MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  galcan Structured version   Visualization version   GIF version

Theorem galcan 19216
Description: The action of a particular group element is left-cancelable. (Contributed by FL, 17-May-2010.) (Revised by Mario Carneiro, 13-Jan-2015.)
Hypothesis
Ref Expression
galcan.1 𝑋 = (Base‘𝐺)
Assertion
Ref Expression
galcan (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ((𝐴 𝐵) = (𝐴 𝐶) ↔ 𝐵 = 𝐶))

Proof of Theorem galcan
StepHypRef Expression
1 oveq2 7354 . . 3 ((𝐴 𝐵) = (𝐴 𝐶) → (((invg𝐺)‘𝐴) (𝐴 𝐵)) = (((invg𝐺)‘𝐴) (𝐴 𝐶)))
2 simpl 482 . . . . . . . 8 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ∈ (𝐺 GrpAct 𝑌))
3 gagrp 19204 . . . . . . . 8 ( ∈ (𝐺 GrpAct 𝑌) → 𝐺 ∈ Grp)
42, 3syl 17 . . . . . . 7 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → 𝐺 ∈ Grp)
5 simpr1 1195 . . . . . . 7 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → 𝐴𝑋)
6 galcan.1 . . . . . . . 8 𝑋 = (Base‘𝐺)
7 eqid 2731 . . . . . . . 8 (+g𝐺) = (+g𝐺)
8 eqid 2731 . . . . . . . 8 (0g𝐺) = (0g𝐺)
9 eqid 2731 . . . . . . . 8 (invg𝐺) = (invg𝐺)
106, 7, 8, 9grplinv 18902 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (((invg𝐺)‘𝐴)(+g𝐺)𝐴) = (0g𝐺))
114, 5, 10syl2anc 584 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → (((invg𝐺)‘𝐴)(+g𝐺)𝐴) = (0g𝐺))
1211oveq1d 7361 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ((((invg𝐺)‘𝐴)(+g𝐺)𝐴) 𝐵) = ((0g𝐺) 𝐵))
136, 9grpinvcl 18900 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((invg𝐺)‘𝐴) ∈ 𝑋)
144, 5, 13syl2anc 584 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ((invg𝐺)‘𝐴) ∈ 𝑋)
15 simpr2 1196 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → 𝐵𝑌)
166, 7gaass 19209 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ (((invg𝐺)‘𝐴) ∈ 𝑋𝐴𝑋𝐵𝑌)) → ((((invg𝐺)‘𝐴)(+g𝐺)𝐴) 𝐵) = (((invg𝐺)‘𝐴) (𝐴 𝐵)))
172, 14, 5, 15, 16syl13anc 1374 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ((((invg𝐺)‘𝐴)(+g𝐺)𝐴) 𝐵) = (((invg𝐺)‘𝐴) (𝐴 𝐵)))
188gagrpid 19206 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐵𝑌) → ((0g𝐺) 𝐵) = 𝐵)
192, 15, 18syl2anc 584 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ((0g𝐺) 𝐵) = 𝐵)
2012, 17, 193eqtr3d 2774 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → (((invg𝐺)‘𝐴) (𝐴 𝐵)) = 𝐵)
2111oveq1d 7361 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ((((invg𝐺)‘𝐴)(+g𝐺)𝐴) 𝐶) = ((0g𝐺) 𝐶))
22 simpr3 1197 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → 𝐶𝑌)
236, 7gaass 19209 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ (((invg𝐺)‘𝐴) ∈ 𝑋𝐴𝑋𝐶𝑌)) → ((((invg𝐺)‘𝐴)(+g𝐺)𝐴) 𝐶) = (((invg𝐺)‘𝐴) (𝐴 𝐶)))
242, 14, 5, 22, 23syl13anc 1374 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ((((invg𝐺)‘𝐴)(+g𝐺)𝐴) 𝐶) = (((invg𝐺)‘𝐴) (𝐴 𝐶)))
258gagrpid 19206 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐶𝑌) → ((0g𝐺) 𝐶) = 𝐶)
262, 22, 25syl2anc 584 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ((0g𝐺) 𝐶) = 𝐶)
2721, 24, 263eqtr3d 2774 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → (((invg𝐺)‘𝐴) (𝐴 𝐶)) = 𝐶)
2820, 27eqeq12d 2747 . . 3 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ((((invg𝐺)‘𝐴) (𝐴 𝐵)) = (((invg𝐺)‘𝐴) (𝐴 𝐶)) ↔ 𝐵 = 𝐶))
291, 28imbitrid 244 . 2 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ((𝐴 𝐵) = (𝐴 𝐶) → 𝐵 = 𝐶))
30 oveq2 7354 . 2 (𝐵 = 𝐶 → (𝐴 𝐵) = (𝐴 𝐶))
3129, 30impbid1 225 1 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ((𝐴 𝐵) = (𝐴 𝐶) ↔ 𝐵 = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  cfv 6481  (class class class)co 7346  Basecbs 17120  +gcplusg 17161  0gc0g 17343  Grpcgrp 18846  invgcminusg 18847   GrpAct cga 19201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-map 8752  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-grp 18849  df-minusg 18850  df-ga 19202
This theorem is referenced by:  gacan  19217
  Copyright terms: Public domain W3C validator