![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > glble | Structured version Visualization version GIF version |
Description: The greatest lower bound is the least element. (Contributed by NM, 22-Oct-2011.) (Revised by NM, 7-Sep-2018.) |
Ref | Expression |
---|---|
glbprop.b | ⊢ 𝐵 = (Base‘𝐾) |
glbprop.l | ⊢ ≤ = (le‘𝐾) |
glbprop.u | ⊢ 𝑈 = (glb‘𝐾) |
glbprop.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
glbprop.s | ⊢ (𝜑 → 𝑆 ∈ dom 𝑈) |
glble.x | ⊢ (𝜑 → 𝑋 ∈ 𝑆) |
Ref | Expression |
---|---|
glble | ⊢ (𝜑 → (𝑈‘𝑆) ≤ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 5152 | . 2 ⊢ (𝑦 = 𝑋 → ((𝑈‘𝑆) ≤ 𝑦 ↔ (𝑈‘𝑆) ≤ 𝑋)) | |
2 | glbprop.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
3 | glbprop.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
4 | glbprop.u | . . . 4 ⊢ 𝑈 = (glb‘𝐾) | |
5 | glbprop.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ 𝑉) | |
6 | glbprop.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ dom 𝑈) | |
7 | 2, 3, 4, 5, 6 | glbprop 18429 | . . 3 ⊢ (𝜑 → (∀𝑦 ∈ 𝑆 (𝑈‘𝑆) ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ (𝑈‘𝑆)))) |
8 | 7 | simpld 494 | . 2 ⊢ (𝜑 → ∀𝑦 ∈ 𝑆 (𝑈‘𝑆) ≤ 𝑦) |
9 | glble.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑆) | |
10 | 1, 8, 9 | rspcdva 3623 | 1 ⊢ (𝜑 → (𝑈‘𝑆) ≤ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 ∀wral 3059 class class class wbr 5148 dom cdm 5689 ‘cfv 6563 Basecbs 17245 lecple 17305 glbcglb 18368 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-glb 18405 |
This theorem is referenced by: p0le 18487 clatglble 18575 glbsscl 48758 |
Copyright terms: Public domain | W3C validator |