Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > glbsscl | Structured version Visualization version GIF version |
Description: If a subset of 𝑆 contains the GLB of 𝑆, then the two sets have the same GLB. (Contributed by Zhi Wang, 26-Sep-2024.) |
Ref | Expression |
---|---|
lubsscl.k | ⊢ (𝜑 → 𝐾 ∈ Poset) |
lubsscl.t | ⊢ (𝜑 → 𝑇 ⊆ 𝑆) |
glbsscl.g | ⊢ 𝐺 = (glb‘𝐾) |
glbsscl.s | ⊢ (𝜑 → 𝑆 ∈ dom 𝐺) |
glbsscl.x | ⊢ (𝜑 → (𝐺‘𝑆) ∈ 𝑇) |
Ref | Expression |
---|---|
glbsscl | ⊢ (𝜑 → (𝑇 ∈ dom 𝐺 ∧ (𝐺‘𝑇) = (𝐺‘𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lubsscl.t | . . . 4 ⊢ (𝜑 → 𝑇 ⊆ 𝑆) | |
2 | eqid 2738 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
3 | eqid 2738 | . . . . 5 ⊢ (le‘𝐾) = (le‘𝐾) | |
4 | glbsscl.g | . . . . 5 ⊢ 𝐺 = (glb‘𝐾) | |
5 | lubsscl.k | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ Poset) | |
6 | glbsscl.s | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ dom 𝐺) | |
7 | 2, 3, 4, 5, 6 | glbelss 18000 | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝐾)) |
8 | 1, 7 | sstrd 3927 | . . 3 ⊢ (𝜑 → 𝑇 ⊆ (Base‘𝐾)) |
9 | glbsscl.x | . . . . 5 ⊢ (𝜑 → (𝐺‘𝑆) ∈ 𝑇) | |
10 | 8, 9 | sseldd 3918 | . . . 4 ⊢ (𝜑 → (𝐺‘𝑆) ∈ (Base‘𝐾)) |
11 | 5 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑇) → 𝐾 ∈ Poset) |
12 | 6 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑇) → 𝑆 ∈ dom 𝐺) |
13 | 1 | sselda 3917 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑇) → 𝑦 ∈ 𝑆) |
14 | 2, 3, 4, 11, 12, 13 | glble 18005 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑇) → (𝐺‘𝑆)(le‘𝐾)𝑦) |
15 | 14 | ralrimiva 3107 | . . . 4 ⊢ (𝜑 → ∀𝑦 ∈ 𝑇 (𝐺‘𝑆)(le‘𝐾)𝑦) |
16 | breq2 5074 | . . . . . . 7 ⊢ (𝑦 = (𝐺‘𝑆) → (𝑧(le‘𝐾)𝑦 ↔ 𝑧(le‘𝐾)(𝐺‘𝑆))) | |
17 | simp3 1136 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑧 ∈ (Base‘𝐾) ∧ ∀𝑦 ∈ 𝑇 𝑧(le‘𝐾)𝑦) → ∀𝑦 ∈ 𝑇 𝑧(le‘𝐾)𝑦) | |
18 | 9 | 3ad2ant1 1131 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑧 ∈ (Base‘𝐾) ∧ ∀𝑦 ∈ 𝑇 𝑧(le‘𝐾)𝑦) → (𝐺‘𝑆) ∈ 𝑇) |
19 | 16, 17, 18 | rspcdva 3554 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑧 ∈ (Base‘𝐾) ∧ ∀𝑦 ∈ 𝑇 𝑧(le‘𝐾)𝑦) → 𝑧(le‘𝐾)(𝐺‘𝑆)) |
20 | 19 | 3expia 1119 | . . . . 5 ⊢ ((𝜑 ∧ 𝑧 ∈ (Base‘𝐾)) → (∀𝑦 ∈ 𝑇 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)(𝐺‘𝑆))) |
21 | 20 | ralrimiva 3107 | . . . 4 ⊢ (𝜑 → ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ 𝑇 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)(𝐺‘𝑆))) |
22 | breq1 5073 | . . . . . . 7 ⊢ (𝑥 = (𝐺‘𝑆) → (𝑥(le‘𝐾)𝑦 ↔ (𝐺‘𝑆)(le‘𝐾)𝑦)) | |
23 | 22 | ralbidv 3120 | . . . . . 6 ⊢ (𝑥 = (𝐺‘𝑆) → (∀𝑦 ∈ 𝑇 𝑥(le‘𝐾)𝑦 ↔ ∀𝑦 ∈ 𝑇 (𝐺‘𝑆)(le‘𝐾)𝑦)) |
24 | breq2 5074 | . . . . . . . 8 ⊢ (𝑥 = (𝐺‘𝑆) → (𝑧(le‘𝐾)𝑥 ↔ 𝑧(le‘𝐾)(𝐺‘𝑆))) | |
25 | 24 | imbi2d 340 | . . . . . . 7 ⊢ (𝑥 = (𝐺‘𝑆) → ((∀𝑦 ∈ 𝑇 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)𝑥) ↔ (∀𝑦 ∈ 𝑇 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)(𝐺‘𝑆)))) |
26 | 25 | ralbidv 3120 | . . . . . 6 ⊢ (𝑥 = (𝐺‘𝑆) → (∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ 𝑇 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)𝑥) ↔ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ 𝑇 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)(𝐺‘𝑆)))) |
27 | 23, 26 | anbi12d 630 | . . . . 5 ⊢ (𝑥 = (𝐺‘𝑆) → ((∀𝑦 ∈ 𝑇 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ 𝑇 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)𝑥)) ↔ (∀𝑦 ∈ 𝑇 (𝐺‘𝑆)(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ 𝑇 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)(𝐺‘𝑆))))) |
28 | 27 | rspcev 3552 | . . . 4 ⊢ (((𝐺‘𝑆) ∈ (Base‘𝐾) ∧ (∀𝑦 ∈ 𝑇 (𝐺‘𝑆)(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ 𝑇 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)(𝐺‘𝑆)))) → ∃𝑥 ∈ (Base‘𝐾)(∀𝑦 ∈ 𝑇 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ 𝑇 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)𝑥))) |
29 | 10, 15, 21, 28 | syl12anc 833 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ (Base‘𝐾)(∀𝑦 ∈ 𝑇 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ 𝑇 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)𝑥))) |
30 | biid 260 | . . . 4 ⊢ ((∀𝑦 ∈ 𝑇 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ 𝑇 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)𝑥)) ↔ (∀𝑦 ∈ 𝑇 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ 𝑇 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)𝑥))) | |
31 | 2, 3, 4, 30, 5 | glbeldm2 46139 | . . 3 ⊢ (𝜑 → (𝑇 ∈ dom 𝐺 ↔ (𝑇 ⊆ (Base‘𝐾) ∧ ∃𝑥 ∈ (Base‘𝐾)(∀𝑦 ∈ 𝑇 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ 𝑇 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)𝑥))))) |
32 | 8, 29, 31 | mpbir2and 709 | . 2 ⊢ (𝜑 → 𝑇 ∈ dom 𝐺) |
33 | eqidd 2739 | . . 3 ⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐾)) | |
34 | 4 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐺 = (glb‘𝐾)) |
35 | 3, 33, 34, 5, 8, 10, 14, 19 | posglbdg 18048 | . 2 ⊢ (𝜑 → (𝐺‘𝑇) = (𝐺‘𝑆)) |
36 | 32, 35 | jca 511 | 1 ⊢ (𝜑 → (𝑇 ∈ dom 𝐺 ∧ (𝐺‘𝑇) = (𝐺‘𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 ⊆ wss 3883 class class class wbr 5070 dom cdm 5580 ‘cfv 6418 Basecbs 16840 lecple 16895 Posetcpo 17940 glbcglb 17943 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-dec 12367 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ple 16908 df-odu 17921 df-proset 17928 df-poset 17946 df-lub 17979 df-glb 17980 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |