Step | Hyp | Ref
| Expression |
1 | | gasta.2 |
. . . 4
⊢ 𝐻 = {𝑢 ∈ 𝑋 ∣ (𝑢 ⊕ 𝐴) = 𝐴} |
2 | | ssrab2 3912 |
. . . 4
⊢ {𝑢 ∈ 𝑋 ∣ (𝑢 ⊕ 𝐴) = 𝐴} ⊆ 𝑋 |
3 | 1, 2 | eqsstri 3860 |
. . 3
⊢ 𝐻 ⊆ 𝑋 |
4 | 3 | a1i 11 |
. 2
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → 𝐻 ⊆ 𝑋) |
5 | | gagrp 18075 |
. . . . . 6
⊢ ( ⊕ ∈
(𝐺 GrpAct 𝑌) → 𝐺 ∈ Grp) |
6 | 5 | adantr 474 |
. . . . 5
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → 𝐺 ∈ Grp) |
7 | | gasta.1 |
. . . . . 6
⊢ 𝑋 = (Base‘𝐺) |
8 | | eqid 2825 |
. . . . . 6
⊢
(0g‘𝐺) = (0g‘𝐺) |
9 | 7, 8 | grpidcl 17804 |
. . . . 5
⊢ (𝐺 ∈ Grp →
(0g‘𝐺)
∈ 𝑋) |
10 | 6, 9 | syl 17 |
. . . 4
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → (0g‘𝐺) ∈ 𝑋) |
11 | 8 | gagrpid 18077 |
. . . 4
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → ((0g‘𝐺) ⊕ 𝐴) = 𝐴) |
12 | | oveq1 6912 |
. . . . . 6
⊢ (𝑢 = (0g‘𝐺) → (𝑢 ⊕ 𝐴) = ((0g‘𝐺) ⊕ 𝐴)) |
13 | 12 | eqeq1d 2827 |
. . . . 5
⊢ (𝑢 = (0g‘𝐺) → ((𝑢 ⊕ 𝐴) = 𝐴 ↔ ((0g‘𝐺) ⊕ 𝐴) = 𝐴)) |
14 | 13, 1 | elrab2 3589 |
. . . 4
⊢
((0g‘𝐺) ∈ 𝐻 ↔ ((0g‘𝐺) ∈ 𝑋 ∧ ((0g‘𝐺) ⊕ 𝐴) = 𝐴)) |
15 | 10, 11, 14 | sylanbrc 580 |
. . 3
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → (0g‘𝐺) ∈ 𝐻) |
16 | 15 | ne0d 4151 |
. 2
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → 𝐻 ≠ ∅) |
17 | | simpll 785 |
. . . . . . . . 9
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ (𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻)) → ⊕ ∈ (𝐺 GrpAct 𝑌)) |
18 | 17, 5 | syl 17 |
. . . . . . . 8
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ (𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻)) → 𝐺 ∈ Grp) |
19 | | simpr 479 |
. . . . . . . . . . 11
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑥 ∈ 𝐻) → 𝑥 ∈ 𝐻) |
20 | | oveq1 6912 |
. . . . . . . . . . . . 13
⊢ (𝑢 = 𝑥 → (𝑢 ⊕ 𝐴) = (𝑥 ⊕ 𝐴)) |
21 | 20 | eqeq1d 2827 |
. . . . . . . . . . . 12
⊢ (𝑢 = 𝑥 → ((𝑢 ⊕ 𝐴) = 𝐴 ↔ (𝑥 ⊕ 𝐴) = 𝐴)) |
22 | 21, 1 | elrab2 3589 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐻 ↔ (𝑥 ∈ 𝑋 ∧ (𝑥 ⊕ 𝐴) = 𝐴)) |
23 | 19, 22 | sylib 210 |
. . . . . . . . . 10
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑥 ∈ 𝐻) → (𝑥 ∈ 𝑋 ∧ (𝑥 ⊕ 𝐴) = 𝐴)) |
24 | 23 | simpld 490 |
. . . . . . . . 9
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑥 ∈ 𝐻) → 𝑥 ∈ 𝑋) |
25 | 24 | adantrr 710 |
. . . . . . . 8
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ (𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻)) → 𝑥 ∈ 𝑋) |
26 | | simprr 791 |
. . . . . . . . . 10
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ (𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻)) → 𝑦 ∈ 𝐻) |
27 | | oveq1 6912 |
. . . . . . . . . . . 12
⊢ (𝑢 = 𝑦 → (𝑢 ⊕ 𝐴) = (𝑦 ⊕ 𝐴)) |
28 | 27 | eqeq1d 2827 |
. . . . . . . . . . 11
⊢ (𝑢 = 𝑦 → ((𝑢 ⊕ 𝐴) = 𝐴 ↔ (𝑦 ⊕ 𝐴) = 𝐴)) |
29 | 28, 1 | elrab2 3589 |
. . . . . . . . . 10
⊢ (𝑦 ∈ 𝐻 ↔ (𝑦 ∈ 𝑋 ∧ (𝑦 ⊕ 𝐴) = 𝐴)) |
30 | 26, 29 | sylib 210 |
. . . . . . . . 9
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ (𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻)) → (𝑦 ∈ 𝑋 ∧ (𝑦 ⊕ 𝐴) = 𝐴)) |
31 | 30 | simpld 490 |
. . . . . . . 8
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ (𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻)) → 𝑦 ∈ 𝑋) |
32 | | eqid 2825 |
. . . . . . . . 9
⊢
(+g‘𝐺) = (+g‘𝐺) |
33 | 7, 32 | grpcl 17784 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑥(+g‘𝐺)𝑦) ∈ 𝑋) |
34 | 18, 25, 31, 33 | syl3anc 1496 |
. . . . . . 7
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ (𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻)) → (𝑥(+g‘𝐺)𝑦) ∈ 𝑋) |
35 | | simplr 787 |
. . . . . . . . 9
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ (𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻)) → 𝐴 ∈ 𝑌) |
36 | 7, 32 | gaass 18080 |
. . . . . . . . 9
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌)) → ((𝑥(+g‘𝐺)𝑦) ⊕ 𝐴) = (𝑥 ⊕ (𝑦 ⊕ 𝐴))) |
37 | 17, 25, 31, 35, 36 | syl13anc 1497 |
. . . . . . . 8
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ (𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻)) → ((𝑥(+g‘𝐺)𝑦) ⊕ 𝐴) = (𝑥 ⊕ (𝑦 ⊕ 𝐴))) |
38 | 30 | simprd 491 |
. . . . . . . . 9
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ (𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻)) → (𝑦 ⊕ 𝐴) = 𝐴) |
39 | 38 | oveq2d 6921 |
. . . . . . . 8
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ (𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻)) → (𝑥 ⊕ (𝑦 ⊕ 𝐴)) = (𝑥 ⊕ 𝐴)) |
40 | 23 | simprd 491 |
. . . . . . . . 9
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑥 ∈ 𝐻) → (𝑥 ⊕ 𝐴) = 𝐴) |
41 | 40 | adantrr 710 |
. . . . . . . 8
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ (𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻)) → (𝑥 ⊕ 𝐴) = 𝐴) |
42 | 37, 39, 41 | 3eqtrd 2865 |
. . . . . . 7
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ (𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻)) → ((𝑥(+g‘𝐺)𝑦) ⊕ 𝐴) = 𝐴) |
43 | | oveq1 6912 |
. . . . . . . . 9
⊢ (𝑢 = (𝑥(+g‘𝐺)𝑦) → (𝑢 ⊕ 𝐴) = ((𝑥(+g‘𝐺)𝑦) ⊕ 𝐴)) |
44 | 43 | eqeq1d 2827 |
. . . . . . . 8
⊢ (𝑢 = (𝑥(+g‘𝐺)𝑦) → ((𝑢 ⊕ 𝐴) = 𝐴 ↔ ((𝑥(+g‘𝐺)𝑦) ⊕ 𝐴) = 𝐴)) |
45 | 44, 1 | elrab2 3589 |
. . . . . . 7
⊢ ((𝑥(+g‘𝐺)𝑦) ∈ 𝐻 ↔ ((𝑥(+g‘𝐺)𝑦) ∈ 𝑋 ∧ ((𝑥(+g‘𝐺)𝑦) ⊕ 𝐴) = 𝐴)) |
46 | 34, 42, 45 | sylanbrc 580 |
. . . . . 6
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ (𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻)) → (𝑥(+g‘𝐺)𝑦) ∈ 𝐻) |
47 | 46 | anassrs 461 |
. . . . 5
⊢ ((((
⊕
∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑥 ∈ 𝐻) ∧ 𝑦 ∈ 𝐻) → (𝑥(+g‘𝐺)𝑦) ∈ 𝐻) |
48 | 47 | ralrimiva 3175 |
. . . 4
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑥 ∈ 𝐻) → ∀𝑦 ∈ 𝐻 (𝑥(+g‘𝐺)𝑦) ∈ 𝐻) |
49 | | simpll 785 |
. . . . . . 7
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑥 ∈ 𝐻) → ⊕ ∈ (𝐺 GrpAct 𝑌)) |
50 | 49, 5 | syl 17 |
. . . . . 6
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑥 ∈ 𝐻) → 𝐺 ∈ Grp) |
51 | | eqid 2825 |
. . . . . . 7
⊢
(invg‘𝐺) = (invg‘𝐺) |
52 | 7, 51 | grpinvcl 17821 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) → ((invg‘𝐺)‘𝑥) ∈ 𝑋) |
53 | 50, 24, 52 | syl2anc 581 |
. . . . 5
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑥 ∈ 𝐻) → ((invg‘𝐺)‘𝑥) ∈ 𝑋) |
54 | | simplr 787 |
. . . . . . 7
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑥 ∈ 𝐻) → 𝐴 ∈ 𝑌) |
55 | 7, 51 | gacan 18088 |
. . . . . . 7
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ (𝑥 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌 ∧ 𝐴 ∈ 𝑌)) → ((𝑥 ⊕ 𝐴) = 𝐴 ↔ (((invg‘𝐺)‘𝑥) ⊕ 𝐴) = 𝐴)) |
56 | 49, 24, 54, 54, 55 | syl13anc 1497 |
. . . . . 6
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑥 ∈ 𝐻) → ((𝑥 ⊕ 𝐴) = 𝐴 ↔ (((invg‘𝐺)‘𝑥) ⊕ 𝐴) = 𝐴)) |
57 | 40, 56 | mpbid 224 |
. . . . 5
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑥 ∈ 𝐻) → (((invg‘𝐺)‘𝑥) ⊕ 𝐴) = 𝐴) |
58 | | oveq1 6912 |
. . . . . . 7
⊢ (𝑢 = ((invg‘𝐺)‘𝑥) → (𝑢 ⊕ 𝐴) = (((invg‘𝐺)‘𝑥) ⊕ 𝐴)) |
59 | 58 | eqeq1d 2827 |
. . . . . 6
⊢ (𝑢 = ((invg‘𝐺)‘𝑥) → ((𝑢 ⊕ 𝐴) = 𝐴 ↔ (((invg‘𝐺)‘𝑥) ⊕ 𝐴) = 𝐴)) |
60 | 59, 1 | elrab2 3589 |
. . . . 5
⊢
(((invg‘𝐺)‘𝑥) ∈ 𝐻 ↔ (((invg‘𝐺)‘𝑥) ∈ 𝑋 ∧ (((invg‘𝐺)‘𝑥) ⊕ 𝐴) = 𝐴)) |
61 | 53, 57, 60 | sylanbrc 580 |
. . . 4
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑥 ∈ 𝐻) → ((invg‘𝐺)‘𝑥) ∈ 𝐻) |
62 | 48, 61 | jca 509 |
. . 3
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑥 ∈ 𝐻) → (∀𝑦 ∈ 𝐻 (𝑥(+g‘𝐺)𝑦) ∈ 𝐻 ∧ ((invg‘𝐺)‘𝑥) ∈ 𝐻)) |
63 | 62 | ralrimiva 3175 |
. 2
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → ∀𝑥 ∈ 𝐻 (∀𝑦 ∈ 𝐻 (𝑥(+g‘𝐺)𝑦) ∈ 𝐻 ∧ ((invg‘𝐺)‘𝑥) ∈ 𝐻)) |
64 | 7, 32, 51 | issubg2 17960 |
. . 3
⊢ (𝐺 ∈ Grp → (𝐻 ∈ (SubGrp‘𝐺) ↔ (𝐻 ⊆ 𝑋 ∧ 𝐻 ≠ ∅ ∧ ∀𝑥 ∈ 𝐻 (∀𝑦 ∈ 𝐻 (𝑥(+g‘𝐺)𝑦) ∈ 𝐻 ∧ ((invg‘𝐺)‘𝑥) ∈ 𝐻)))) |
65 | 6, 64 | syl 17 |
. 2
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → (𝐻 ∈ (SubGrp‘𝐺) ↔ (𝐻 ⊆ 𝑋 ∧ 𝐻 ≠ ∅ ∧ ∀𝑥 ∈ 𝐻 (∀𝑦 ∈ 𝐻 (𝑥(+g‘𝐺)𝑦) ∈ 𝐻 ∧ ((invg‘𝐺)‘𝑥) ∈ 𝐻)))) |
66 | 4, 16, 63, 65 | mpbir3and 1448 |
1
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → 𝐻 ∈ (SubGrp‘𝐺)) |