Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  galcan Structured version   Visualization version   GIF version

Theorem galcan 18501
 Description: The action of a particular group element is left-cancelable. (Contributed by FL, 17-May-2010.) (Revised by Mario Carneiro, 13-Jan-2015.)
Hypothesis
Ref Expression
galcan.1 𝑋 = (Base‘𝐺)
Assertion
Ref Expression
galcan (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ((𝐴 𝐵) = (𝐴 𝐶) ↔ 𝐵 = 𝐶))

Proof of Theorem galcan
StepHypRef Expression
1 oveq2 7158 . . 3 ((𝐴 𝐵) = (𝐴 𝐶) → (((invg𝐺)‘𝐴) (𝐴 𝐵)) = (((invg𝐺)‘𝐴) (𝐴 𝐶)))
2 simpl 486 . . . . . . . 8 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ∈ (𝐺 GrpAct 𝑌))
3 gagrp 18489 . . . . . . . 8 ( ∈ (𝐺 GrpAct 𝑌) → 𝐺 ∈ Grp)
42, 3syl 17 . . . . . . 7 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → 𝐺 ∈ Grp)
5 simpr1 1191 . . . . . . 7 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → 𝐴𝑋)
6 galcan.1 . . . . . . . 8 𝑋 = (Base‘𝐺)
7 eqid 2758 . . . . . . . 8 (+g𝐺) = (+g𝐺)
8 eqid 2758 . . . . . . . 8 (0g𝐺) = (0g𝐺)
9 eqid 2758 . . . . . . . 8 (invg𝐺) = (invg𝐺)
106, 7, 8, 9grplinv 18219 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (((invg𝐺)‘𝐴)(+g𝐺)𝐴) = (0g𝐺))
114, 5, 10syl2anc 587 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → (((invg𝐺)‘𝐴)(+g𝐺)𝐴) = (0g𝐺))
1211oveq1d 7165 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ((((invg𝐺)‘𝐴)(+g𝐺)𝐴) 𝐵) = ((0g𝐺) 𝐵))
136, 9grpinvcl 18218 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((invg𝐺)‘𝐴) ∈ 𝑋)
144, 5, 13syl2anc 587 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ((invg𝐺)‘𝐴) ∈ 𝑋)
15 simpr2 1192 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → 𝐵𝑌)
166, 7gaass 18494 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ (((invg𝐺)‘𝐴) ∈ 𝑋𝐴𝑋𝐵𝑌)) → ((((invg𝐺)‘𝐴)(+g𝐺)𝐴) 𝐵) = (((invg𝐺)‘𝐴) (𝐴 𝐵)))
172, 14, 5, 15, 16syl13anc 1369 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ((((invg𝐺)‘𝐴)(+g𝐺)𝐴) 𝐵) = (((invg𝐺)‘𝐴) (𝐴 𝐵)))
188gagrpid 18491 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐵𝑌) → ((0g𝐺) 𝐵) = 𝐵)
192, 15, 18syl2anc 587 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ((0g𝐺) 𝐵) = 𝐵)
2012, 17, 193eqtr3d 2801 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → (((invg𝐺)‘𝐴) (𝐴 𝐵)) = 𝐵)
2111oveq1d 7165 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ((((invg𝐺)‘𝐴)(+g𝐺)𝐴) 𝐶) = ((0g𝐺) 𝐶))
22 simpr3 1193 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → 𝐶𝑌)
236, 7gaass 18494 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ (((invg𝐺)‘𝐴) ∈ 𝑋𝐴𝑋𝐶𝑌)) → ((((invg𝐺)‘𝐴)(+g𝐺)𝐴) 𝐶) = (((invg𝐺)‘𝐴) (𝐴 𝐶)))
242, 14, 5, 22, 23syl13anc 1369 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ((((invg𝐺)‘𝐴)(+g𝐺)𝐴) 𝐶) = (((invg𝐺)‘𝐴) (𝐴 𝐶)))
258gagrpid 18491 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐶𝑌) → ((0g𝐺) 𝐶) = 𝐶)
262, 22, 25syl2anc 587 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ((0g𝐺) 𝐶) = 𝐶)
2721, 24, 263eqtr3d 2801 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → (((invg𝐺)‘𝐴) (𝐴 𝐶)) = 𝐶)
2820, 27eqeq12d 2774 . . 3 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ((((invg𝐺)‘𝐴) (𝐴 𝐵)) = (((invg𝐺)‘𝐴) (𝐴 𝐶)) ↔ 𝐵 = 𝐶))
291, 28syl5ib 247 . 2 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ((𝐴 𝐵) = (𝐴 𝐶) → 𝐵 = 𝐶))
30 oveq2 7158 . 2 (𝐵 = 𝐶 → (𝐴 𝐵) = (𝐴 𝐶))
3129, 30impbid1 228 1 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ((𝐴 𝐵) = (𝐴 𝐶) ↔ 𝐵 = 𝐶))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111  ‘cfv 6335  (class class class)co 7150  Basecbs 16541  +gcplusg 16623  0gc0g 16771  Grpcgrp 18169  invgcminusg 18170   GrpAct cga 18486 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-op 4529  df-uni 4799  df-br 5033  df-opab 5095  df-mpt 5113  df-id 5430  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-fv 6343  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-map 8418  df-0g 16773  df-mgm 17918  df-sgrp 17967  df-mnd 17978  df-grp 18172  df-minusg 18173  df-ga 18487 This theorem is referenced by:  gacan  18502
 Copyright terms: Public domain W3C validator