Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fuco112x Structured version   Visualization version   GIF version

Theorem fuco112x 48987
Description: The object part of the functor composition bifunctor maps two functors to their composition, expressed explicitly for the morphism part of the composed functor. (Contributed by Zhi Wang, 3-Oct-2025.)
Hypotheses
Ref Expression
fuco11.o (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
fuco11.f (𝜑𝐹(𝐶 Func 𝐷)𝐺)
fuco11.k (𝜑𝐾(𝐷 Func 𝐸)𝐿)
fuco11.u (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)
fuco111x.x (𝜑𝑋 ∈ (Base‘𝐶))
fuco112x.y (𝜑𝑌 ∈ (Base‘𝐶))
Assertion
Ref Expression
fuco112x (𝜑 → (𝑋(2nd ‘(𝑂𝑈))𝑌) = (((𝐹𝑋)𝐿(𝐹𝑌)) ∘ (𝑋𝐺𝑌)))

Proof of Theorem fuco112x
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fuco11.o . . 3 (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
2 fuco11.f . . 3 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
3 fuco11.k . . 3 (𝜑𝐾(𝐷 Func 𝐸)𝐿)
4 fuco11.u . . 3 (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)
5 eqid 2734 . . 3 (Base‘𝐶) = (Base‘𝐶)
61, 2, 3, 4, 5fuco112 48984 . 2 (𝜑 → (2nd ‘(𝑂𝑈)) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (((𝐹𝑥)𝐿(𝐹𝑦)) ∘ (𝑥𝐺𝑦))))
7 simprl 770 . . . . 5 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → 𝑥 = 𝑋)
87fveq2d 6891 . . . 4 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝐹𝑥) = (𝐹𝑋))
9 simprr 772 . . . . 5 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → 𝑦 = 𝑌)
109fveq2d 6891 . . . 4 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝐹𝑦) = (𝐹𝑌))
118, 10oveq12d 7432 . . 3 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → ((𝐹𝑥)𝐿(𝐹𝑦)) = ((𝐹𝑋)𝐿(𝐹𝑌)))
127, 9oveq12d 7432 . . 3 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝑥𝐺𝑦) = (𝑋𝐺𝑌))
1311, 12coeq12d 5857 . 2 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (((𝐹𝑥)𝐿(𝐹𝑦)) ∘ (𝑥𝐺𝑦)) = (((𝐹𝑋)𝐿(𝐹𝑌)) ∘ (𝑋𝐺𝑌)))
14 fuco111x.x . 2 (𝜑𝑋 ∈ (Base‘𝐶))
15 fuco112x.y . 2 (𝜑𝑌 ∈ (Base‘𝐶))
16 ovexd 7449 . . 3 (𝜑 → ((𝐹𝑋)𝐿(𝐹𝑌)) ∈ V)
17 ovexd 7449 . . 3 (𝜑 → (𝑋𝐺𝑌) ∈ V)
1816, 17coexd 7936 . 2 (𝜑 → (((𝐹𝑋)𝐿(𝐹𝑌)) ∘ (𝑋𝐺𝑌)) ∈ V)
196, 13, 14, 15, 18ovmpod 7568 1 (𝜑 → (𝑋(2nd ‘(𝑂𝑈))𝑌) = (((𝐹𝑋)𝐿(𝐹𝑌)) ∘ (𝑋𝐺𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  Vcvv 3464  cop 4614   class class class wbr 5125  ccom 5671  cfv 6542  (class class class)co 7414  2nd c2nd 7996  Basecbs 17230   Func cfunc 17871  F cfuco 48971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-id 5560  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-1st 7997  df-2nd 7998  df-map 8851  df-ixp 8921  df-func 17875  df-cofu 17877  df-fuco 48972
This theorem is referenced by:  fuco112xa  48988
  Copyright terms: Public domain W3C validator