MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  galcan Structured version   Visualization version   GIF version

Theorem galcan 19322
Description: The action of a particular group element is left-cancelable. (Contributed by FL, 17-May-2010.) (Revised by Mario Carneiro, 13-Jan-2015.)
Hypothesis
Ref Expression
galcan.1 𝑋 = (Base‘𝐺)
Assertion
Ref Expression
galcan (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ((𝐴 𝐵) = (𝐴 𝐶) ↔ 𝐵 = 𝐶))

Proof of Theorem galcan
StepHypRef Expression
1 oveq2 7439 . . 3 ((𝐴 𝐵) = (𝐴 𝐶) → (((invg𝐺)‘𝐴) (𝐴 𝐵)) = (((invg𝐺)‘𝐴) (𝐴 𝐶)))
2 simpl 482 . . . . . . . 8 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ∈ (𝐺 GrpAct 𝑌))
3 gagrp 19310 . . . . . . . 8 ( ∈ (𝐺 GrpAct 𝑌) → 𝐺 ∈ Grp)
42, 3syl 17 . . . . . . 7 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → 𝐺 ∈ Grp)
5 simpr1 1195 . . . . . . 7 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → 𝐴𝑋)
6 galcan.1 . . . . . . . 8 𝑋 = (Base‘𝐺)
7 eqid 2737 . . . . . . . 8 (+g𝐺) = (+g𝐺)
8 eqid 2737 . . . . . . . 8 (0g𝐺) = (0g𝐺)
9 eqid 2737 . . . . . . . 8 (invg𝐺) = (invg𝐺)
106, 7, 8, 9grplinv 19007 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (((invg𝐺)‘𝐴)(+g𝐺)𝐴) = (0g𝐺))
114, 5, 10syl2anc 584 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → (((invg𝐺)‘𝐴)(+g𝐺)𝐴) = (0g𝐺))
1211oveq1d 7446 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ((((invg𝐺)‘𝐴)(+g𝐺)𝐴) 𝐵) = ((0g𝐺) 𝐵))
136, 9grpinvcl 19005 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((invg𝐺)‘𝐴) ∈ 𝑋)
144, 5, 13syl2anc 584 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ((invg𝐺)‘𝐴) ∈ 𝑋)
15 simpr2 1196 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → 𝐵𝑌)
166, 7gaass 19315 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ (((invg𝐺)‘𝐴) ∈ 𝑋𝐴𝑋𝐵𝑌)) → ((((invg𝐺)‘𝐴)(+g𝐺)𝐴) 𝐵) = (((invg𝐺)‘𝐴) (𝐴 𝐵)))
172, 14, 5, 15, 16syl13anc 1374 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ((((invg𝐺)‘𝐴)(+g𝐺)𝐴) 𝐵) = (((invg𝐺)‘𝐴) (𝐴 𝐵)))
188gagrpid 19312 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐵𝑌) → ((0g𝐺) 𝐵) = 𝐵)
192, 15, 18syl2anc 584 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ((0g𝐺) 𝐵) = 𝐵)
2012, 17, 193eqtr3d 2785 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → (((invg𝐺)‘𝐴) (𝐴 𝐵)) = 𝐵)
2111oveq1d 7446 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ((((invg𝐺)‘𝐴)(+g𝐺)𝐴) 𝐶) = ((0g𝐺) 𝐶))
22 simpr3 1197 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → 𝐶𝑌)
236, 7gaass 19315 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ (((invg𝐺)‘𝐴) ∈ 𝑋𝐴𝑋𝐶𝑌)) → ((((invg𝐺)‘𝐴)(+g𝐺)𝐴) 𝐶) = (((invg𝐺)‘𝐴) (𝐴 𝐶)))
242, 14, 5, 22, 23syl13anc 1374 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ((((invg𝐺)‘𝐴)(+g𝐺)𝐴) 𝐶) = (((invg𝐺)‘𝐴) (𝐴 𝐶)))
258gagrpid 19312 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐶𝑌) → ((0g𝐺) 𝐶) = 𝐶)
262, 22, 25syl2anc 584 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ((0g𝐺) 𝐶) = 𝐶)
2721, 24, 263eqtr3d 2785 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → (((invg𝐺)‘𝐴) (𝐴 𝐶)) = 𝐶)
2820, 27eqeq12d 2753 . . 3 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ((((invg𝐺)‘𝐴) (𝐴 𝐵)) = (((invg𝐺)‘𝐴) (𝐴 𝐶)) ↔ 𝐵 = 𝐶))
291, 28imbitrid 244 . 2 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ((𝐴 𝐵) = (𝐴 𝐶) → 𝐵 = 𝐶))
30 oveq2 7439 . 2 (𝐵 = 𝐶 → (𝐴 𝐵) = (𝐴 𝐶))
3129, 30impbid1 225 1 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ((𝐴 𝐵) = (𝐴 𝐶) ↔ 𝐵 = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  cfv 6561  (class class class)co 7431  Basecbs 17247  +gcplusg 17297  0gc0g 17484  Grpcgrp 18951  invgcminusg 18952   GrpAct cga 19307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-map 8868  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-minusg 18955  df-ga 19308
This theorem is referenced by:  gacan  19323
  Copyright terms: Public domain W3C validator