MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gastacl Structured version   Visualization version   GIF version

Theorem gastacl 18092
Description: The stabilizer subgroup in a group action. (Contributed by Mario Carneiro, 15-Jan-2015.)
Hypotheses
Ref Expression
gasta.1 𝑋 = (Base‘𝐺)
gasta.2 𝐻 = {𝑢𝑋 ∣ (𝑢 𝐴) = 𝐴}
Assertion
Ref Expression
gastacl (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → 𝐻 ∈ (SubGrp‘𝐺))
Distinct variable groups:   𝑢,   𝑢,𝐴   𝑢,𝐺   𝑢,𝑋
Allowed substitution hints:   𝐻(𝑢)   𝑌(𝑢)

Proof of Theorem gastacl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gasta.2 . . . 4 𝐻 = {𝑢𝑋 ∣ (𝑢 𝐴) = 𝐴}
2 ssrab2 3912 . . . 4 {𝑢𝑋 ∣ (𝑢 𝐴) = 𝐴} ⊆ 𝑋
31, 2eqsstri 3860 . . 3 𝐻𝑋
43a1i 11 . 2 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → 𝐻𝑋)
5 gagrp 18075 . . . . . 6 ( ∈ (𝐺 GrpAct 𝑌) → 𝐺 ∈ Grp)
65adantr 474 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → 𝐺 ∈ Grp)
7 gasta.1 . . . . . 6 𝑋 = (Base‘𝐺)
8 eqid 2825 . . . . . 6 (0g𝐺) = (0g𝐺)
97, 8grpidcl 17804 . . . . 5 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝑋)
106, 9syl 17 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → (0g𝐺) ∈ 𝑋)
118gagrpid 18077 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → ((0g𝐺) 𝐴) = 𝐴)
12 oveq1 6912 . . . . . 6 (𝑢 = (0g𝐺) → (𝑢 𝐴) = ((0g𝐺) 𝐴))
1312eqeq1d 2827 . . . . 5 (𝑢 = (0g𝐺) → ((𝑢 𝐴) = 𝐴 ↔ ((0g𝐺) 𝐴) = 𝐴))
1413, 1elrab2 3589 . . . 4 ((0g𝐺) ∈ 𝐻 ↔ ((0g𝐺) ∈ 𝑋 ∧ ((0g𝐺) 𝐴) = 𝐴))
1510, 11, 14sylanbrc 580 . . 3 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → (0g𝐺) ∈ 𝐻)
1615ne0d 4151 . 2 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → 𝐻 ≠ ∅)
17 simpll 785 . . . . . . . . 9 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐻𝑦𝐻)) → ∈ (𝐺 GrpAct 𝑌))
1817, 5syl 17 . . . . . . . 8 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐻𝑦𝐻)) → 𝐺 ∈ Grp)
19 simpr 479 . . . . . . . . . . 11 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐻) → 𝑥𝐻)
20 oveq1 6912 . . . . . . . . . . . . 13 (𝑢 = 𝑥 → (𝑢 𝐴) = (𝑥 𝐴))
2120eqeq1d 2827 . . . . . . . . . . . 12 (𝑢 = 𝑥 → ((𝑢 𝐴) = 𝐴 ↔ (𝑥 𝐴) = 𝐴))
2221, 1elrab2 3589 . . . . . . . . . . 11 (𝑥𝐻 ↔ (𝑥𝑋 ∧ (𝑥 𝐴) = 𝐴))
2319, 22sylib 210 . . . . . . . . . 10 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐻) → (𝑥𝑋 ∧ (𝑥 𝐴) = 𝐴))
2423simpld 490 . . . . . . . . 9 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐻) → 𝑥𝑋)
2524adantrr 710 . . . . . . . 8 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐻𝑦𝐻)) → 𝑥𝑋)
26 simprr 791 . . . . . . . . . 10 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐻𝑦𝐻)) → 𝑦𝐻)
27 oveq1 6912 . . . . . . . . . . . 12 (𝑢 = 𝑦 → (𝑢 𝐴) = (𝑦 𝐴))
2827eqeq1d 2827 . . . . . . . . . . 11 (𝑢 = 𝑦 → ((𝑢 𝐴) = 𝐴 ↔ (𝑦 𝐴) = 𝐴))
2928, 1elrab2 3589 . . . . . . . . . 10 (𝑦𝐻 ↔ (𝑦𝑋 ∧ (𝑦 𝐴) = 𝐴))
3026, 29sylib 210 . . . . . . . . 9 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐻𝑦𝐻)) → (𝑦𝑋 ∧ (𝑦 𝐴) = 𝐴))
3130simpld 490 . . . . . . . 8 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐻𝑦𝐻)) → 𝑦𝑋)
32 eqid 2825 . . . . . . . . 9 (+g𝐺) = (+g𝐺)
337, 32grpcl 17784 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑥𝑋𝑦𝑋) → (𝑥(+g𝐺)𝑦) ∈ 𝑋)
3418, 25, 31, 33syl3anc 1496 . . . . . . 7 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐻𝑦𝐻)) → (𝑥(+g𝐺)𝑦) ∈ 𝑋)
35 simplr 787 . . . . . . . . 9 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐻𝑦𝐻)) → 𝐴𝑌)
367, 32gaass 18080 . . . . . . . . 9 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑥𝑋𝑦𝑋𝐴𝑌)) → ((𝑥(+g𝐺)𝑦) 𝐴) = (𝑥 (𝑦 𝐴)))
3717, 25, 31, 35, 36syl13anc 1497 . . . . . . . 8 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐻𝑦𝐻)) → ((𝑥(+g𝐺)𝑦) 𝐴) = (𝑥 (𝑦 𝐴)))
3830simprd 491 . . . . . . . . 9 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐻𝑦𝐻)) → (𝑦 𝐴) = 𝐴)
3938oveq2d 6921 . . . . . . . 8 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐻𝑦𝐻)) → (𝑥 (𝑦 𝐴)) = (𝑥 𝐴))
4023simprd 491 . . . . . . . . 9 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐻) → (𝑥 𝐴) = 𝐴)
4140adantrr 710 . . . . . . . 8 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐻𝑦𝐻)) → (𝑥 𝐴) = 𝐴)
4237, 39, 413eqtrd 2865 . . . . . . 7 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐻𝑦𝐻)) → ((𝑥(+g𝐺)𝑦) 𝐴) = 𝐴)
43 oveq1 6912 . . . . . . . . 9 (𝑢 = (𝑥(+g𝐺)𝑦) → (𝑢 𝐴) = ((𝑥(+g𝐺)𝑦) 𝐴))
4443eqeq1d 2827 . . . . . . . 8 (𝑢 = (𝑥(+g𝐺)𝑦) → ((𝑢 𝐴) = 𝐴 ↔ ((𝑥(+g𝐺)𝑦) 𝐴) = 𝐴))
4544, 1elrab2 3589 . . . . . . 7 ((𝑥(+g𝐺)𝑦) ∈ 𝐻 ↔ ((𝑥(+g𝐺)𝑦) ∈ 𝑋 ∧ ((𝑥(+g𝐺)𝑦) 𝐴) = 𝐴))
4634, 42, 45sylanbrc 580 . . . . . 6 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐻𝑦𝐻)) → (𝑥(+g𝐺)𝑦) ∈ 𝐻)
4746anassrs 461 . . . . 5 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐻) ∧ 𝑦𝐻) → (𝑥(+g𝐺)𝑦) ∈ 𝐻)
4847ralrimiva 3175 . . . 4 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐻) → ∀𝑦𝐻 (𝑥(+g𝐺)𝑦) ∈ 𝐻)
49 simpll 785 . . . . . . 7 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐻) → ∈ (𝐺 GrpAct 𝑌))
5049, 5syl 17 . . . . . 6 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐻) → 𝐺 ∈ Grp)
51 eqid 2825 . . . . . . 7 (invg𝐺) = (invg𝐺)
527, 51grpinvcl 17821 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → ((invg𝐺)‘𝑥) ∈ 𝑋)
5350, 24, 52syl2anc 581 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐻) → ((invg𝐺)‘𝑥) ∈ 𝑋)
54 simplr 787 . . . . . . 7 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐻) → 𝐴𝑌)
557, 51gacan 18088 . . . . . . 7 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑥𝑋𝐴𝑌𝐴𝑌)) → ((𝑥 𝐴) = 𝐴 ↔ (((invg𝐺)‘𝑥) 𝐴) = 𝐴))
5649, 24, 54, 54, 55syl13anc 1497 . . . . . 6 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐻) → ((𝑥 𝐴) = 𝐴 ↔ (((invg𝐺)‘𝑥) 𝐴) = 𝐴))
5740, 56mpbid 224 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐻) → (((invg𝐺)‘𝑥) 𝐴) = 𝐴)
58 oveq1 6912 . . . . . . 7 (𝑢 = ((invg𝐺)‘𝑥) → (𝑢 𝐴) = (((invg𝐺)‘𝑥) 𝐴))
5958eqeq1d 2827 . . . . . 6 (𝑢 = ((invg𝐺)‘𝑥) → ((𝑢 𝐴) = 𝐴 ↔ (((invg𝐺)‘𝑥) 𝐴) = 𝐴))
6059, 1elrab2 3589 . . . . 5 (((invg𝐺)‘𝑥) ∈ 𝐻 ↔ (((invg𝐺)‘𝑥) ∈ 𝑋 ∧ (((invg𝐺)‘𝑥) 𝐴) = 𝐴))
6153, 57, 60sylanbrc 580 . . . 4 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐻) → ((invg𝐺)‘𝑥) ∈ 𝐻)
6248, 61jca 509 . . 3 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐻) → (∀𝑦𝐻 (𝑥(+g𝐺)𝑦) ∈ 𝐻 ∧ ((invg𝐺)‘𝑥) ∈ 𝐻))
6362ralrimiva 3175 . 2 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → ∀𝑥𝐻 (∀𝑦𝐻 (𝑥(+g𝐺)𝑦) ∈ 𝐻 ∧ ((invg𝐺)‘𝑥) ∈ 𝐻))
647, 32, 51issubg2 17960 . . 3 (𝐺 ∈ Grp → (𝐻 ∈ (SubGrp‘𝐺) ↔ (𝐻𝑋𝐻 ≠ ∅ ∧ ∀𝑥𝐻 (∀𝑦𝐻 (𝑥(+g𝐺)𝑦) ∈ 𝐻 ∧ ((invg𝐺)‘𝑥) ∈ 𝐻))))
656, 64syl 17 . 2 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → (𝐻 ∈ (SubGrp‘𝐺) ↔ (𝐻𝑋𝐻 ≠ ∅ ∧ ∀𝑥𝐻 (∀𝑦𝐻 (𝑥(+g𝐺)𝑦) ∈ 𝐻 ∧ ((invg𝐺)‘𝑥) ∈ 𝐻))))
664, 16, 63, 65mpbir3and 1448 1 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → 𝐻 ∈ (SubGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1113   = wceq 1658  wcel 2166  wne 2999  wral 3117  {crab 3121  wss 3798  c0 4144  cfv 6123  (class class class)co 6905  Basecbs 16222  +gcplusg 16305  0gc0g 16453  Grpcgrp 17776  invgcminusg 17777  SubGrpcsubg 17939   GrpAct cga 18072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-er 8009  df-map 8124  df-en 8223  df-dom 8224  df-sdom 8225  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-nn 11351  df-2 11414  df-ndx 16225  df-slot 16226  df-base 16228  df-sets 16229  df-ress 16230  df-plusg 16318  df-0g 16455  df-mgm 17595  df-sgrp 17637  df-mnd 17648  df-grp 17779  df-minusg 17780  df-subg 17942  df-ga 18073
This theorem is referenced by:  gastacos  18093  orbstafun  18094  orbstaval  18095  orbsta  18096  orbsta2  18097  sylow1lem5  18368
  Copyright terms: Public domain W3C validator