MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gastacl Structured version   Visualization version   GIF version

Theorem gastacl 19327
Description: The stabilizer subgroup in a group action. (Contributed by Mario Carneiro, 15-Jan-2015.)
Hypotheses
Ref Expression
gasta.1 𝑋 = (Base‘𝐺)
gasta.2 𝐻 = {𝑢𝑋 ∣ (𝑢 𝐴) = 𝐴}
Assertion
Ref Expression
gastacl (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → 𝐻 ∈ (SubGrp‘𝐺))
Distinct variable groups:   𝑢,   𝑢,𝐴   𝑢,𝐺   𝑢,𝑋
Allowed substitution hints:   𝐻(𝑢)   𝑌(𝑢)

Proof of Theorem gastacl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gasta.2 . . . 4 𝐻 = {𝑢𝑋 ∣ (𝑢 𝐴) = 𝐴}
21ssrab3 4082 . . 3 𝐻𝑋
32a1i 11 . 2 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → 𝐻𝑋)
4 gagrp 19310 . . . . . 6 ( ∈ (𝐺 GrpAct 𝑌) → 𝐺 ∈ Grp)
54adantr 480 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → 𝐺 ∈ Grp)
6 gasta.1 . . . . . 6 𝑋 = (Base‘𝐺)
7 eqid 2737 . . . . . 6 (0g𝐺) = (0g𝐺)
86, 7grpidcl 18983 . . . . 5 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝑋)
95, 8syl 17 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → (0g𝐺) ∈ 𝑋)
107gagrpid 19312 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → ((0g𝐺) 𝐴) = 𝐴)
11 oveq1 7438 . . . . . 6 (𝑢 = (0g𝐺) → (𝑢 𝐴) = ((0g𝐺) 𝐴))
1211eqeq1d 2739 . . . . 5 (𝑢 = (0g𝐺) → ((𝑢 𝐴) = 𝐴 ↔ ((0g𝐺) 𝐴) = 𝐴))
1312, 1elrab2 3695 . . . 4 ((0g𝐺) ∈ 𝐻 ↔ ((0g𝐺) ∈ 𝑋 ∧ ((0g𝐺) 𝐴) = 𝐴))
149, 10, 13sylanbrc 583 . . 3 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → (0g𝐺) ∈ 𝐻)
1514ne0d 4342 . 2 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → 𝐻 ≠ ∅)
16 simpll 767 . . . . . . . . 9 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐻𝑦𝐻)) → ∈ (𝐺 GrpAct 𝑌))
1716, 4syl 17 . . . . . . . 8 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐻𝑦𝐻)) → 𝐺 ∈ Grp)
18 simpr 484 . . . . . . . . . . 11 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐻) → 𝑥𝐻)
19 oveq1 7438 . . . . . . . . . . . . 13 (𝑢 = 𝑥 → (𝑢 𝐴) = (𝑥 𝐴))
2019eqeq1d 2739 . . . . . . . . . . . 12 (𝑢 = 𝑥 → ((𝑢 𝐴) = 𝐴 ↔ (𝑥 𝐴) = 𝐴))
2120, 1elrab2 3695 . . . . . . . . . . 11 (𝑥𝐻 ↔ (𝑥𝑋 ∧ (𝑥 𝐴) = 𝐴))
2218, 21sylib 218 . . . . . . . . . 10 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐻) → (𝑥𝑋 ∧ (𝑥 𝐴) = 𝐴))
2322simpld 494 . . . . . . . . 9 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐻) → 𝑥𝑋)
2423adantrr 717 . . . . . . . 8 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐻𝑦𝐻)) → 𝑥𝑋)
25 simprr 773 . . . . . . . . . 10 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐻𝑦𝐻)) → 𝑦𝐻)
26 oveq1 7438 . . . . . . . . . . . 12 (𝑢 = 𝑦 → (𝑢 𝐴) = (𝑦 𝐴))
2726eqeq1d 2739 . . . . . . . . . . 11 (𝑢 = 𝑦 → ((𝑢 𝐴) = 𝐴 ↔ (𝑦 𝐴) = 𝐴))
2827, 1elrab2 3695 . . . . . . . . . 10 (𝑦𝐻 ↔ (𝑦𝑋 ∧ (𝑦 𝐴) = 𝐴))
2925, 28sylib 218 . . . . . . . . 9 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐻𝑦𝐻)) → (𝑦𝑋 ∧ (𝑦 𝐴) = 𝐴))
3029simpld 494 . . . . . . . 8 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐻𝑦𝐻)) → 𝑦𝑋)
31 eqid 2737 . . . . . . . . 9 (+g𝐺) = (+g𝐺)
326, 31grpcl 18959 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑥𝑋𝑦𝑋) → (𝑥(+g𝐺)𝑦) ∈ 𝑋)
3317, 24, 30, 32syl3anc 1373 . . . . . . 7 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐻𝑦𝐻)) → (𝑥(+g𝐺)𝑦) ∈ 𝑋)
34 simplr 769 . . . . . . . . 9 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐻𝑦𝐻)) → 𝐴𝑌)
356, 31gaass 19315 . . . . . . . . 9 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑥𝑋𝑦𝑋𝐴𝑌)) → ((𝑥(+g𝐺)𝑦) 𝐴) = (𝑥 (𝑦 𝐴)))
3616, 24, 30, 34, 35syl13anc 1374 . . . . . . . 8 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐻𝑦𝐻)) → ((𝑥(+g𝐺)𝑦) 𝐴) = (𝑥 (𝑦 𝐴)))
3729simprd 495 . . . . . . . . 9 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐻𝑦𝐻)) → (𝑦 𝐴) = 𝐴)
3837oveq2d 7447 . . . . . . . 8 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐻𝑦𝐻)) → (𝑥 (𝑦 𝐴)) = (𝑥 𝐴))
3922simprd 495 . . . . . . . . 9 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐻) → (𝑥 𝐴) = 𝐴)
4039adantrr 717 . . . . . . . 8 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐻𝑦𝐻)) → (𝑥 𝐴) = 𝐴)
4136, 38, 403eqtrd 2781 . . . . . . 7 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐻𝑦𝐻)) → ((𝑥(+g𝐺)𝑦) 𝐴) = 𝐴)
42 oveq1 7438 . . . . . . . . 9 (𝑢 = (𝑥(+g𝐺)𝑦) → (𝑢 𝐴) = ((𝑥(+g𝐺)𝑦) 𝐴))
4342eqeq1d 2739 . . . . . . . 8 (𝑢 = (𝑥(+g𝐺)𝑦) → ((𝑢 𝐴) = 𝐴 ↔ ((𝑥(+g𝐺)𝑦) 𝐴) = 𝐴))
4443, 1elrab2 3695 . . . . . . 7 ((𝑥(+g𝐺)𝑦) ∈ 𝐻 ↔ ((𝑥(+g𝐺)𝑦) ∈ 𝑋 ∧ ((𝑥(+g𝐺)𝑦) 𝐴) = 𝐴))
4533, 41, 44sylanbrc 583 . . . . . 6 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐻𝑦𝐻)) → (𝑥(+g𝐺)𝑦) ∈ 𝐻)
4645anassrs 467 . . . . 5 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐻) ∧ 𝑦𝐻) → (𝑥(+g𝐺)𝑦) ∈ 𝐻)
4746ralrimiva 3146 . . . 4 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐻) → ∀𝑦𝐻 (𝑥(+g𝐺)𝑦) ∈ 𝐻)
48 simpll 767 . . . . . . 7 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐻) → ∈ (𝐺 GrpAct 𝑌))
4948, 4syl 17 . . . . . 6 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐻) → 𝐺 ∈ Grp)
50 eqid 2737 . . . . . . 7 (invg𝐺) = (invg𝐺)
516, 50grpinvcl 19005 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → ((invg𝐺)‘𝑥) ∈ 𝑋)
5249, 23, 51syl2anc 584 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐻) → ((invg𝐺)‘𝑥) ∈ 𝑋)
53 simplr 769 . . . . . . 7 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐻) → 𝐴𝑌)
546, 50gacan 19323 . . . . . . 7 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑥𝑋𝐴𝑌𝐴𝑌)) → ((𝑥 𝐴) = 𝐴 ↔ (((invg𝐺)‘𝑥) 𝐴) = 𝐴))
5548, 23, 53, 53, 54syl13anc 1374 . . . . . 6 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐻) → ((𝑥 𝐴) = 𝐴 ↔ (((invg𝐺)‘𝑥) 𝐴) = 𝐴))
5639, 55mpbid 232 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐻) → (((invg𝐺)‘𝑥) 𝐴) = 𝐴)
57 oveq1 7438 . . . . . . 7 (𝑢 = ((invg𝐺)‘𝑥) → (𝑢 𝐴) = (((invg𝐺)‘𝑥) 𝐴))
5857eqeq1d 2739 . . . . . 6 (𝑢 = ((invg𝐺)‘𝑥) → ((𝑢 𝐴) = 𝐴 ↔ (((invg𝐺)‘𝑥) 𝐴) = 𝐴))
5958, 1elrab2 3695 . . . . 5 (((invg𝐺)‘𝑥) ∈ 𝐻 ↔ (((invg𝐺)‘𝑥) ∈ 𝑋 ∧ (((invg𝐺)‘𝑥) 𝐴) = 𝐴))
6052, 56, 59sylanbrc 583 . . . 4 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐻) → ((invg𝐺)‘𝑥) ∈ 𝐻)
6147, 60jca 511 . . 3 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐻) → (∀𝑦𝐻 (𝑥(+g𝐺)𝑦) ∈ 𝐻 ∧ ((invg𝐺)‘𝑥) ∈ 𝐻))
6261ralrimiva 3146 . 2 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → ∀𝑥𝐻 (∀𝑦𝐻 (𝑥(+g𝐺)𝑦) ∈ 𝐻 ∧ ((invg𝐺)‘𝑥) ∈ 𝐻))
636, 31, 50issubg2 19159 . . 3 (𝐺 ∈ Grp → (𝐻 ∈ (SubGrp‘𝐺) ↔ (𝐻𝑋𝐻 ≠ ∅ ∧ ∀𝑥𝐻 (∀𝑦𝐻 (𝑥(+g𝐺)𝑦) ∈ 𝐻 ∧ ((invg𝐺)‘𝑥) ∈ 𝐻))))
645, 63syl 17 . 2 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → (𝐻 ∈ (SubGrp‘𝐺) ↔ (𝐻𝑋𝐻 ≠ ∅ ∧ ∀𝑥𝐻 (∀𝑦𝐻 (𝑥(+g𝐺)𝑦) ∈ 𝐻 ∧ ((invg𝐺)‘𝑥) ∈ 𝐻))))
653, 15, 62, 64mpbir3and 1343 1 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → 𝐻 ∈ (SubGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940  wral 3061  {crab 3436  wss 3951  c0 4333  cfv 6561  (class class class)co 7431  Basecbs 17247  +gcplusg 17297  0gc0g 17484  Grpcgrp 18951  invgcminusg 18952  SubGrpcsubg 19138   GrpAct cga 19307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-minusg 18955  df-subg 19141  df-ga 19308
This theorem is referenced by:  gastacos  19328  orbstafun  19329  orbstaval  19330  orbsta  19331  orbsta2  19332  sylow1lem5  19620
  Copyright terms: Public domain W3C validator