
3 fuco11.k . . 3 (𝜑𝐾(𝐷 Func 𝐸)𝐿)
4 fuco11.u . . 3 (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)
5 eqid 2730 . . 3 (Base‘𝐶) = (Base‘𝐶)
61, 2, 3, 4, 5fuco112 49224 . 2 (𝜑 → (2nd ‘(𝑂𝑈)) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (((𝐹𝑥)𝐿(𝐹𝑦)) ∘ (𝑥𝐺𝑦))))
7 simprl 770 . . . . 5 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → 𝑥 = 𝑋)
87fveq2d 6869 . . . 4 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝐹𝑥) = (𝐹𝑋))
9 simprr 772 . . . . 5 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → 𝑦 = 𝑌)
109fveq2d 6869 . . . 4 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝐹𝑦) = (𝐹𝑌))
118, 10oveq12d 7412 . . 3 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → ((𝐹𝑥)𝐿(𝐹𝑦)) = ((𝐹𝑋)𝐿(𝐹𝑌)))
127, 9oveq12d 7412 . . 3 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝑥𝐺𝑦) = (𝑋𝐺𝑌))
1311, 12coeq12d 5836 . 2 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (((𝐹𝑥)𝐿(𝐹𝑦)) ∘ (𝑥𝐺𝑦)) = (((𝐹𝑋)𝐿(𝐹𝑌)) ∘ (𝑋𝐺𝑌)))
14 fuco111x.x . 2 (𝜑𝑋 ∈ (Base‘𝐶))
15 fuco112x.y . 2 (𝜑𝑌 ∈ (Base‘𝐶))
16 ovexd 7429 . . 3 (𝜑 → ((𝐹𝑋)𝐿(𝐹𝑌)) ∈ V)
17 ovexd 7429 . . 3 (𝜑 → (𝑋𝐺𝑌) ∈ V)
1816, 17coexd 7916 . 2 (𝜑 → (((𝐹𝑋)𝐿(𝐹𝑌)) ∘ (𝑋𝐺𝑌)) ∈ V)
196, 13, 14, 15, 18ovmpod 7548 1 (𝜑 → (𝑋(2nd ‘(𝑂𝑈))𝑌) = (((𝐹𝑋)𝐿(𝐹𝑌)) ∘ (𝑋𝐺𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3455  cop 4603   class class class wbr 5115  ccom 5650  cfv 6519  (class class class)co 7394  2nd c2nd 7976  Basecbs 17185   Func cfunc 17822  F cfuco 49211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-id 5541  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-ov 7397  df-oprab 7398  df-mpo 7399  df-1st 7977  df-2nd 7978  df-map 8805  df-ixp 8875  df-func 17826  df-cofu 17828  df-fuco 49212
This theorem is referenced by:  fuco112xa  49228
  Copyright terms: Public domain W3C validator