MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  galcan Structured version   Visualization version   GIF version

Theorem galcan 18825
Description: The action of a particular group element is left-cancelable. (Contributed by FL, 17-May-2010.) (Revised by Mario Carneiro, 13-Jan-2015.)
Hypothesis
Ref Expression
galcan.1 𝑋 = (Base‘𝐺)
Assertion
Ref Expression
galcan (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ((𝐴 𝐵) = (𝐴 𝐶) ↔ 𝐵 = 𝐶))

Proof of Theorem galcan
StepHypRef Expression
1 oveq2 7263 . . 3 ((𝐴 𝐵) = (𝐴 𝐶) → (((invg𝐺)‘𝐴) (𝐴 𝐵)) = (((invg𝐺)‘𝐴) (𝐴 𝐶)))
2 simpl 482 . . . . . . . 8 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ∈ (𝐺 GrpAct 𝑌))
3 gagrp 18813 . . . . . . . 8 ( ∈ (𝐺 GrpAct 𝑌) → 𝐺 ∈ Grp)
42, 3syl 17 . . . . . . 7 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → 𝐺 ∈ Grp)
5 simpr1 1192 . . . . . . 7 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → 𝐴𝑋)
6 galcan.1 . . . . . . . 8 𝑋 = (Base‘𝐺)
7 eqid 2738 . . . . . . . 8 (+g𝐺) = (+g𝐺)
8 eqid 2738 . . . . . . . 8 (0g𝐺) = (0g𝐺)
9 eqid 2738 . . . . . . . 8 (invg𝐺) = (invg𝐺)
106, 7, 8, 9grplinv 18543 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (((invg𝐺)‘𝐴)(+g𝐺)𝐴) = (0g𝐺))
114, 5, 10syl2anc 583 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → (((invg𝐺)‘𝐴)(+g𝐺)𝐴) = (0g𝐺))
1211oveq1d 7270 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ((((invg𝐺)‘𝐴)(+g𝐺)𝐴) 𝐵) = ((0g𝐺) 𝐵))
136, 9grpinvcl 18542 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((invg𝐺)‘𝐴) ∈ 𝑋)
144, 5, 13syl2anc 583 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ((invg𝐺)‘𝐴) ∈ 𝑋)
15 simpr2 1193 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → 𝐵𝑌)
166, 7gaass 18818 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ (((invg𝐺)‘𝐴) ∈ 𝑋𝐴𝑋𝐵𝑌)) → ((((invg𝐺)‘𝐴)(+g𝐺)𝐴) 𝐵) = (((invg𝐺)‘𝐴) (𝐴 𝐵)))
172, 14, 5, 15, 16syl13anc 1370 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ((((invg𝐺)‘𝐴)(+g𝐺)𝐴) 𝐵) = (((invg𝐺)‘𝐴) (𝐴 𝐵)))
188gagrpid 18815 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐵𝑌) → ((0g𝐺) 𝐵) = 𝐵)
192, 15, 18syl2anc 583 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ((0g𝐺) 𝐵) = 𝐵)
2012, 17, 193eqtr3d 2786 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → (((invg𝐺)‘𝐴) (𝐴 𝐵)) = 𝐵)
2111oveq1d 7270 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ((((invg𝐺)‘𝐴)(+g𝐺)𝐴) 𝐶) = ((0g𝐺) 𝐶))
22 simpr3 1194 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → 𝐶𝑌)
236, 7gaass 18818 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ (((invg𝐺)‘𝐴) ∈ 𝑋𝐴𝑋𝐶𝑌)) → ((((invg𝐺)‘𝐴)(+g𝐺)𝐴) 𝐶) = (((invg𝐺)‘𝐴) (𝐴 𝐶)))
242, 14, 5, 22, 23syl13anc 1370 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ((((invg𝐺)‘𝐴)(+g𝐺)𝐴) 𝐶) = (((invg𝐺)‘𝐴) (𝐴 𝐶)))
258gagrpid 18815 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐶𝑌) → ((0g𝐺) 𝐶) = 𝐶)
262, 22, 25syl2anc 583 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ((0g𝐺) 𝐶) = 𝐶)
2721, 24, 263eqtr3d 2786 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → (((invg𝐺)‘𝐴) (𝐴 𝐶)) = 𝐶)
2820, 27eqeq12d 2754 . . 3 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ((((invg𝐺)‘𝐴) (𝐴 𝐵)) = (((invg𝐺)‘𝐴) (𝐴 𝐶)) ↔ 𝐵 = 𝐶))
291, 28syl5ib 243 . 2 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ((𝐴 𝐵) = (𝐴 𝐶) → 𝐵 = 𝐶))
30 oveq2 7263 . 2 (𝐵 = 𝐶 → (𝐴 𝐵) = (𝐴 𝐶))
3129, 30impbid1 224 1 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ((𝐴 𝐵) = (𝐴 𝐶) ↔ 𝐵 = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  cfv 6418  (class class class)co 7255  Basecbs 16840  +gcplusg 16888  0gc0g 17067  Grpcgrp 18492  invgcminusg 18493   GrpAct cga 18810
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-map 8575  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-ga 18811
This theorem is referenced by:  gacan  18826
  Copyright terms: Public domain W3C validator