Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fuco112x Structured version   Visualization version   GIF version

Theorem fuco112x 49363
Description: The object part of the functor composition bifunctor maps two functors to their composition, expressed explicitly for the morphism part of the composed functor. (Contributed by Zhi Wang, 3-Oct-2025.)
Hypotheses
Ref Expression
fuco11.o (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
fuco11.f (𝜑𝐹(𝐶 Func 𝐷)𝐺)
fuco11.k (𝜑𝐾(𝐷 Func 𝐸)𝐿)
fuco11.u (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)
fuco111x.x (𝜑𝑋 ∈ (Base‘𝐶))
fuco112x.y (𝜑𝑌 ∈ (Base‘𝐶))
Assertion
Ref Expression
fuco112x (𝜑 → (𝑋(2nd ‘(𝑂𝑈))𝑌) = (((𝐹𝑋)𝐿(𝐹𝑌)) ∘ (𝑋𝐺𝑌)))

Proof of Theorem fuco112x
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fuco11.o . . 3 (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
2 fuco11.f . . 3 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
3 fuco11.k . . 3 (𝜑𝐾(𝐷 Func 𝐸)𝐿)
4 fuco11.u . . 3 (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)
5 eqid 2731 . . 3 (Base‘𝐶) = (Base‘𝐶)
61, 2, 3, 4, 5fuco112 49360 . 2 (𝜑 → (2nd ‘(𝑂𝑈)) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (((𝐹𝑥)𝐿(𝐹𝑦)) ∘ (𝑥𝐺𝑦))))
7 simprl 770 . . . . 5 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → 𝑥 = 𝑋)
87fveq2d 6826 . . . 4 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝐹𝑥) = (𝐹𝑋))
9 simprr 772 . . . . 5 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → 𝑦 = 𝑌)
109fveq2d 6826 . . . 4 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝐹𝑦) = (𝐹𝑌))
118, 10oveq12d 7364 . . 3 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → ((𝐹𝑥)𝐿(𝐹𝑦)) = ((𝐹𝑋)𝐿(𝐹𝑌)))
127, 9oveq12d 7364 . . 3 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝑥𝐺𝑦) = (𝑋𝐺𝑌))
1311, 12coeq12d 5804 . 2 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (((𝐹𝑥)𝐿(𝐹𝑦)) ∘ (𝑥𝐺𝑦)) = (((𝐹𝑋)𝐿(𝐹𝑌)) ∘ (𝑋𝐺𝑌)))
14 fuco111x.x . 2 (𝜑𝑋 ∈ (Base‘𝐶))
15 fuco112x.y . 2 (𝜑𝑌 ∈ (Base‘𝐶))
16 ovexd 7381 . . 3 (𝜑 → ((𝐹𝑋)𝐿(𝐹𝑌)) ∈ V)
17 ovexd 7381 . . 3 (𝜑 → (𝑋𝐺𝑌) ∈ V)
1816, 17coexd 7861 . 2 (𝜑 → (((𝐹𝑋)𝐿(𝐹𝑌)) ∘ (𝑋𝐺𝑌)) ∈ V)
196, 13, 14, 15, 18ovmpod 7498 1 (𝜑 → (𝑋(2nd ‘(𝑂𝑈))𝑌) = (((𝐹𝑋)𝐿(𝐹𝑌)) ∘ (𝑋𝐺𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  cop 4582   class class class wbr 5091  ccom 5620  cfv 6481  (class class class)co 7346  2nd c2nd 7920  Basecbs 17117   Func cfunc 17758  F cfuco 49347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-map 8752  df-ixp 8822  df-func 17762  df-cofu 17764  df-fuco 49348
This theorem is referenced by:  fuco112xa  49364
  Copyright terms: Public domain W3C validator