MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  glble Structured version   Visualization version   GIF version

Theorem glble 18090
Description: The greatest lower bound is the least element. (Contributed by NM, 22-Oct-2011.) (Revised by NM, 7-Sep-2018.)
Hypotheses
Ref Expression
glbprop.b 𝐵 = (Base‘𝐾)
glbprop.l = (le‘𝐾)
glbprop.u 𝑈 = (glb‘𝐾)
glbprop.k (𝜑𝐾𝑉)
glbprop.s (𝜑𝑆 ∈ dom 𝑈)
glble.x (𝜑𝑋𝑆)
Assertion
Ref Expression
glble (𝜑 → (𝑈𝑆) 𝑋)

Proof of Theorem glble
Dummy variables 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 5078 . 2 (𝑦 = 𝑋 → ((𝑈𝑆) 𝑦 ↔ (𝑈𝑆) 𝑋))
2 glbprop.b . . . 4 𝐵 = (Base‘𝐾)
3 glbprop.l . . . 4 = (le‘𝐾)
4 glbprop.u . . . 4 𝑈 = (glb‘𝐾)
5 glbprop.k . . . 4 (𝜑𝐾𝑉)
6 glbprop.s . . . 4 (𝜑𝑆 ∈ dom 𝑈)
72, 3, 4, 5, 6glbprop 18089 . . 3 (𝜑 → (∀𝑦𝑆 (𝑈𝑆) 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 (𝑈𝑆))))
87simpld 495 . 2 (𝜑 → ∀𝑦𝑆 (𝑈𝑆) 𝑦)
9 glble.x . 2 (𝜑𝑋𝑆)
101, 8, 9rspcdva 3562 1 (𝜑 → (𝑈𝑆) 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  wral 3064   class class class wbr 5074  dom cdm 5589  cfv 6433  Basecbs 16912  lecple 16969  glbcglb 18028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-glb 18065
This theorem is referenced by:  p0le  18147  clatglble  18235  glbsscl  46255
  Copyright terms: Public domain W3C validator