Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > glble | Structured version Visualization version GIF version |
Description: The greatest lower bound is the least element. (Contributed by NM, 22-Oct-2011.) (Revised by NM, 7-Sep-2018.) |
Ref | Expression |
---|---|
glbprop.b | ⊢ 𝐵 = (Base‘𝐾) |
glbprop.l | ⊢ ≤ = (le‘𝐾) |
glbprop.u | ⊢ 𝑈 = (glb‘𝐾) |
glbprop.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
glbprop.s | ⊢ (𝜑 → 𝑆 ∈ dom 𝑈) |
glble.x | ⊢ (𝜑 → 𝑋 ∈ 𝑆) |
Ref | Expression |
---|---|
glble | ⊢ (𝜑 → (𝑈‘𝑆) ≤ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 5089 | . 2 ⊢ (𝑦 = 𝑋 → ((𝑈‘𝑆) ≤ 𝑦 ↔ (𝑈‘𝑆) ≤ 𝑋)) | |
2 | glbprop.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
3 | glbprop.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
4 | glbprop.u | . . . 4 ⊢ 𝑈 = (glb‘𝐾) | |
5 | glbprop.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ 𝑉) | |
6 | glbprop.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ dom 𝑈) | |
7 | 2, 3, 4, 5, 6 | glbprop 18156 | . . 3 ⊢ (𝜑 → (∀𝑦 ∈ 𝑆 (𝑈‘𝑆) ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ (𝑈‘𝑆)))) |
8 | 7 | simpld 495 | . 2 ⊢ (𝜑 → ∀𝑦 ∈ 𝑆 (𝑈‘𝑆) ≤ 𝑦) |
9 | glble.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑆) | |
10 | 1, 8, 9 | rspcdva 3571 | 1 ⊢ (𝜑 → (𝑈‘𝑆) ≤ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ∀wral 3062 class class class wbr 5085 dom cdm 5605 ‘cfv 6463 Basecbs 16979 lecple 17036 glbcglb 18095 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5222 ax-sep 5236 ax-nul 5243 ax-pow 5301 ax-pr 5365 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4470 df-pw 4545 df-sn 4570 df-pr 4572 df-op 4576 df-uni 4849 df-iun 4937 df-br 5086 df-opab 5148 df-mpt 5169 df-id 5505 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-res 5617 df-ima 5618 df-iota 6415 df-fun 6465 df-fn 6466 df-f 6467 df-f1 6468 df-fo 6469 df-f1o 6470 df-fv 6471 df-riota 7270 df-glb 18132 |
This theorem is referenced by: p0le 18214 clatglble 18302 glbsscl 46514 |
Copyright terms: Public domain | W3C validator |