MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gacan Structured version   Visualization version   GIF version

Theorem gacan 18427
Description: Group inverses cancel in a group action. (Contributed by Jeff Hankins, 11-Aug-2009.) (Revised by Mario Carneiro, 13-Jan-2015.)
Hypotheses
Ref Expression
galcan.1 𝑋 = (Base‘𝐺)
gacan.2 𝑁 = (invg𝐺)
Assertion
Ref Expression
gacan (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ((𝐴 𝐵) = 𝐶 ↔ ((𝑁𝐴) 𝐶) = 𝐵))

Proof of Theorem gacan
StepHypRef Expression
1 gagrp 18414 . . . . . . . 8 ( ∈ (𝐺 GrpAct 𝑌) → 𝐺 ∈ Grp)
21adantr 484 . . . . . . 7 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → 𝐺 ∈ Grp)
3 simpr1 1191 . . . . . . 7 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → 𝐴𝑋)
4 galcan.1 . . . . . . . 8 𝑋 = (Base‘𝐺)
5 eqid 2798 . . . . . . . 8 (+g𝐺) = (+g𝐺)
6 eqid 2798 . . . . . . . 8 (0g𝐺) = (0g𝐺)
7 gacan.2 . . . . . . . 8 𝑁 = (invg𝐺)
84, 5, 6, 7grprinv 18145 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝐴(+g𝐺)(𝑁𝐴)) = (0g𝐺))
92, 3, 8syl2anc 587 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → (𝐴(+g𝐺)(𝑁𝐴)) = (0g𝐺))
109oveq1d 7150 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ((𝐴(+g𝐺)(𝑁𝐴)) 𝐶) = ((0g𝐺) 𝐶))
11 simpl 486 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ∈ (𝐺 GrpAct 𝑌))
124, 7grpinvcl 18143 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝑁𝐴) ∈ 𝑋)
132, 3, 12syl2anc 587 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → (𝑁𝐴) ∈ 𝑋)
14 simpr3 1193 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → 𝐶𝑌)
154, 5gaass 18419 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋 ∧ (𝑁𝐴) ∈ 𝑋𝐶𝑌)) → ((𝐴(+g𝐺)(𝑁𝐴)) 𝐶) = (𝐴 ((𝑁𝐴) 𝐶)))
1611, 3, 13, 14, 15syl13anc 1369 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ((𝐴(+g𝐺)(𝑁𝐴)) 𝐶) = (𝐴 ((𝑁𝐴) 𝐶)))
176gagrpid 18416 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐶𝑌) → ((0g𝐺) 𝐶) = 𝐶)
1811, 14, 17syl2anc 587 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ((0g𝐺) 𝐶) = 𝐶)
1910, 16, 183eqtr3d 2841 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → (𝐴 ((𝑁𝐴) 𝐶)) = 𝐶)
2019eqeq2d 2809 . . 3 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ((𝐴 𝐵) = (𝐴 ((𝑁𝐴) 𝐶)) ↔ (𝐴 𝐵) = 𝐶))
21 simpr2 1192 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → 𝐵𝑌)
224gaf 18417 . . . . . 6 ( ∈ (𝐺 GrpAct 𝑌) → :(𝑋 × 𝑌)⟶𝑌)
2322adantr 484 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → :(𝑋 × 𝑌)⟶𝑌)
2423, 13, 14fovrnd 7300 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ((𝑁𝐴) 𝐶) ∈ 𝑌)
254galcan 18426 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌 ∧ ((𝑁𝐴) 𝐶) ∈ 𝑌)) → ((𝐴 𝐵) = (𝐴 ((𝑁𝐴) 𝐶)) ↔ 𝐵 = ((𝑁𝐴) 𝐶)))
2611, 3, 21, 24, 25syl13anc 1369 . . 3 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ((𝐴 𝐵) = (𝐴 ((𝑁𝐴) 𝐶)) ↔ 𝐵 = ((𝑁𝐴) 𝐶)))
2720, 26bitr3d 284 . 2 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ((𝐴 𝐵) = 𝐶𝐵 = ((𝑁𝐴) 𝐶)))
28 eqcom 2805 . 2 (𝐵 = ((𝑁𝐴) 𝐶) ↔ ((𝑁𝐴) 𝐶) = 𝐵)
2927, 28syl6bb 290 1 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ((𝐴 𝐵) = 𝐶 ↔ ((𝑁𝐴) 𝐶) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111   × cxp 5517  wf 6320  cfv 6324  (class class class)co 7135  Basecbs 16475  +gcplusg 16557  0gc0g 16705  Grpcgrp 18095  invgcminusg 18096   GrpAct cga 18411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-map 8391  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-minusg 18099  df-ga 18412
This theorem is referenced by:  gapm  18428  gaorber  18430  gastacl  18431  gastacos  18432
  Copyright terms: Public domain W3C validator