Step | Hyp | Ref
| Expression |
1 | | lubsscl.t |
. . . 4
β’ (π β π β π) |
2 | | eqid 2731 |
. . . . 5
β’
(BaseβπΎ) =
(BaseβπΎ) |
3 | | eqid 2731 |
. . . . 5
β’
(leβπΎ) =
(leβπΎ) |
4 | | glbsscl.g |
. . . . 5
β’ πΊ = (glbβπΎ) |
5 | | lubsscl.k |
. . . . 5
β’ (π β πΎ β Poset) |
6 | | glbsscl.s |
. . . . 5
β’ (π β π β dom πΊ) |
7 | 2, 3, 4, 5, 6 | glbelss 18325 |
. . . 4
β’ (π β π β (BaseβπΎ)) |
8 | 1, 7 | sstrd 3992 |
. . 3
β’ (π β π β (BaseβπΎ)) |
9 | | glbsscl.x |
. . . . 5
β’ (π β (πΊβπ) β π) |
10 | 8, 9 | sseldd 3983 |
. . . 4
β’ (π β (πΊβπ) β (BaseβπΎ)) |
11 | 5 | adantr 480 |
. . . . . 6
β’ ((π β§ π¦ β π) β πΎ β Poset) |
12 | 6 | adantr 480 |
. . . . . 6
β’ ((π β§ π¦ β π) β π β dom πΊ) |
13 | 1 | sselda 3982 |
. . . . . 6
β’ ((π β§ π¦ β π) β π¦ β π) |
14 | 2, 3, 4, 11, 12, 13 | glble 18330 |
. . . . 5
β’ ((π β§ π¦ β π) β (πΊβπ)(leβπΎ)π¦) |
15 | 14 | ralrimiva 3145 |
. . . 4
β’ (π β βπ¦ β π (πΊβπ)(leβπΎ)π¦) |
16 | | breq2 5152 |
. . . . . . 7
β’ (π¦ = (πΊβπ) β (π§(leβπΎ)π¦ β π§(leβπΎ)(πΊβπ))) |
17 | | simp3 1137 |
. . . . . . 7
β’ ((π β§ π§ β (BaseβπΎ) β§ βπ¦ β π π§(leβπΎ)π¦) β βπ¦ β π π§(leβπΎ)π¦) |
18 | 9 | 3ad2ant1 1132 |
. . . . . . 7
β’ ((π β§ π§ β (BaseβπΎ) β§ βπ¦ β π π§(leβπΎ)π¦) β (πΊβπ) β π) |
19 | 16, 17, 18 | rspcdva 3613 |
. . . . . 6
β’ ((π β§ π§ β (BaseβπΎ) β§ βπ¦ β π π§(leβπΎ)π¦) β π§(leβπΎ)(πΊβπ)) |
20 | 19 | 3expia 1120 |
. . . . 5
β’ ((π β§ π§ β (BaseβπΎ)) β (βπ¦ β π π§(leβπΎ)π¦ β π§(leβπΎ)(πΊβπ))) |
21 | 20 | ralrimiva 3145 |
. . . 4
β’ (π β βπ§ β (BaseβπΎ)(βπ¦ β π π§(leβπΎ)π¦ β π§(leβπΎ)(πΊβπ))) |
22 | | breq1 5151 |
. . . . . . 7
β’ (π₯ = (πΊβπ) β (π₯(leβπΎ)π¦ β (πΊβπ)(leβπΎ)π¦)) |
23 | 22 | ralbidv 3176 |
. . . . . 6
β’ (π₯ = (πΊβπ) β (βπ¦ β π π₯(leβπΎ)π¦ β βπ¦ β π (πΊβπ)(leβπΎ)π¦)) |
24 | | breq2 5152 |
. . . . . . . 8
β’ (π₯ = (πΊβπ) β (π§(leβπΎ)π₯ β π§(leβπΎ)(πΊβπ))) |
25 | 24 | imbi2d 340 |
. . . . . . 7
β’ (π₯ = (πΊβπ) β ((βπ¦ β π π§(leβπΎ)π¦ β π§(leβπΎ)π₯) β (βπ¦ β π π§(leβπΎ)π¦ β π§(leβπΎ)(πΊβπ)))) |
26 | 25 | ralbidv 3176 |
. . . . . 6
β’ (π₯ = (πΊβπ) β (βπ§ β (BaseβπΎ)(βπ¦ β π π§(leβπΎ)π¦ β π§(leβπΎ)π₯) β βπ§ β (BaseβπΎ)(βπ¦ β π π§(leβπΎ)π¦ β π§(leβπΎ)(πΊβπ)))) |
27 | 23, 26 | anbi12d 630 |
. . . . 5
β’ (π₯ = (πΊβπ) β ((βπ¦ β π π₯(leβπΎ)π¦ β§ βπ§ β (BaseβπΎ)(βπ¦ β π π§(leβπΎ)π¦ β π§(leβπΎ)π₯)) β (βπ¦ β π (πΊβπ)(leβπΎ)π¦ β§ βπ§ β (BaseβπΎ)(βπ¦ β π π§(leβπΎ)π¦ β π§(leβπΎ)(πΊβπ))))) |
28 | 27 | rspcev 3612 |
. . . 4
β’ (((πΊβπ) β (BaseβπΎ) β§ (βπ¦ β π (πΊβπ)(leβπΎ)π¦ β§ βπ§ β (BaseβπΎ)(βπ¦ β π π§(leβπΎ)π¦ β π§(leβπΎ)(πΊβπ)))) β βπ₯ β (BaseβπΎ)(βπ¦ β π π₯(leβπΎ)π¦ β§ βπ§ β (BaseβπΎ)(βπ¦ β π π§(leβπΎ)π¦ β π§(leβπΎ)π₯))) |
29 | 10, 15, 21, 28 | syl12anc 834 |
. . 3
β’ (π β βπ₯ β (BaseβπΎ)(βπ¦ β π π₯(leβπΎ)π¦ β§ βπ§ β (BaseβπΎ)(βπ¦ β π π§(leβπΎ)π¦ β π§(leβπΎ)π₯))) |
30 | | biid 261 |
. . . 4
β’
((βπ¦ β
π π₯(leβπΎ)π¦ β§ βπ§ β (BaseβπΎ)(βπ¦ β π π§(leβπΎ)π¦ β π§(leβπΎ)π₯)) β (βπ¦ β π π₯(leβπΎ)π¦ β§ βπ§ β (BaseβπΎ)(βπ¦ β π π§(leβπΎ)π¦ β π§(leβπΎ)π₯))) |
31 | 2, 3, 4, 30, 5 | glbeldm2 47678 |
. . 3
β’ (π β (π β dom πΊ β (π β (BaseβπΎ) β§ βπ₯ β (BaseβπΎ)(βπ¦ β π π₯(leβπΎ)π¦ β§ βπ§ β (BaseβπΎ)(βπ¦ β π π§(leβπΎ)π¦ β π§(leβπΎ)π₯))))) |
32 | 8, 29, 31 | mpbir2and 710 |
. 2
β’ (π β π β dom πΊ) |
33 | | eqidd 2732 |
. . 3
β’ (π β (BaseβπΎ) = (BaseβπΎ)) |
34 | 4 | a1i 11 |
. . 3
β’ (π β πΊ = (glbβπΎ)) |
35 | 3, 33, 34, 5, 8, 10, 14, 19 | posglbdg 18373 |
. 2
β’ (π β (πΊβπ) = (πΊβπ)) |
36 | 32, 35 | jca 511 |
1
β’ (π β (π β dom πΊ β§ (πΊβπ) = (πΊβπ))) |