MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gacan Structured version   Visualization version   GIF version

Theorem gacan 19217
Description: Group inverses cancel in a group action. (Contributed by Jeff Hankins, 11-Aug-2009.) (Revised by Mario Carneiro, 13-Jan-2015.)
Hypotheses
Ref Expression
galcan.1 𝑋 = (Base‘𝐺)
gacan.2 𝑁 = (invg𝐺)
Assertion
Ref Expression
gacan (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ((𝐴 𝐵) = 𝐶 ↔ ((𝑁𝐴) 𝐶) = 𝐵))

Proof of Theorem gacan
StepHypRef Expression
1 gagrp 19204 . . . . . . . 8 ( ∈ (𝐺 GrpAct 𝑌) → 𝐺 ∈ Grp)
21adantr 480 . . . . . . 7 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → 𝐺 ∈ Grp)
3 simpr1 1191 . . . . . . 7 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → 𝐴𝑋)
4 galcan.1 . . . . . . . 8 𝑋 = (Base‘𝐺)
5 eqid 2724 . . . . . . . 8 (+g𝐺) = (+g𝐺)
6 eqid 2724 . . . . . . . 8 (0g𝐺) = (0g𝐺)
7 gacan.2 . . . . . . . 8 𝑁 = (invg𝐺)
84, 5, 6, 7grprinv 18916 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝐴(+g𝐺)(𝑁𝐴)) = (0g𝐺))
92, 3, 8syl2anc 583 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → (𝐴(+g𝐺)(𝑁𝐴)) = (0g𝐺))
109oveq1d 7417 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ((𝐴(+g𝐺)(𝑁𝐴)) 𝐶) = ((0g𝐺) 𝐶))
11 simpl 482 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ∈ (𝐺 GrpAct 𝑌))
124, 7grpinvcl 18913 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝑁𝐴) ∈ 𝑋)
132, 3, 12syl2anc 583 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → (𝑁𝐴) ∈ 𝑋)
14 simpr3 1193 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → 𝐶𝑌)
154, 5gaass 19209 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋 ∧ (𝑁𝐴) ∈ 𝑋𝐶𝑌)) → ((𝐴(+g𝐺)(𝑁𝐴)) 𝐶) = (𝐴 ((𝑁𝐴) 𝐶)))
1611, 3, 13, 14, 15syl13anc 1369 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ((𝐴(+g𝐺)(𝑁𝐴)) 𝐶) = (𝐴 ((𝑁𝐴) 𝐶)))
176gagrpid 19206 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐶𝑌) → ((0g𝐺) 𝐶) = 𝐶)
1811, 14, 17syl2anc 583 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ((0g𝐺) 𝐶) = 𝐶)
1910, 16, 183eqtr3d 2772 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → (𝐴 ((𝑁𝐴) 𝐶)) = 𝐶)
2019eqeq2d 2735 . . 3 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ((𝐴 𝐵) = (𝐴 ((𝑁𝐴) 𝐶)) ↔ (𝐴 𝐵) = 𝐶))
21 simpr2 1192 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → 𝐵𝑌)
224gaf 19207 . . . . . 6 ( ∈ (𝐺 GrpAct 𝑌) → :(𝑋 × 𝑌)⟶𝑌)
2322adantr 480 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → :(𝑋 × 𝑌)⟶𝑌)
2423, 13, 14fovcdmd 7573 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ((𝑁𝐴) 𝐶) ∈ 𝑌)
254galcan 19216 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌 ∧ ((𝑁𝐴) 𝐶) ∈ 𝑌)) → ((𝐴 𝐵) = (𝐴 ((𝑁𝐴) 𝐶)) ↔ 𝐵 = ((𝑁𝐴) 𝐶)))
2611, 3, 21, 24, 25syl13anc 1369 . . 3 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ((𝐴 𝐵) = (𝐴 ((𝑁𝐴) 𝐶)) ↔ 𝐵 = ((𝑁𝐴) 𝐶)))
2720, 26bitr3d 281 . 2 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ((𝐴 𝐵) = 𝐶𝐵 = ((𝑁𝐴) 𝐶)))
28 eqcom 2731 . 2 (𝐵 = ((𝑁𝐴) 𝐶) ↔ ((𝑁𝐴) 𝐶) = 𝐵)
2927, 28bitrdi 287 1 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ((𝐴 𝐵) = 𝐶 ↔ ((𝑁𝐴) 𝐶) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1084   = wceq 1533  wcel 2098   × cxp 5665  wf 6530  cfv 6534  (class class class)co 7402  Basecbs 17149  +gcplusg 17202  0gc0g 17390  Grpcgrp 18859  invgcminusg 18860   GrpAct cga 19201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-br 5140  df-opab 5202  df-mpt 5223  df-id 5565  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-fv 6542  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-map 8819  df-0g 17392  df-mgm 18569  df-sgrp 18648  df-mnd 18664  df-grp 18862  df-minusg 18863  df-ga 19202
This theorem is referenced by:  gapm  19218  gaorber  19220  gastacl  19221  gastacos  19222
  Copyright terms: Public domain W3C validator