| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > glble | Structured version Visualization version GIF version | ||
| Description: The greatest lower bound is the least element. (Contributed by NM, 22-Oct-2011.) (Revised by NM, 7-Sep-2018.) |
| Ref | Expression |
|---|---|
| glbprop.b | ⊢ 𝐵 = (Base‘𝐾) |
| glbprop.l | ⊢ ≤ = (le‘𝐾) |
| glbprop.u | ⊢ 𝑈 = (glb‘𝐾) |
| glbprop.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
| glbprop.s | ⊢ (𝜑 → 𝑆 ∈ dom 𝑈) |
| glble.x | ⊢ (𝜑 → 𝑋 ∈ 𝑆) |
| Ref | Expression |
|---|---|
| glble | ⊢ (𝜑 → (𝑈‘𝑆) ≤ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 5111 | . 2 ⊢ (𝑦 = 𝑋 → ((𝑈‘𝑆) ≤ 𝑦 ↔ (𝑈‘𝑆) ≤ 𝑋)) | |
| 2 | glbprop.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 3 | glbprop.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 4 | glbprop.u | . . . 4 ⊢ 𝑈 = (glb‘𝐾) | |
| 5 | glbprop.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ 𝑉) | |
| 6 | glbprop.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ dom 𝑈) | |
| 7 | 2, 3, 4, 5, 6 | glbprop 18330 | . . 3 ⊢ (𝜑 → (∀𝑦 ∈ 𝑆 (𝑈‘𝑆) ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ (𝑈‘𝑆)))) |
| 8 | 7 | simpld 494 | . 2 ⊢ (𝜑 → ∀𝑦 ∈ 𝑆 (𝑈‘𝑆) ≤ 𝑦) |
| 9 | glble.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑆) | |
| 10 | 1, 8, 9 | rspcdva 3589 | 1 ⊢ (𝜑 → (𝑈‘𝑆) ≤ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3044 class class class wbr 5107 dom cdm 5638 ‘cfv 6511 Basecbs 17179 lecple 17227 glbcglb 18271 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-glb 18306 |
| This theorem is referenced by: p0le 18388 clatglble 18476 glbsscl 48949 |
| Copyright terms: Public domain | W3C validator |