MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gacan Structured version   Visualization version   GIF version

Theorem gacan 19255
Description: Group inverses cancel in a group action. (Contributed by Jeff Hankins, 11-Aug-2009.) (Revised by Mario Carneiro, 13-Jan-2015.)
Hypotheses
Ref Expression
galcan.1 𝑋 = (Base‘𝐺)
gacan.2 𝑁 = (invg𝐺)
Assertion
Ref Expression
gacan (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ((𝐴 𝐵) = 𝐶 ↔ ((𝑁𝐴) 𝐶) = 𝐵))

Proof of Theorem gacan
StepHypRef Expression
1 gagrp 19242 . . . . . . . 8 ( ∈ (𝐺 GrpAct 𝑌) → 𝐺 ∈ Grp)
21adantr 480 . . . . . . 7 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → 𝐺 ∈ Grp)
3 simpr1 1192 . . . . . . 7 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → 𝐴𝑋)
4 galcan.1 . . . . . . . 8 𝑋 = (Base‘𝐺)
5 eqid 2728 . . . . . . . 8 (+g𝐺) = (+g𝐺)
6 eqid 2728 . . . . . . . 8 (0g𝐺) = (0g𝐺)
7 gacan.2 . . . . . . . 8 𝑁 = (invg𝐺)
84, 5, 6, 7grprinv 18946 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝐴(+g𝐺)(𝑁𝐴)) = (0g𝐺))
92, 3, 8syl2anc 583 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → (𝐴(+g𝐺)(𝑁𝐴)) = (0g𝐺))
109oveq1d 7435 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ((𝐴(+g𝐺)(𝑁𝐴)) 𝐶) = ((0g𝐺) 𝐶))
11 simpl 482 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ∈ (𝐺 GrpAct 𝑌))
124, 7grpinvcl 18943 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝑁𝐴) ∈ 𝑋)
132, 3, 12syl2anc 583 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → (𝑁𝐴) ∈ 𝑋)
14 simpr3 1194 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → 𝐶𝑌)
154, 5gaass 19247 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋 ∧ (𝑁𝐴) ∈ 𝑋𝐶𝑌)) → ((𝐴(+g𝐺)(𝑁𝐴)) 𝐶) = (𝐴 ((𝑁𝐴) 𝐶)))
1611, 3, 13, 14, 15syl13anc 1370 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ((𝐴(+g𝐺)(𝑁𝐴)) 𝐶) = (𝐴 ((𝑁𝐴) 𝐶)))
176gagrpid 19244 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐶𝑌) → ((0g𝐺) 𝐶) = 𝐶)
1811, 14, 17syl2anc 583 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ((0g𝐺) 𝐶) = 𝐶)
1910, 16, 183eqtr3d 2776 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → (𝐴 ((𝑁𝐴) 𝐶)) = 𝐶)
2019eqeq2d 2739 . . 3 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ((𝐴 𝐵) = (𝐴 ((𝑁𝐴) 𝐶)) ↔ (𝐴 𝐵) = 𝐶))
21 simpr2 1193 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → 𝐵𝑌)
224gaf 19245 . . . . . 6 ( ∈ (𝐺 GrpAct 𝑌) → :(𝑋 × 𝑌)⟶𝑌)
2322adantr 480 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → :(𝑋 × 𝑌)⟶𝑌)
2423, 13, 14fovcdmd 7593 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ((𝑁𝐴) 𝐶) ∈ 𝑌)
254galcan 19254 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌 ∧ ((𝑁𝐴) 𝐶) ∈ 𝑌)) → ((𝐴 𝐵) = (𝐴 ((𝑁𝐴) 𝐶)) ↔ 𝐵 = ((𝑁𝐴) 𝐶)))
2611, 3, 21, 24, 25syl13anc 1370 . . 3 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ((𝐴 𝐵) = (𝐴 ((𝑁𝐴) 𝐶)) ↔ 𝐵 = ((𝑁𝐴) 𝐶)))
2720, 26bitr3d 281 . 2 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ((𝐴 𝐵) = 𝐶𝐵 = ((𝑁𝐴) 𝐶)))
28 eqcom 2735 . 2 (𝐵 = ((𝑁𝐴) 𝐶) ↔ ((𝑁𝐴) 𝐶) = 𝐵)
2927, 28bitrdi 287 1 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ((𝐴 𝐵) = 𝐶 ↔ ((𝑁𝐴) 𝐶) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1534  wcel 2099   × cxp 5676  wf 6544  cfv 6548  (class class class)co 7420  Basecbs 17179  +gcplusg 17232  0gc0g 17420  Grpcgrp 18889  invgcminusg 18890   GrpAct cga 19239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-map 8846  df-0g 17422  df-mgm 18599  df-sgrp 18678  df-mnd 18694  df-grp 18892  df-minusg 18893  df-ga 19240
This theorem is referenced by:  gapm  19256  gaorber  19258  gastacl  19259  gastacos  19260
  Copyright terms: Public domain W3C validator