Step | Hyp | Ref
| Expression |
1 | | gasta.2 |
. . . 4
⊢ 𝐻 = {𝑢 ∈ 𝑋 ∣ (𝑢 ⊕ 𝐴) = 𝐴} |
2 | 1 | ssrab3 4011 |
. . 3
⊢ 𝐻 ⊆ 𝑋 |
3 | 2 | a1i 11 |
. 2
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → 𝐻 ⊆ 𝑋) |
4 | | gagrp 18813 |
. . . . . 6
⊢ ( ⊕ ∈
(𝐺 GrpAct 𝑌) → 𝐺 ∈ Grp) |
5 | 4 | adantr 480 |
. . . . 5
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → 𝐺 ∈ Grp) |
6 | | gasta.1 |
. . . . . 6
⊢ 𝑋 = (Base‘𝐺) |
7 | | eqid 2738 |
. . . . . 6
⊢
(0g‘𝐺) = (0g‘𝐺) |
8 | 6, 7 | grpidcl 18522 |
. . . . 5
⊢ (𝐺 ∈ Grp →
(0g‘𝐺)
∈ 𝑋) |
9 | 5, 8 | syl 17 |
. . . 4
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → (0g‘𝐺) ∈ 𝑋) |
10 | 7 | gagrpid 18815 |
. . . 4
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → ((0g‘𝐺) ⊕ 𝐴) = 𝐴) |
11 | | oveq1 7262 |
. . . . . 6
⊢ (𝑢 = (0g‘𝐺) → (𝑢 ⊕ 𝐴) = ((0g‘𝐺) ⊕ 𝐴)) |
12 | 11 | eqeq1d 2740 |
. . . . 5
⊢ (𝑢 = (0g‘𝐺) → ((𝑢 ⊕ 𝐴) = 𝐴 ↔ ((0g‘𝐺) ⊕ 𝐴) = 𝐴)) |
13 | 12, 1 | elrab2 3620 |
. . . 4
⊢
((0g‘𝐺) ∈ 𝐻 ↔ ((0g‘𝐺) ∈ 𝑋 ∧ ((0g‘𝐺) ⊕ 𝐴) = 𝐴)) |
14 | 9, 10, 13 | sylanbrc 582 |
. . 3
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → (0g‘𝐺) ∈ 𝐻) |
15 | 14 | ne0d 4266 |
. 2
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → 𝐻 ≠ ∅) |
16 | | simpll 763 |
. . . . . . . . 9
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ (𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻)) → ⊕ ∈ (𝐺 GrpAct 𝑌)) |
17 | 16, 4 | syl 17 |
. . . . . . . 8
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ (𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻)) → 𝐺 ∈ Grp) |
18 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑥 ∈ 𝐻) → 𝑥 ∈ 𝐻) |
19 | | oveq1 7262 |
. . . . . . . . . . . . 13
⊢ (𝑢 = 𝑥 → (𝑢 ⊕ 𝐴) = (𝑥 ⊕ 𝐴)) |
20 | 19 | eqeq1d 2740 |
. . . . . . . . . . . 12
⊢ (𝑢 = 𝑥 → ((𝑢 ⊕ 𝐴) = 𝐴 ↔ (𝑥 ⊕ 𝐴) = 𝐴)) |
21 | 20, 1 | elrab2 3620 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐻 ↔ (𝑥 ∈ 𝑋 ∧ (𝑥 ⊕ 𝐴) = 𝐴)) |
22 | 18, 21 | sylib 217 |
. . . . . . . . . 10
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑥 ∈ 𝐻) → (𝑥 ∈ 𝑋 ∧ (𝑥 ⊕ 𝐴) = 𝐴)) |
23 | 22 | simpld 494 |
. . . . . . . . 9
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑥 ∈ 𝐻) → 𝑥 ∈ 𝑋) |
24 | 23 | adantrr 713 |
. . . . . . . 8
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ (𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻)) → 𝑥 ∈ 𝑋) |
25 | | simprr 769 |
. . . . . . . . . 10
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ (𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻)) → 𝑦 ∈ 𝐻) |
26 | | oveq1 7262 |
. . . . . . . . . . . 12
⊢ (𝑢 = 𝑦 → (𝑢 ⊕ 𝐴) = (𝑦 ⊕ 𝐴)) |
27 | 26 | eqeq1d 2740 |
. . . . . . . . . . 11
⊢ (𝑢 = 𝑦 → ((𝑢 ⊕ 𝐴) = 𝐴 ↔ (𝑦 ⊕ 𝐴) = 𝐴)) |
28 | 27, 1 | elrab2 3620 |
. . . . . . . . . 10
⊢ (𝑦 ∈ 𝐻 ↔ (𝑦 ∈ 𝑋 ∧ (𝑦 ⊕ 𝐴) = 𝐴)) |
29 | 25, 28 | sylib 217 |
. . . . . . . . 9
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ (𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻)) → (𝑦 ∈ 𝑋 ∧ (𝑦 ⊕ 𝐴) = 𝐴)) |
30 | 29 | simpld 494 |
. . . . . . . 8
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ (𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻)) → 𝑦 ∈ 𝑋) |
31 | | eqid 2738 |
. . . . . . . . 9
⊢
(+g‘𝐺) = (+g‘𝐺) |
32 | 6, 31 | grpcl 18500 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑥(+g‘𝐺)𝑦) ∈ 𝑋) |
33 | 17, 24, 30, 32 | syl3anc 1369 |
. . . . . . 7
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ (𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻)) → (𝑥(+g‘𝐺)𝑦) ∈ 𝑋) |
34 | | simplr 765 |
. . . . . . . . 9
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ (𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻)) → 𝐴 ∈ 𝑌) |
35 | 6, 31 | gaass 18818 |
. . . . . . . . 9
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌)) → ((𝑥(+g‘𝐺)𝑦) ⊕ 𝐴) = (𝑥 ⊕ (𝑦 ⊕ 𝐴))) |
36 | 16, 24, 30, 34, 35 | syl13anc 1370 |
. . . . . . . 8
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ (𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻)) → ((𝑥(+g‘𝐺)𝑦) ⊕ 𝐴) = (𝑥 ⊕ (𝑦 ⊕ 𝐴))) |
37 | 29 | simprd 495 |
. . . . . . . . 9
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ (𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻)) → (𝑦 ⊕ 𝐴) = 𝐴) |
38 | 37 | oveq2d 7271 |
. . . . . . . 8
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ (𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻)) → (𝑥 ⊕ (𝑦 ⊕ 𝐴)) = (𝑥 ⊕ 𝐴)) |
39 | 22 | simprd 495 |
. . . . . . . . 9
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑥 ∈ 𝐻) → (𝑥 ⊕ 𝐴) = 𝐴) |
40 | 39 | adantrr 713 |
. . . . . . . 8
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ (𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻)) → (𝑥 ⊕ 𝐴) = 𝐴) |
41 | 36, 38, 40 | 3eqtrd 2782 |
. . . . . . 7
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ (𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻)) → ((𝑥(+g‘𝐺)𝑦) ⊕ 𝐴) = 𝐴) |
42 | | oveq1 7262 |
. . . . . . . . 9
⊢ (𝑢 = (𝑥(+g‘𝐺)𝑦) → (𝑢 ⊕ 𝐴) = ((𝑥(+g‘𝐺)𝑦) ⊕ 𝐴)) |
43 | 42 | eqeq1d 2740 |
. . . . . . . 8
⊢ (𝑢 = (𝑥(+g‘𝐺)𝑦) → ((𝑢 ⊕ 𝐴) = 𝐴 ↔ ((𝑥(+g‘𝐺)𝑦) ⊕ 𝐴) = 𝐴)) |
44 | 43, 1 | elrab2 3620 |
. . . . . . 7
⊢ ((𝑥(+g‘𝐺)𝑦) ∈ 𝐻 ↔ ((𝑥(+g‘𝐺)𝑦) ∈ 𝑋 ∧ ((𝑥(+g‘𝐺)𝑦) ⊕ 𝐴) = 𝐴)) |
45 | 33, 41, 44 | sylanbrc 582 |
. . . . . 6
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ (𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻)) → (𝑥(+g‘𝐺)𝑦) ∈ 𝐻) |
46 | 45 | anassrs 467 |
. . . . 5
⊢ ((((
⊕
∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑥 ∈ 𝐻) ∧ 𝑦 ∈ 𝐻) → (𝑥(+g‘𝐺)𝑦) ∈ 𝐻) |
47 | 46 | ralrimiva 3107 |
. . . 4
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑥 ∈ 𝐻) → ∀𝑦 ∈ 𝐻 (𝑥(+g‘𝐺)𝑦) ∈ 𝐻) |
48 | | simpll 763 |
. . . . . . 7
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑥 ∈ 𝐻) → ⊕ ∈ (𝐺 GrpAct 𝑌)) |
49 | 48, 4 | syl 17 |
. . . . . 6
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑥 ∈ 𝐻) → 𝐺 ∈ Grp) |
50 | | eqid 2738 |
. . . . . . 7
⊢
(invg‘𝐺) = (invg‘𝐺) |
51 | 6, 50 | grpinvcl 18542 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) → ((invg‘𝐺)‘𝑥) ∈ 𝑋) |
52 | 49, 23, 51 | syl2anc 583 |
. . . . 5
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑥 ∈ 𝐻) → ((invg‘𝐺)‘𝑥) ∈ 𝑋) |
53 | | simplr 765 |
. . . . . . 7
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑥 ∈ 𝐻) → 𝐴 ∈ 𝑌) |
54 | 6, 50 | gacan 18826 |
. . . . . . 7
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ (𝑥 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌 ∧ 𝐴 ∈ 𝑌)) → ((𝑥 ⊕ 𝐴) = 𝐴 ↔ (((invg‘𝐺)‘𝑥) ⊕ 𝐴) = 𝐴)) |
55 | 48, 23, 53, 53, 54 | syl13anc 1370 |
. . . . . 6
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑥 ∈ 𝐻) → ((𝑥 ⊕ 𝐴) = 𝐴 ↔ (((invg‘𝐺)‘𝑥) ⊕ 𝐴) = 𝐴)) |
56 | 39, 55 | mpbid 231 |
. . . . 5
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑥 ∈ 𝐻) → (((invg‘𝐺)‘𝑥) ⊕ 𝐴) = 𝐴) |
57 | | oveq1 7262 |
. . . . . . 7
⊢ (𝑢 = ((invg‘𝐺)‘𝑥) → (𝑢 ⊕ 𝐴) = (((invg‘𝐺)‘𝑥) ⊕ 𝐴)) |
58 | 57 | eqeq1d 2740 |
. . . . . 6
⊢ (𝑢 = ((invg‘𝐺)‘𝑥) → ((𝑢 ⊕ 𝐴) = 𝐴 ↔ (((invg‘𝐺)‘𝑥) ⊕ 𝐴) = 𝐴)) |
59 | 58, 1 | elrab2 3620 |
. . . . 5
⊢
(((invg‘𝐺)‘𝑥) ∈ 𝐻 ↔ (((invg‘𝐺)‘𝑥) ∈ 𝑋 ∧ (((invg‘𝐺)‘𝑥) ⊕ 𝐴) = 𝐴)) |
60 | 52, 56, 59 | sylanbrc 582 |
. . . 4
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑥 ∈ 𝐻) → ((invg‘𝐺)‘𝑥) ∈ 𝐻) |
61 | 47, 60 | jca 511 |
. . 3
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑥 ∈ 𝐻) → (∀𝑦 ∈ 𝐻 (𝑥(+g‘𝐺)𝑦) ∈ 𝐻 ∧ ((invg‘𝐺)‘𝑥) ∈ 𝐻)) |
62 | 61 | ralrimiva 3107 |
. 2
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → ∀𝑥 ∈ 𝐻 (∀𝑦 ∈ 𝐻 (𝑥(+g‘𝐺)𝑦) ∈ 𝐻 ∧ ((invg‘𝐺)‘𝑥) ∈ 𝐻)) |
63 | 6, 31, 50 | issubg2 18685 |
. . 3
⊢ (𝐺 ∈ Grp → (𝐻 ∈ (SubGrp‘𝐺) ↔ (𝐻 ⊆ 𝑋 ∧ 𝐻 ≠ ∅ ∧ ∀𝑥 ∈ 𝐻 (∀𝑦 ∈ 𝐻 (𝑥(+g‘𝐺)𝑦) ∈ 𝐻 ∧ ((invg‘𝐺)‘𝑥) ∈ 𝐻)))) |
64 | 5, 63 | syl 17 |
. 2
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → (𝐻 ∈ (SubGrp‘𝐺) ↔ (𝐻 ⊆ 𝑋 ∧ 𝐻 ≠ ∅ ∧ ∀𝑥 ∈ 𝐻 (∀𝑦 ∈ 𝐻 (𝑥(+g‘𝐺)𝑦) ∈ 𝐻 ∧ ((invg‘𝐺)‘𝑥) ∈ 𝐻)))) |
65 | 3, 15, 62, 64 | mpbir3and 1340 |
1
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → 𝐻 ∈ (SubGrp‘𝐺)) |