MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gastacl Structured version   Visualization version   GIF version

Theorem gastacl 18434
Description: The stabilizer subgroup in a group action. (Contributed by Mario Carneiro, 15-Jan-2015.)
Hypotheses
Ref Expression
gasta.1 𝑋 = (Base‘𝐺)
gasta.2 𝐻 = {𝑢𝑋 ∣ (𝑢 𝐴) = 𝐴}
Assertion
Ref Expression
gastacl (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → 𝐻 ∈ (SubGrp‘𝐺))
Distinct variable groups:   𝑢,   𝑢,𝐴   𝑢,𝐺   𝑢,𝑋
Allowed substitution hints:   𝐻(𝑢)   𝑌(𝑢)

Proof of Theorem gastacl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gasta.2 . . . 4 𝐻 = {𝑢𝑋 ∣ (𝑢 𝐴) = 𝐴}
21ssrab3 4011 . . 3 𝐻𝑋
32a1i 11 . 2 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → 𝐻𝑋)
4 gagrp 18417 . . . . . 6 ( ∈ (𝐺 GrpAct 𝑌) → 𝐺 ∈ Grp)
54adantr 484 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → 𝐺 ∈ Grp)
6 gasta.1 . . . . . 6 𝑋 = (Base‘𝐺)
7 eqid 2801 . . . . . 6 (0g𝐺) = (0g𝐺)
86, 7grpidcl 18126 . . . . 5 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝑋)
95, 8syl 17 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → (0g𝐺) ∈ 𝑋)
107gagrpid 18419 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → ((0g𝐺) 𝐴) = 𝐴)
11 oveq1 7146 . . . . . 6 (𝑢 = (0g𝐺) → (𝑢 𝐴) = ((0g𝐺) 𝐴))
1211eqeq1d 2803 . . . . 5 (𝑢 = (0g𝐺) → ((𝑢 𝐴) = 𝐴 ↔ ((0g𝐺) 𝐴) = 𝐴))
1312, 1elrab2 3634 . . . 4 ((0g𝐺) ∈ 𝐻 ↔ ((0g𝐺) ∈ 𝑋 ∧ ((0g𝐺) 𝐴) = 𝐴))
149, 10, 13sylanbrc 586 . . 3 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → (0g𝐺) ∈ 𝐻)
1514ne0d 4254 . 2 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → 𝐻 ≠ ∅)
16 simpll 766 . . . . . . . . 9 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐻𝑦𝐻)) → ∈ (𝐺 GrpAct 𝑌))
1716, 4syl 17 . . . . . . . 8 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐻𝑦𝐻)) → 𝐺 ∈ Grp)
18 simpr 488 . . . . . . . . . . 11 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐻) → 𝑥𝐻)
19 oveq1 7146 . . . . . . . . . . . . 13 (𝑢 = 𝑥 → (𝑢 𝐴) = (𝑥 𝐴))
2019eqeq1d 2803 . . . . . . . . . . . 12 (𝑢 = 𝑥 → ((𝑢 𝐴) = 𝐴 ↔ (𝑥 𝐴) = 𝐴))
2120, 1elrab2 3634 . . . . . . . . . . 11 (𝑥𝐻 ↔ (𝑥𝑋 ∧ (𝑥 𝐴) = 𝐴))
2218, 21sylib 221 . . . . . . . . . 10 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐻) → (𝑥𝑋 ∧ (𝑥 𝐴) = 𝐴))
2322simpld 498 . . . . . . . . 9 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐻) → 𝑥𝑋)
2423adantrr 716 . . . . . . . 8 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐻𝑦𝐻)) → 𝑥𝑋)
25 simprr 772 . . . . . . . . . 10 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐻𝑦𝐻)) → 𝑦𝐻)
26 oveq1 7146 . . . . . . . . . . . 12 (𝑢 = 𝑦 → (𝑢 𝐴) = (𝑦 𝐴))
2726eqeq1d 2803 . . . . . . . . . . 11 (𝑢 = 𝑦 → ((𝑢 𝐴) = 𝐴 ↔ (𝑦 𝐴) = 𝐴))
2827, 1elrab2 3634 . . . . . . . . . 10 (𝑦𝐻 ↔ (𝑦𝑋 ∧ (𝑦 𝐴) = 𝐴))
2925, 28sylib 221 . . . . . . . . 9 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐻𝑦𝐻)) → (𝑦𝑋 ∧ (𝑦 𝐴) = 𝐴))
3029simpld 498 . . . . . . . 8 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐻𝑦𝐻)) → 𝑦𝑋)
31 eqid 2801 . . . . . . . . 9 (+g𝐺) = (+g𝐺)
326, 31grpcl 18106 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑥𝑋𝑦𝑋) → (𝑥(+g𝐺)𝑦) ∈ 𝑋)
3317, 24, 30, 32syl3anc 1368 . . . . . . 7 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐻𝑦𝐻)) → (𝑥(+g𝐺)𝑦) ∈ 𝑋)
34 simplr 768 . . . . . . . . 9 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐻𝑦𝐻)) → 𝐴𝑌)
356, 31gaass 18422 . . . . . . . . 9 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑥𝑋𝑦𝑋𝐴𝑌)) → ((𝑥(+g𝐺)𝑦) 𝐴) = (𝑥 (𝑦 𝐴)))
3616, 24, 30, 34, 35syl13anc 1369 . . . . . . . 8 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐻𝑦𝐻)) → ((𝑥(+g𝐺)𝑦) 𝐴) = (𝑥 (𝑦 𝐴)))
3729simprd 499 . . . . . . . . 9 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐻𝑦𝐻)) → (𝑦 𝐴) = 𝐴)
3837oveq2d 7155 . . . . . . . 8 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐻𝑦𝐻)) → (𝑥 (𝑦 𝐴)) = (𝑥 𝐴))
3922simprd 499 . . . . . . . . 9 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐻) → (𝑥 𝐴) = 𝐴)
4039adantrr 716 . . . . . . . 8 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐻𝑦𝐻)) → (𝑥 𝐴) = 𝐴)
4136, 38, 403eqtrd 2840 . . . . . . 7 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐻𝑦𝐻)) → ((𝑥(+g𝐺)𝑦) 𝐴) = 𝐴)
42 oveq1 7146 . . . . . . . . 9 (𝑢 = (𝑥(+g𝐺)𝑦) → (𝑢 𝐴) = ((𝑥(+g𝐺)𝑦) 𝐴))
4342eqeq1d 2803 . . . . . . . 8 (𝑢 = (𝑥(+g𝐺)𝑦) → ((𝑢 𝐴) = 𝐴 ↔ ((𝑥(+g𝐺)𝑦) 𝐴) = 𝐴))
4443, 1elrab2 3634 . . . . . . 7 ((𝑥(+g𝐺)𝑦) ∈ 𝐻 ↔ ((𝑥(+g𝐺)𝑦) ∈ 𝑋 ∧ ((𝑥(+g𝐺)𝑦) 𝐴) = 𝐴))
4533, 41, 44sylanbrc 586 . . . . . 6 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐻𝑦𝐻)) → (𝑥(+g𝐺)𝑦) ∈ 𝐻)
4645anassrs 471 . . . . 5 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐻) ∧ 𝑦𝐻) → (𝑥(+g𝐺)𝑦) ∈ 𝐻)
4746ralrimiva 3152 . . . 4 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐻) → ∀𝑦𝐻 (𝑥(+g𝐺)𝑦) ∈ 𝐻)
48 simpll 766 . . . . . . 7 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐻) → ∈ (𝐺 GrpAct 𝑌))
4948, 4syl 17 . . . . . 6 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐻) → 𝐺 ∈ Grp)
50 eqid 2801 . . . . . . 7 (invg𝐺) = (invg𝐺)
516, 50grpinvcl 18146 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → ((invg𝐺)‘𝑥) ∈ 𝑋)
5249, 23, 51syl2anc 587 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐻) → ((invg𝐺)‘𝑥) ∈ 𝑋)
53 simplr 768 . . . . . . 7 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐻) → 𝐴𝑌)
546, 50gacan 18430 . . . . . . 7 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑥𝑋𝐴𝑌𝐴𝑌)) → ((𝑥 𝐴) = 𝐴 ↔ (((invg𝐺)‘𝑥) 𝐴) = 𝐴))
5548, 23, 53, 53, 54syl13anc 1369 . . . . . 6 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐻) → ((𝑥 𝐴) = 𝐴 ↔ (((invg𝐺)‘𝑥) 𝐴) = 𝐴))
5639, 55mpbid 235 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐻) → (((invg𝐺)‘𝑥) 𝐴) = 𝐴)
57 oveq1 7146 . . . . . . 7 (𝑢 = ((invg𝐺)‘𝑥) → (𝑢 𝐴) = (((invg𝐺)‘𝑥) 𝐴))
5857eqeq1d 2803 . . . . . 6 (𝑢 = ((invg𝐺)‘𝑥) → ((𝑢 𝐴) = 𝐴 ↔ (((invg𝐺)‘𝑥) 𝐴) = 𝐴))
5958, 1elrab2 3634 . . . . 5 (((invg𝐺)‘𝑥) ∈ 𝐻 ↔ (((invg𝐺)‘𝑥) ∈ 𝑋 ∧ (((invg𝐺)‘𝑥) 𝐴) = 𝐴))
6052, 56, 59sylanbrc 586 . . . 4 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐻) → ((invg𝐺)‘𝑥) ∈ 𝐻)
6147, 60jca 515 . . 3 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐻) → (∀𝑦𝐻 (𝑥(+g𝐺)𝑦) ∈ 𝐻 ∧ ((invg𝐺)‘𝑥) ∈ 𝐻))
6261ralrimiva 3152 . 2 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → ∀𝑥𝐻 (∀𝑦𝐻 (𝑥(+g𝐺)𝑦) ∈ 𝐻 ∧ ((invg𝐺)‘𝑥) ∈ 𝐻))
636, 31, 50issubg2 18289 . . 3 (𝐺 ∈ Grp → (𝐻 ∈ (SubGrp‘𝐺) ↔ (𝐻𝑋𝐻 ≠ ∅ ∧ ∀𝑥𝐻 (∀𝑦𝐻 (𝑥(+g𝐺)𝑦) ∈ 𝐻 ∧ ((invg𝐺)‘𝑥) ∈ 𝐻))))
645, 63syl 17 . 2 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → (𝐻 ∈ (SubGrp‘𝐺) ↔ (𝐻𝑋𝐻 ≠ ∅ ∧ ∀𝑥𝐻 (∀𝑦𝐻 (𝑥(+g𝐺)𝑦) ∈ 𝐻 ∧ ((invg𝐺)‘𝑥) ∈ 𝐻))))
653, 15, 62, 64mpbir3and 1339 1 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → 𝐻 ∈ (SubGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2112  wne 2990  wral 3109  {crab 3113  wss 3884  c0 4246  cfv 6328  (class class class)co 7139  Basecbs 16478  +gcplusg 16560  0gc0g 16708  Grpcgrp 18098  invgcminusg 18099  SubGrpcsubg 18268   GrpAct cga 18414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-map 8395  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-2 11692  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-0g 16710  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-grp 18101  df-minusg 18102  df-subg 18271  df-ga 18415
This theorem is referenced by:  gastacos  18435  orbstafun  18436  orbstaval  18437  orbsta  18438  orbsta2  18439  sylow1lem5  18722
  Copyright terms: Public domain W3C validator