MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gacan Structured version   Visualization version   GIF version

Theorem gacan 19219
Description: Group inverses cancel in a group action. (Contributed by Jeff Hankins, 11-Aug-2009.) (Revised by Mario Carneiro, 13-Jan-2015.)
Hypotheses
Ref Expression
galcan.1 𝑋 = (Base‘𝐺)
gacan.2 𝑁 = (invg𝐺)
Assertion
Ref Expression
gacan (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ((𝐴 𝐵) = 𝐶 ↔ ((𝑁𝐴) 𝐶) = 𝐵))

Proof of Theorem gacan
StepHypRef Expression
1 gagrp 19206 . . . . . . . 8 ( ∈ (𝐺 GrpAct 𝑌) → 𝐺 ∈ Grp)
21adantr 480 . . . . . . 7 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → 𝐺 ∈ Grp)
3 simpr1 1195 . . . . . . 7 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → 𝐴𝑋)
4 galcan.1 . . . . . . . 8 𝑋 = (Base‘𝐺)
5 eqid 2729 . . . . . . . 8 (+g𝐺) = (+g𝐺)
6 eqid 2729 . . . . . . . 8 (0g𝐺) = (0g𝐺)
7 gacan.2 . . . . . . . 8 𝑁 = (invg𝐺)
84, 5, 6, 7grprinv 18904 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝐴(+g𝐺)(𝑁𝐴)) = (0g𝐺))
92, 3, 8syl2anc 584 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → (𝐴(+g𝐺)(𝑁𝐴)) = (0g𝐺))
109oveq1d 7384 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ((𝐴(+g𝐺)(𝑁𝐴)) 𝐶) = ((0g𝐺) 𝐶))
11 simpl 482 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ∈ (𝐺 GrpAct 𝑌))
124, 7grpinvcl 18901 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝑁𝐴) ∈ 𝑋)
132, 3, 12syl2anc 584 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → (𝑁𝐴) ∈ 𝑋)
14 simpr3 1197 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → 𝐶𝑌)
154, 5gaass 19211 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋 ∧ (𝑁𝐴) ∈ 𝑋𝐶𝑌)) → ((𝐴(+g𝐺)(𝑁𝐴)) 𝐶) = (𝐴 ((𝑁𝐴) 𝐶)))
1611, 3, 13, 14, 15syl13anc 1374 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ((𝐴(+g𝐺)(𝑁𝐴)) 𝐶) = (𝐴 ((𝑁𝐴) 𝐶)))
176gagrpid 19208 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐶𝑌) → ((0g𝐺) 𝐶) = 𝐶)
1811, 14, 17syl2anc 584 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ((0g𝐺) 𝐶) = 𝐶)
1910, 16, 183eqtr3d 2772 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → (𝐴 ((𝑁𝐴) 𝐶)) = 𝐶)
2019eqeq2d 2740 . . 3 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ((𝐴 𝐵) = (𝐴 ((𝑁𝐴) 𝐶)) ↔ (𝐴 𝐵) = 𝐶))
21 simpr2 1196 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → 𝐵𝑌)
224gaf 19209 . . . . . 6 ( ∈ (𝐺 GrpAct 𝑌) → :(𝑋 × 𝑌)⟶𝑌)
2322adantr 480 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → :(𝑋 × 𝑌)⟶𝑌)
2423, 13, 14fovcdmd 7541 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ((𝑁𝐴) 𝐶) ∈ 𝑌)
254galcan 19218 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌 ∧ ((𝑁𝐴) 𝐶) ∈ 𝑌)) → ((𝐴 𝐵) = (𝐴 ((𝑁𝐴) 𝐶)) ↔ 𝐵 = ((𝑁𝐴) 𝐶)))
2611, 3, 21, 24, 25syl13anc 1374 . . 3 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ((𝐴 𝐵) = (𝐴 ((𝑁𝐴) 𝐶)) ↔ 𝐵 = ((𝑁𝐴) 𝐶)))
2720, 26bitr3d 281 . 2 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ((𝐴 𝐵) = 𝐶𝐵 = ((𝑁𝐴) 𝐶)))
28 eqcom 2736 . 2 (𝐵 = ((𝑁𝐴) 𝐶) ↔ ((𝑁𝐴) 𝐶) = 𝐵)
2927, 28bitrdi 287 1 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ((𝐴 𝐵) = 𝐶 ↔ ((𝑁𝐴) 𝐶) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109   × cxp 5629  wf 6495  cfv 6499  (class class class)co 7369  Basecbs 17155  +gcplusg 17196  0gc0g 17378  Grpcgrp 18847  invgcminusg 18848   GrpAct cga 19203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-map 8778  df-0g 17380  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-grp 18850  df-minusg 18851  df-ga 19204
This theorem is referenced by:  gapm  19220  gaorber  19222  gastacl  19223  gastacos  19224
  Copyright terms: Public domain W3C validator