| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > glble | Structured version Visualization version GIF version | ||
| Description: The greatest lower bound is the least element. (Contributed by NM, 22-Oct-2011.) (Revised by NM, 7-Sep-2018.) |
| Ref | Expression |
|---|---|
| glbprop.b | ⊢ 𝐵 = (Base‘𝐾) |
| glbprop.l | ⊢ ≤ = (le‘𝐾) |
| glbprop.u | ⊢ 𝑈 = (glb‘𝐾) |
| glbprop.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
| glbprop.s | ⊢ (𝜑 → 𝑆 ∈ dom 𝑈) |
| glble.x | ⊢ (𝜑 → 𝑋 ∈ 𝑆) |
| Ref | Expression |
|---|---|
| glble | ⊢ (𝜑 → (𝑈‘𝑆) ≤ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 5099 | . 2 ⊢ (𝑦 = 𝑋 → ((𝑈‘𝑆) ≤ 𝑦 ↔ (𝑈‘𝑆) ≤ 𝑋)) | |
| 2 | glbprop.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 3 | glbprop.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 4 | glbprop.u | . . . 4 ⊢ 𝑈 = (glb‘𝐾) | |
| 5 | glbprop.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ 𝑉) | |
| 6 | glbprop.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ dom 𝑈) | |
| 7 | 2, 3, 4, 5, 6 | glbprop 18293 | . . 3 ⊢ (𝜑 → (∀𝑦 ∈ 𝑆 (𝑈‘𝑆) ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ (𝑈‘𝑆)))) |
| 8 | 7 | simpld 494 | . 2 ⊢ (𝜑 → ∀𝑦 ∈ 𝑆 (𝑈‘𝑆) ≤ 𝑦) |
| 9 | glble.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑆) | |
| 10 | 1, 8, 9 | rspcdva 3580 | 1 ⊢ (𝜑 → (𝑈‘𝑆) ≤ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3044 class class class wbr 5095 dom cdm 5623 ‘cfv 6486 Basecbs 17138 lecple 17186 glbcglb 18234 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-glb 18269 |
| This theorem is referenced by: p0le 18351 clatglble 18441 glbsscl 48946 |
| Copyright terms: Public domain | W3C validator |