| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | gasta.2 | . . . 4
⊢ 𝐻 = {𝑢 ∈ 𝑋 ∣ (𝑢 ⊕ 𝐴) = 𝐴} | 
| 2 | 1 | ssrab3 4082 | . . 3
⊢ 𝐻 ⊆ 𝑋 | 
| 3 | 2 | a1i 11 | . 2
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → 𝐻 ⊆ 𝑋) | 
| 4 |  | gagrp 19310 | . . . . . 6
⊢ ( ⊕ ∈
(𝐺 GrpAct 𝑌) → 𝐺 ∈ Grp) | 
| 5 | 4 | adantr 480 | . . . . 5
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → 𝐺 ∈ Grp) | 
| 6 |  | gasta.1 | . . . . . 6
⊢ 𝑋 = (Base‘𝐺) | 
| 7 |  | eqid 2737 | . . . . . 6
⊢
(0g‘𝐺) = (0g‘𝐺) | 
| 8 | 6, 7 | grpidcl 18983 | . . . . 5
⊢ (𝐺 ∈ Grp →
(0g‘𝐺)
∈ 𝑋) | 
| 9 | 5, 8 | syl 17 | . . . 4
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → (0g‘𝐺) ∈ 𝑋) | 
| 10 | 7 | gagrpid 19312 | . . . 4
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → ((0g‘𝐺) ⊕ 𝐴) = 𝐴) | 
| 11 |  | oveq1 7438 | . . . . . 6
⊢ (𝑢 = (0g‘𝐺) → (𝑢 ⊕ 𝐴) = ((0g‘𝐺) ⊕ 𝐴)) | 
| 12 | 11 | eqeq1d 2739 | . . . . 5
⊢ (𝑢 = (0g‘𝐺) → ((𝑢 ⊕ 𝐴) = 𝐴 ↔ ((0g‘𝐺) ⊕ 𝐴) = 𝐴)) | 
| 13 | 12, 1 | elrab2 3695 | . . . 4
⊢
((0g‘𝐺) ∈ 𝐻 ↔ ((0g‘𝐺) ∈ 𝑋 ∧ ((0g‘𝐺) ⊕ 𝐴) = 𝐴)) | 
| 14 | 9, 10, 13 | sylanbrc 583 | . . 3
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → (0g‘𝐺) ∈ 𝐻) | 
| 15 | 14 | ne0d 4342 | . 2
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → 𝐻 ≠ ∅) | 
| 16 |  | simpll 767 | . . . . . . . . 9
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ (𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻)) → ⊕ ∈ (𝐺 GrpAct 𝑌)) | 
| 17 | 16, 4 | syl 17 | . . . . . . . 8
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ (𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻)) → 𝐺 ∈ Grp) | 
| 18 |  | simpr 484 | . . . . . . . . . . 11
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑥 ∈ 𝐻) → 𝑥 ∈ 𝐻) | 
| 19 |  | oveq1 7438 | . . . . . . . . . . . . 13
⊢ (𝑢 = 𝑥 → (𝑢 ⊕ 𝐴) = (𝑥 ⊕ 𝐴)) | 
| 20 | 19 | eqeq1d 2739 | . . . . . . . . . . . 12
⊢ (𝑢 = 𝑥 → ((𝑢 ⊕ 𝐴) = 𝐴 ↔ (𝑥 ⊕ 𝐴) = 𝐴)) | 
| 21 | 20, 1 | elrab2 3695 | . . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐻 ↔ (𝑥 ∈ 𝑋 ∧ (𝑥 ⊕ 𝐴) = 𝐴)) | 
| 22 | 18, 21 | sylib 218 | . . . . . . . . . 10
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑥 ∈ 𝐻) → (𝑥 ∈ 𝑋 ∧ (𝑥 ⊕ 𝐴) = 𝐴)) | 
| 23 | 22 | simpld 494 | . . . . . . . . 9
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑥 ∈ 𝐻) → 𝑥 ∈ 𝑋) | 
| 24 | 23 | adantrr 717 | . . . . . . . 8
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ (𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻)) → 𝑥 ∈ 𝑋) | 
| 25 |  | simprr 773 | . . . . . . . . . 10
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ (𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻)) → 𝑦 ∈ 𝐻) | 
| 26 |  | oveq1 7438 | . . . . . . . . . . . 12
⊢ (𝑢 = 𝑦 → (𝑢 ⊕ 𝐴) = (𝑦 ⊕ 𝐴)) | 
| 27 | 26 | eqeq1d 2739 | . . . . . . . . . . 11
⊢ (𝑢 = 𝑦 → ((𝑢 ⊕ 𝐴) = 𝐴 ↔ (𝑦 ⊕ 𝐴) = 𝐴)) | 
| 28 | 27, 1 | elrab2 3695 | . . . . . . . . . 10
⊢ (𝑦 ∈ 𝐻 ↔ (𝑦 ∈ 𝑋 ∧ (𝑦 ⊕ 𝐴) = 𝐴)) | 
| 29 | 25, 28 | sylib 218 | . . . . . . . . 9
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ (𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻)) → (𝑦 ∈ 𝑋 ∧ (𝑦 ⊕ 𝐴) = 𝐴)) | 
| 30 | 29 | simpld 494 | . . . . . . . 8
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ (𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻)) → 𝑦 ∈ 𝑋) | 
| 31 |  | eqid 2737 | . . . . . . . . 9
⊢
(+g‘𝐺) = (+g‘𝐺) | 
| 32 | 6, 31 | grpcl 18959 | . . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑥(+g‘𝐺)𝑦) ∈ 𝑋) | 
| 33 | 17, 24, 30, 32 | syl3anc 1373 | . . . . . . 7
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ (𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻)) → (𝑥(+g‘𝐺)𝑦) ∈ 𝑋) | 
| 34 |  | simplr 769 | . . . . . . . . 9
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ (𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻)) → 𝐴 ∈ 𝑌) | 
| 35 | 6, 31 | gaass 19315 | . . . . . . . . 9
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌)) → ((𝑥(+g‘𝐺)𝑦) ⊕ 𝐴) = (𝑥 ⊕ (𝑦 ⊕ 𝐴))) | 
| 36 | 16, 24, 30, 34, 35 | syl13anc 1374 | . . . . . . . 8
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ (𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻)) → ((𝑥(+g‘𝐺)𝑦) ⊕ 𝐴) = (𝑥 ⊕ (𝑦 ⊕ 𝐴))) | 
| 37 | 29 | simprd 495 | . . . . . . . . 9
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ (𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻)) → (𝑦 ⊕ 𝐴) = 𝐴) | 
| 38 | 37 | oveq2d 7447 | . . . . . . . 8
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ (𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻)) → (𝑥 ⊕ (𝑦 ⊕ 𝐴)) = (𝑥 ⊕ 𝐴)) | 
| 39 | 22 | simprd 495 | . . . . . . . . 9
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑥 ∈ 𝐻) → (𝑥 ⊕ 𝐴) = 𝐴) | 
| 40 | 39 | adantrr 717 | . . . . . . . 8
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ (𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻)) → (𝑥 ⊕ 𝐴) = 𝐴) | 
| 41 | 36, 38, 40 | 3eqtrd 2781 | . . . . . . 7
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ (𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻)) → ((𝑥(+g‘𝐺)𝑦) ⊕ 𝐴) = 𝐴) | 
| 42 |  | oveq1 7438 | . . . . . . . . 9
⊢ (𝑢 = (𝑥(+g‘𝐺)𝑦) → (𝑢 ⊕ 𝐴) = ((𝑥(+g‘𝐺)𝑦) ⊕ 𝐴)) | 
| 43 | 42 | eqeq1d 2739 | . . . . . . . 8
⊢ (𝑢 = (𝑥(+g‘𝐺)𝑦) → ((𝑢 ⊕ 𝐴) = 𝐴 ↔ ((𝑥(+g‘𝐺)𝑦) ⊕ 𝐴) = 𝐴)) | 
| 44 | 43, 1 | elrab2 3695 | . . . . . . 7
⊢ ((𝑥(+g‘𝐺)𝑦) ∈ 𝐻 ↔ ((𝑥(+g‘𝐺)𝑦) ∈ 𝑋 ∧ ((𝑥(+g‘𝐺)𝑦) ⊕ 𝐴) = 𝐴)) | 
| 45 | 33, 41, 44 | sylanbrc 583 | . . . . . 6
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ (𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻)) → (𝑥(+g‘𝐺)𝑦) ∈ 𝐻) | 
| 46 | 45 | anassrs 467 | . . . . 5
⊢ ((((
⊕
∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑥 ∈ 𝐻) ∧ 𝑦 ∈ 𝐻) → (𝑥(+g‘𝐺)𝑦) ∈ 𝐻) | 
| 47 | 46 | ralrimiva 3146 | . . . 4
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑥 ∈ 𝐻) → ∀𝑦 ∈ 𝐻 (𝑥(+g‘𝐺)𝑦) ∈ 𝐻) | 
| 48 |  | simpll 767 | . . . . . . 7
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑥 ∈ 𝐻) → ⊕ ∈ (𝐺 GrpAct 𝑌)) | 
| 49 | 48, 4 | syl 17 | . . . . . 6
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑥 ∈ 𝐻) → 𝐺 ∈ Grp) | 
| 50 |  | eqid 2737 | . . . . . . 7
⊢
(invg‘𝐺) = (invg‘𝐺) | 
| 51 | 6, 50 | grpinvcl 19005 | . . . . . 6
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) → ((invg‘𝐺)‘𝑥) ∈ 𝑋) | 
| 52 | 49, 23, 51 | syl2anc 584 | . . . . 5
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑥 ∈ 𝐻) → ((invg‘𝐺)‘𝑥) ∈ 𝑋) | 
| 53 |  | simplr 769 | . . . . . . 7
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑥 ∈ 𝐻) → 𝐴 ∈ 𝑌) | 
| 54 | 6, 50 | gacan 19323 | . . . . . . 7
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ (𝑥 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌 ∧ 𝐴 ∈ 𝑌)) → ((𝑥 ⊕ 𝐴) = 𝐴 ↔ (((invg‘𝐺)‘𝑥) ⊕ 𝐴) = 𝐴)) | 
| 55 | 48, 23, 53, 53, 54 | syl13anc 1374 | . . . . . 6
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑥 ∈ 𝐻) → ((𝑥 ⊕ 𝐴) = 𝐴 ↔ (((invg‘𝐺)‘𝑥) ⊕ 𝐴) = 𝐴)) | 
| 56 | 39, 55 | mpbid 232 | . . . . 5
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑥 ∈ 𝐻) → (((invg‘𝐺)‘𝑥) ⊕ 𝐴) = 𝐴) | 
| 57 |  | oveq1 7438 | . . . . . . 7
⊢ (𝑢 = ((invg‘𝐺)‘𝑥) → (𝑢 ⊕ 𝐴) = (((invg‘𝐺)‘𝑥) ⊕ 𝐴)) | 
| 58 | 57 | eqeq1d 2739 | . . . . . 6
⊢ (𝑢 = ((invg‘𝐺)‘𝑥) → ((𝑢 ⊕ 𝐴) = 𝐴 ↔ (((invg‘𝐺)‘𝑥) ⊕ 𝐴) = 𝐴)) | 
| 59 | 58, 1 | elrab2 3695 | . . . . 5
⊢
(((invg‘𝐺)‘𝑥) ∈ 𝐻 ↔ (((invg‘𝐺)‘𝑥) ∈ 𝑋 ∧ (((invg‘𝐺)‘𝑥) ⊕ 𝐴) = 𝐴)) | 
| 60 | 52, 56, 59 | sylanbrc 583 | . . . 4
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑥 ∈ 𝐻) → ((invg‘𝐺)‘𝑥) ∈ 𝐻) | 
| 61 | 47, 60 | jca 511 | . . 3
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑥 ∈ 𝐻) → (∀𝑦 ∈ 𝐻 (𝑥(+g‘𝐺)𝑦) ∈ 𝐻 ∧ ((invg‘𝐺)‘𝑥) ∈ 𝐻)) | 
| 62 | 61 | ralrimiva 3146 | . 2
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → ∀𝑥 ∈ 𝐻 (∀𝑦 ∈ 𝐻 (𝑥(+g‘𝐺)𝑦) ∈ 𝐻 ∧ ((invg‘𝐺)‘𝑥) ∈ 𝐻)) | 
| 63 | 6, 31, 50 | issubg2 19159 | . . 3
⊢ (𝐺 ∈ Grp → (𝐻 ∈ (SubGrp‘𝐺) ↔ (𝐻 ⊆ 𝑋 ∧ 𝐻 ≠ ∅ ∧ ∀𝑥 ∈ 𝐻 (∀𝑦 ∈ 𝐻 (𝑥(+g‘𝐺)𝑦) ∈ 𝐻 ∧ ((invg‘𝐺)‘𝑥) ∈ 𝐻)))) | 
| 64 | 5, 63 | syl 17 | . 2
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → (𝐻 ∈ (SubGrp‘𝐺) ↔ (𝐻 ⊆ 𝑋 ∧ 𝐻 ≠ ∅ ∧ ∀𝑥 ∈ 𝐻 (∀𝑦 ∈ 𝐻 (𝑥(+g‘𝐺)𝑦) ∈ 𝐻 ∧ ((invg‘𝐺)‘𝑥) ∈ 𝐻)))) | 
| 65 | 3, 15, 62, 64 | mpbir3and 1343 | 1
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → 𝐻 ∈ (SubGrp‘𝐺)) |