MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  glble Structured version   Visualization version   GIF version

Theorem glble 18273
Description: The greatest lower bound is the least element. (Contributed by NM, 22-Oct-2011.) (Revised by NM, 7-Sep-2018.)
Hypotheses
Ref Expression
glbprop.b 𝐵 = (Base‘𝐾)
glbprop.l = (le‘𝐾)
glbprop.u 𝑈 = (glb‘𝐾)
glbprop.k (𝜑𝐾𝑉)
glbprop.s (𝜑𝑆 ∈ dom 𝑈)
glble.x (𝜑𝑋𝑆)
Assertion
Ref Expression
glble (𝜑 → (𝑈𝑆) 𝑋)

Proof of Theorem glble
Dummy variables 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 5095 . 2 (𝑦 = 𝑋 → ((𝑈𝑆) 𝑦 ↔ (𝑈𝑆) 𝑋))
2 glbprop.b . . . 4 𝐵 = (Base‘𝐾)
3 glbprop.l . . . 4 = (le‘𝐾)
4 glbprop.u . . . 4 𝑈 = (glb‘𝐾)
5 glbprop.k . . . 4 (𝜑𝐾𝑉)
6 glbprop.s . . . 4 (𝜑𝑆 ∈ dom 𝑈)
72, 3, 4, 5, 6glbprop 18272 . . 3 (𝜑 → (∀𝑦𝑆 (𝑈𝑆) 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 (𝑈𝑆))))
87simpld 494 . 2 (𝜑 → ∀𝑦𝑆 (𝑈𝑆) 𝑦)
9 glble.x . 2 (𝜑𝑋𝑆)
101, 8, 9rspcdva 3578 1 (𝜑 → (𝑈𝑆) 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  wral 3047   class class class wbr 5091  dom cdm 5616  cfv 6481  Basecbs 17117  lecple 17165  glbcglb 18213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-glb 18248
This theorem is referenced by:  p0le  18330  clatglble  18420  glbsscl  48991
  Copyright terms: Public domain W3C validator