| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fuco112x | Structured version Visualization version GIF version | ||
| Description: The object part of the functor composition bifunctor maps two functors to their composition, expressed explicitly for the morphism part of the composed functor. (Contributed by Zhi Wang, 3-Oct-2025.) |
| Ref | Expression |
|---|---|
| fuco11.o | ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) |
| fuco11.f | ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) |
| fuco11.k | ⊢ (𝜑 → 𝐾(𝐷 Func 𝐸)𝐿) |
| fuco11.u | ⊢ (𝜑 → 𝑈 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) |
| fuco111x.x | ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) |
| fuco112x.y | ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐶)) |
| Ref | Expression |
|---|---|
| fuco112x | ⊢ (𝜑 → (𝑋(2nd ‘(𝑂‘𝑈))𝑌) = (((𝐹‘𝑋)𝐿(𝐹‘𝑌)) ∘ (𝑋𝐺𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fuco11.o | . . 3 ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) | |
| 2 | fuco11.f | . . 3 ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) | |
| 3 | fuco11.k | . . 3 ⊢ (𝜑 → 𝐾(𝐷 Func 𝐸)𝐿) | |
| 4 | fuco11.u | . . 3 ⊢ (𝜑 → 𝑈 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) | |
| 5 | eqid 2733 | . . 3 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 6 | 1, 2, 3, 4, 5 | fuco112 49454 | . 2 ⊢ (𝜑 → (2nd ‘(𝑂‘𝑈)) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (((𝐹‘𝑥)𝐿(𝐹‘𝑦)) ∘ (𝑥𝐺𝑦)))) |
| 7 | simprl 770 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → 𝑥 = 𝑋) | |
| 8 | 7 | fveq2d 6832 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (𝐹‘𝑥) = (𝐹‘𝑋)) |
| 9 | simprr 772 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → 𝑦 = 𝑌) | |
| 10 | 9 | fveq2d 6832 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (𝐹‘𝑦) = (𝐹‘𝑌)) |
| 11 | 8, 10 | oveq12d 7370 | . . 3 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → ((𝐹‘𝑥)𝐿(𝐹‘𝑦)) = ((𝐹‘𝑋)𝐿(𝐹‘𝑌))) |
| 12 | 7, 9 | oveq12d 7370 | . . 3 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (𝑥𝐺𝑦) = (𝑋𝐺𝑌)) |
| 13 | 11, 12 | coeq12d 5808 | . 2 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (((𝐹‘𝑥)𝐿(𝐹‘𝑦)) ∘ (𝑥𝐺𝑦)) = (((𝐹‘𝑋)𝐿(𝐹‘𝑌)) ∘ (𝑋𝐺𝑌))) |
| 14 | fuco111x.x | . 2 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) | |
| 15 | fuco112x.y | . 2 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐶)) | |
| 16 | ovexd 7387 | . . 3 ⊢ (𝜑 → ((𝐹‘𝑋)𝐿(𝐹‘𝑌)) ∈ V) | |
| 17 | ovexd 7387 | . . 3 ⊢ (𝜑 → (𝑋𝐺𝑌) ∈ V) | |
| 18 | 16, 17 | coexd 7867 | . 2 ⊢ (𝜑 → (((𝐹‘𝑋)𝐿(𝐹‘𝑌)) ∘ (𝑋𝐺𝑌)) ∈ V) |
| 19 | 6, 13, 14, 15, 18 | ovmpod 7504 | 1 ⊢ (𝜑 → (𝑋(2nd ‘(𝑂‘𝑈))𝑌) = (((𝐹‘𝑋)𝐿(𝐹‘𝑌)) ∘ (𝑋𝐺𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 Vcvv 3437 〈cop 4581 class class class wbr 5093 ∘ ccom 5623 ‘cfv 6486 (class class class)co 7352 2nd c2nd 7926 Basecbs 17122 Func cfunc 17763 ∘F cfuco 49441 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-map 8758 df-ixp 8828 df-func 17767 df-cofu 17769 df-fuco 49442 |
| This theorem is referenced by: fuco112xa 49458 |
| Copyright terms: Public domain | W3C validator |