MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  glble Structured version   Visualization version   GIF version

Theorem glble 18294
Description: The greatest lower bound is the least element. (Contributed by NM, 22-Oct-2011.) (Revised by NM, 7-Sep-2018.)
Hypotheses
Ref Expression
glbprop.b 𝐵 = (Base‘𝐾)
glbprop.l = (le‘𝐾)
glbprop.u 𝑈 = (glb‘𝐾)
glbprop.k (𝜑𝐾𝑉)
glbprop.s (𝜑𝑆 ∈ dom 𝑈)
glble.x (𝜑𝑋𝑆)
Assertion
Ref Expression
glble (𝜑 → (𝑈𝑆) 𝑋)

Proof of Theorem glble
Dummy variables 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 5099 . 2 (𝑦 = 𝑋 → ((𝑈𝑆) 𝑦 ↔ (𝑈𝑆) 𝑋))
2 glbprop.b . . . 4 𝐵 = (Base‘𝐾)
3 glbprop.l . . . 4 = (le‘𝐾)
4 glbprop.u . . . 4 𝑈 = (glb‘𝐾)
5 glbprop.k . . . 4 (𝜑𝐾𝑉)
6 glbprop.s . . . 4 (𝜑𝑆 ∈ dom 𝑈)
72, 3, 4, 5, 6glbprop 18293 . . 3 (𝜑 → (∀𝑦𝑆 (𝑈𝑆) 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 (𝑈𝑆))))
87simpld 494 . 2 (𝜑 → ∀𝑦𝑆 (𝑈𝑆) 𝑦)
9 glble.x . 2 (𝜑𝑋𝑆)
101, 8, 9rspcdva 3580 1 (𝜑 → (𝑈𝑆) 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wral 3044   class class class wbr 5095  dom cdm 5623  cfv 6486  Basecbs 17138  lecple 17186  glbcglb 18234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-glb 18269
This theorem is referenced by:  p0le  18351  clatglble  18441  glbsscl  48946
  Copyright terms: Public domain W3C validator