![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > glble | Structured version Visualization version GIF version |
Description: The greatest lower bound is the least element. (Contributed by NM, 22-Oct-2011.) (Revised by NM, 7-Sep-2018.) |
Ref | Expression |
---|---|
glbprop.b | ⊢ 𝐵 = (Base‘𝐾) |
glbprop.l | ⊢ ≤ = (le‘𝐾) |
glbprop.u | ⊢ 𝑈 = (glb‘𝐾) |
glbprop.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
glbprop.s | ⊢ (𝜑 → 𝑆 ∈ dom 𝑈) |
glble.x | ⊢ (𝜑 → 𝑋 ∈ 𝑆) |
Ref | Expression |
---|---|
glble | ⊢ (𝜑 → (𝑈‘𝑆) ≤ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 4877 | . 2 ⊢ (𝑦 = 𝑋 → ((𝑈‘𝑆) ≤ 𝑦 ↔ (𝑈‘𝑆) ≤ 𝑋)) | |
2 | glbprop.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
3 | glbprop.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
4 | glbprop.u | . . . 4 ⊢ 𝑈 = (glb‘𝐾) | |
5 | glbprop.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ 𝑉) | |
6 | glbprop.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ dom 𝑈) | |
7 | 2, 3, 4, 5, 6 | glbprop 17352 | . . 3 ⊢ (𝜑 → (∀𝑦 ∈ 𝑆 (𝑈‘𝑆) ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ (𝑈‘𝑆)))) |
8 | 7 | simpld 490 | . 2 ⊢ (𝜑 → ∀𝑦 ∈ 𝑆 (𝑈‘𝑆) ≤ 𝑦) |
9 | glble.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑆) | |
10 | 1, 8, 9 | rspcdva 3532 | 1 ⊢ (𝜑 → (𝑈‘𝑆) ≤ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1658 ∈ wcel 2166 ∀wral 3117 class class class wbr 4873 dom cdm 5342 ‘cfv 6123 Basecbs 16222 lecple 16312 glbcglb 17296 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-rep 4994 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4659 df-iun 4742 df-br 4874 df-opab 4936 df-mpt 4953 df-id 5250 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-riota 6866 df-glb 17328 |
This theorem is referenced by: p0le 17396 clatglble 17478 |
Copyright terms: Public domain | W3C validator |