| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > glbsscl | Structured version Visualization version GIF version | ||
| Description: If a subset of 𝑆 contains the GLB of 𝑆, then the two sets have the same GLB. (Contributed by Zhi Wang, 26-Sep-2024.) |
| Ref | Expression |
|---|---|
| lubsscl.k | ⊢ (𝜑 → 𝐾 ∈ Poset) |
| lubsscl.t | ⊢ (𝜑 → 𝑇 ⊆ 𝑆) |
| glbsscl.g | ⊢ 𝐺 = (glb‘𝐾) |
| glbsscl.s | ⊢ (𝜑 → 𝑆 ∈ dom 𝐺) |
| glbsscl.x | ⊢ (𝜑 → (𝐺‘𝑆) ∈ 𝑇) |
| Ref | Expression |
|---|---|
| glbsscl | ⊢ (𝜑 → (𝑇 ∈ dom 𝐺 ∧ (𝐺‘𝑇) = (𝐺‘𝑆))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lubsscl.t | . . . 4 ⊢ (𝜑 → 𝑇 ⊆ 𝑆) | |
| 2 | eqid 2736 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 3 | eqid 2736 | . . . . 5 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 4 | glbsscl.g | . . . . 5 ⊢ 𝐺 = (glb‘𝐾) | |
| 5 | lubsscl.k | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ Poset) | |
| 6 | glbsscl.s | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ dom 𝐺) | |
| 7 | 2, 3, 4, 5, 6 | glbelss 18382 | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝐾)) |
| 8 | 1, 7 | sstrd 3974 | . . 3 ⊢ (𝜑 → 𝑇 ⊆ (Base‘𝐾)) |
| 9 | glbsscl.x | . . . . 5 ⊢ (𝜑 → (𝐺‘𝑆) ∈ 𝑇) | |
| 10 | 8, 9 | sseldd 3964 | . . . 4 ⊢ (𝜑 → (𝐺‘𝑆) ∈ (Base‘𝐾)) |
| 11 | 5 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑇) → 𝐾 ∈ Poset) |
| 12 | 6 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑇) → 𝑆 ∈ dom 𝐺) |
| 13 | 1 | sselda 3963 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑇) → 𝑦 ∈ 𝑆) |
| 14 | 2, 3, 4, 11, 12, 13 | glble 18387 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑇) → (𝐺‘𝑆)(le‘𝐾)𝑦) |
| 15 | 14 | ralrimiva 3133 | . . . 4 ⊢ (𝜑 → ∀𝑦 ∈ 𝑇 (𝐺‘𝑆)(le‘𝐾)𝑦) |
| 16 | breq2 5128 | . . . . . . 7 ⊢ (𝑦 = (𝐺‘𝑆) → (𝑧(le‘𝐾)𝑦 ↔ 𝑧(le‘𝐾)(𝐺‘𝑆))) | |
| 17 | simp3 1138 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑧 ∈ (Base‘𝐾) ∧ ∀𝑦 ∈ 𝑇 𝑧(le‘𝐾)𝑦) → ∀𝑦 ∈ 𝑇 𝑧(le‘𝐾)𝑦) | |
| 18 | 9 | 3ad2ant1 1133 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑧 ∈ (Base‘𝐾) ∧ ∀𝑦 ∈ 𝑇 𝑧(le‘𝐾)𝑦) → (𝐺‘𝑆) ∈ 𝑇) |
| 19 | 16, 17, 18 | rspcdva 3607 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑧 ∈ (Base‘𝐾) ∧ ∀𝑦 ∈ 𝑇 𝑧(le‘𝐾)𝑦) → 𝑧(le‘𝐾)(𝐺‘𝑆)) |
| 20 | 19 | 3expia 1121 | . . . . 5 ⊢ ((𝜑 ∧ 𝑧 ∈ (Base‘𝐾)) → (∀𝑦 ∈ 𝑇 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)(𝐺‘𝑆))) |
| 21 | 20 | ralrimiva 3133 | . . . 4 ⊢ (𝜑 → ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ 𝑇 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)(𝐺‘𝑆))) |
| 22 | breq1 5127 | . . . . . . 7 ⊢ (𝑥 = (𝐺‘𝑆) → (𝑥(le‘𝐾)𝑦 ↔ (𝐺‘𝑆)(le‘𝐾)𝑦)) | |
| 23 | 22 | ralbidv 3164 | . . . . . 6 ⊢ (𝑥 = (𝐺‘𝑆) → (∀𝑦 ∈ 𝑇 𝑥(le‘𝐾)𝑦 ↔ ∀𝑦 ∈ 𝑇 (𝐺‘𝑆)(le‘𝐾)𝑦)) |
| 24 | breq2 5128 | . . . . . . . 8 ⊢ (𝑥 = (𝐺‘𝑆) → (𝑧(le‘𝐾)𝑥 ↔ 𝑧(le‘𝐾)(𝐺‘𝑆))) | |
| 25 | 24 | imbi2d 340 | . . . . . . 7 ⊢ (𝑥 = (𝐺‘𝑆) → ((∀𝑦 ∈ 𝑇 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)𝑥) ↔ (∀𝑦 ∈ 𝑇 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)(𝐺‘𝑆)))) |
| 26 | 25 | ralbidv 3164 | . . . . . 6 ⊢ (𝑥 = (𝐺‘𝑆) → (∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ 𝑇 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)𝑥) ↔ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ 𝑇 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)(𝐺‘𝑆)))) |
| 27 | 23, 26 | anbi12d 632 | . . . . 5 ⊢ (𝑥 = (𝐺‘𝑆) → ((∀𝑦 ∈ 𝑇 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ 𝑇 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)𝑥)) ↔ (∀𝑦 ∈ 𝑇 (𝐺‘𝑆)(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ 𝑇 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)(𝐺‘𝑆))))) |
| 28 | 27 | rspcev 3606 | . . . 4 ⊢ (((𝐺‘𝑆) ∈ (Base‘𝐾) ∧ (∀𝑦 ∈ 𝑇 (𝐺‘𝑆)(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ 𝑇 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)(𝐺‘𝑆)))) → ∃𝑥 ∈ (Base‘𝐾)(∀𝑦 ∈ 𝑇 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ 𝑇 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)𝑥))) |
| 29 | 10, 15, 21, 28 | syl12anc 836 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ (Base‘𝐾)(∀𝑦 ∈ 𝑇 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ 𝑇 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)𝑥))) |
| 30 | biid 261 | . . . 4 ⊢ ((∀𝑦 ∈ 𝑇 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ 𝑇 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)𝑥)) ↔ (∀𝑦 ∈ 𝑇 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ 𝑇 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)𝑥))) | |
| 31 | 2, 3, 4, 30, 5 | glbeldm2 48911 | . . 3 ⊢ (𝜑 → (𝑇 ∈ dom 𝐺 ↔ (𝑇 ⊆ (Base‘𝐾) ∧ ∃𝑥 ∈ (Base‘𝐾)(∀𝑦 ∈ 𝑇 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ 𝑇 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)𝑥))))) |
| 32 | 8, 29, 31 | mpbir2and 713 | . 2 ⊢ (𝜑 → 𝑇 ∈ dom 𝐺) |
| 33 | eqidd 2737 | . . 3 ⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐾)) | |
| 34 | 4 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐺 = (glb‘𝐾)) |
| 35 | 3, 33, 34, 5, 8, 10, 14, 19 | posglbdg 18430 | . 2 ⊢ (𝜑 → (𝐺‘𝑇) = (𝐺‘𝑆)) |
| 36 | 32, 35 | jca 511 | 1 ⊢ (𝜑 → (𝑇 ∈ dom 𝐺 ∧ (𝐺‘𝑇) = (𝐺‘𝑆))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3052 ∃wrex 3061 ⊆ wss 3931 class class class wbr 5124 dom cdm 5659 ‘cfv 6536 Basecbs 17233 lecple 17283 Posetcpo 18324 glbcglb 18327 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-dec 12714 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ple 17296 df-odu 18304 df-proset 18311 df-poset 18330 df-lub 18361 df-glb 18362 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |