Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > glble | Structured version Visualization version GIF version |
Description: The greatest lower bound is the least element. (Contributed by NM, 22-Oct-2011.) (Revised by NM, 7-Sep-2018.) |
Ref | Expression |
---|---|
glbprop.b | ⊢ 𝐵 = (Base‘𝐾) |
glbprop.l | ⊢ ≤ = (le‘𝐾) |
glbprop.u | ⊢ 𝑈 = (glb‘𝐾) |
glbprop.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
glbprop.s | ⊢ (𝜑 → 𝑆 ∈ dom 𝑈) |
glble.x | ⊢ (𝜑 → 𝑋 ∈ 𝑆) |
Ref | Expression |
---|---|
glble | ⊢ (𝜑 → (𝑈‘𝑆) ≤ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 5057 | . 2 ⊢ (𝑦 = 𝑋 → ((𝑈‘𝑆) ≤ 𝑦 ↔ (𝑈‘𝑆) ≤ 𝑋)) | |
2 | glbprop.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
3 | glbprop.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
4 | glbprop.u | . . . 4 ⊢ 𝑈 = (glb‘𝐾) | |
5 | glbprop.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ 𝑉) | |
6 | glbprop.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ dom 𝑈) | |
7 | 2, 3, 4, 5, 6 | glbprop 17877 | . . 3 ⊢ (𝜑 → (∀𝑦 ∈ 𝑆 (𝑈‘𝑆) ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ (𝑈‘𝑆)))) |
8 | 7 | simpld 498 | . 2 ⊢ (𝜑 → ∀𝑦 ∈ 𝑆 (𝑈‘𝑆) ≤ 𝑦) |
9 | glble.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑆) | |
10 | 1, 8, 9 | rspcdva 3539 | 1 ⊢ (𝜑 → (𝑈‘𝑆) ≤ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∈ wcel 2110 ∀wral 3061 class class class wbr 5053 dom cdm 5551 ‘cfv 6380 Basecbs 16760 lecple 16809 glbcglb 17817 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-glb 17853 |
This theorem is referenced by: p0le 17935 clatglble 18023 glbsscl 45928 |
Copyright terms: Public domain | W3C validator |