![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > glble | Structured version Visualization version GIF version |
Description: The greatest lower bound is the least element. (Contributed by NM, 22-Oct-2011.) (Revised by NM, 7-Sep-2018.) |
Ref | Expression |
---|---|
glbprop.b | β’ π΅ = (BaseβπΎ) |
glbprop.l | β’ β€ = (leβπΎ) |
glbprop.u | β’ π = (glbβπΎ) |
glbprop.k | β’ (π β πΎ β π) |
glbprop.s | β’ (π β π β dom π) |
glble.x | β’ (π β π β π) |
Ref | Expression |
---|---|
glble | β’ (π β (πβπ) β€ π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 5151 | . 2 β’ (π¦ = π β ((πβπ) β€ π¦ β (πβπ) β€ π)) | |
2 | glbprop.b | . . . 4 β’ π΅ = (BaseβπΎ) | |
3 | glbprop.l | . . . 4 β’ β€ = (leβπΎ) | |
4 | glbprop.u | . . . 4 β’ π = (glbβπΎ) | |
5 | glbprop.k | . . . 4 β’ (π β πΎ β π) | |
6 | glbprop.s | . . . 4 β’ (π β π β dom π) | |
7 | 2, 3, 4, 5, 6 | glbprop 18328 | . . 3 β’ (π β (βπ¦ β π (πβπ) β€ π¦ β§ βπ§ β π΅ (βπ¦ β π π§ β€ π¦ β π§ β€ (πβπ)))) |
8 | 7 | simpld 493 | . 2 β’ (π β βπ¦ β π (πβπ) β€ π¦) |
9 | glble.x | . 2 β’ (π β π β π) | |
10 | 1, 8, 9 | rspcdva 3612 | 1 β’ (π β (πβπ) β€ π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1539 β wcel 2104 βwral 3059 class class class wbr 5147 dom cdm 5675 βcfv 6542 Basecbs 17148 lecple 17208 glbcglb 18267 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-glb 18304 |
This theorem is referenced by: p0le 18386 clatglble 18474 glbsscl 47681 |
Copyright terms: Public domain | W3C validator |