| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > glble | Structured version Visualization version GIF version | ||
| Description: The greatest lower bound is the least element. (Contributed by NM, 22-Oct-2011.) (Revised by NM, 7-Sep-2018.) |
| Ref | Expression |
|---|---|
| glbprop.b | ⊢ 𝐵 = (Base‘𝐾) |
| glbprop.l | ⊢ ≤ = (le‘𝐾) |
| glbprop.u | ⊢ 𝑈 = (glb‘𝐾) |
| glbprop.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
| glbprop.s | ⊢ (𝜑 → 𝑆 ∈ dom 𝑈) |
| glble.x | ⊢ (𝜑 → 𝑋 ∈ 𝑆) |
| Ref | Expression |
|---|---|
| glble | ⊢ (𝜑 → (𝑈‘𝑆) ≤ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 5147 | . 2 ⊢ (𝑦 = 𝑋 → ((𝑈‘𝑆) ≤ 𝑦 ↔ (𝑈‘𝑆) ≤ 𝑋)) | |
| 2 | glbprop.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 3 | glbprop.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 4 | glbprop.u | . . . 4 ⊢ 𝑈 = (glb‘𝐾) | |
| 5 | glbprop.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ 𝑉) | |
| 6 | glbprop.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ dom 𝑈) | |
| 7 | 2, 3, 4, 5, 6 | glbprop 18416 | . . 3 ⊢ (𝜑 → (∀𝑦 ∈ 𝑆 (𝑈‘𝑆) ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ (𝑈‘𝑆)))) |
| 8 | 7 | simpld 494 | . 2 ⊢ (𝜑 → ∀𝑦 ∈ 𝑆 (𝑈‘𝑆) ≤ 𝑦) |
| 9 | glble.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑆) | |
| 10 | 1, 8, 9 | rspcdva 3623 | 1 ⊢ (𝜑 → (𝑈‘𝑆) ≤ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ∀wral 3061 class class class wbr 5143 dom cdm 5685 ‘cfv 6561 Basecbs 17247 lecple 17304 glbcglb 18356 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-glb 18392 |
| This theorem is referenced by: p0le 18474 clatglble 18562 glbsscl 48858 |
| Copyright terms: Public domain | W3C validator |