| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > glbsscl | Structured version Visualization version GIF version | ||
| Description: If a subset of 𝑆 contains the GLB of 𝑆, then the two sets have the same GLB. (Contributed by Zhi Wang, 26-Sep-2024.) |
| Ref | Expression |
|---|---|
| lubsscl.k | ⊢ (𝜑 → 𝐾 ∈ Poset) |
| lubsscl.t | ⊢ (𝜑 → 𝑇 ⊆ 𝑆) |
| glbsscl.g | ⊢ 𝐺 = (glb‘𝐾) |
| glbsscl.s | ⊢ (𝜑 → 𝑆 ∈ dom 𝐺) |
| glbsscl.x | ⊢ (𝜑 → (𝐺‘𝑆) ∈ 𝑇) |
| Ref | Expression |
|---|---|
| glbsscl | ⊢ (𝜑 → (𝑇 ∈ dom 𝐺 ∧ (𝐺‘𝑇) = (𝐺‘𝑆))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lubsscl.t | . . . 4 ⊢ (𝜑 → 𝑇 ⊆ 𝑆) | |
| 2 | eqid 2729 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 3 | eqid 2729 | . . . . 5 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 4 | glbsscl.g | . . . . 5 ⊢ 𝐺 = (glb‘𝐾) | |
| 5 | lubsscl.k | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ Poset) | |
| 6 | glbsscl.s | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ dom 𝐺) | |
| 7 | 2, 3, 4, 5, 6 | glbelss 18326 | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝐾)) |
| 8 | 1, 7 | sstrd 3957 | . . 3 ⊢ (𝜑 → 𝑇 ⊆ (Base‘𝐾)) |
| 9 | glbsscl.x | . . . . 5 ⊢ (𝜑 → (𝐺‘𝑆) ∈ 𝑇) | |
| 10 | 8, 9 | sseldd 3947 | . . . 4 ⊢ (𝜑 → (𝐺‘𝑆) ∈ (Base‘𝐾)) |
| 11 | 5 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑇) → 𝐾 ∈ Poset) |
| 12 | 6 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑇) → 𝑆 ∈ dom 𝐺) |
| 13 | 1 | sselda 3946 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑇) → 𝑦 ∈ 𝑆) |
| 14 | 2, 3, 4, 11, 12, 13 | glble 18331 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑇) → (𝐺‘𝑆)(le‘𝐾)𝑦) |
| 15 | 14 | ralrimiva 3125 | . . . 4 ⊢ (𝜑 → ∀𝑦 ∈ 𝑇 (𝐺‘𝑆)(le‘𝐾)𝑦) |
| 16 | breq2 5111 | . . . . . . 7 ⊢ (𝑦 = (𝐺‘𝑆) → (𝑧(le‘𝐾)𝑦 ↔ 𝑧(le‘𝐾)(𝐺‘𝑆))) | |
| 17 | simp3 1138 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑧 ∈ (Base‘𝐾) ∧ ∀𝑦 ∈ 𝑇 𝑧(le‘𝐾)𝑦) → ∀𝑦 ∈ 𝑇 𝑧(le‘𝐾)𝑦) | |
| 18 | 9 | 3ad2ant1 1133 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑧 ∈ (Base‘𝐾) ∧ ∀𝑦 ∈ 𝑇 𝑧(le‘𝐾)𝑦) → (𝐺‘𝑆) ∈ 𝑇) |
| 19 | 16, 17, 18 | rspcdva 3589 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑧 ∈ (Base‘𝐾) ∧ ∀𝑦 ∈ 𝑇 𝑧(le‘𝐾)𝑦) → 𝑧(le‘𝐾)(𝐺‘𝑆)) |
| 20 | 19 | 3expia 1121 | . . . . 5 ⊢ ((𝜑 ∧ 𝑧 ∈ (Base‘𝐾)) → (∀𝑦 ∈ 𝑇 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)(𝐺‘𝑆))) |
| 21 | 20 | ralrimiva 3125 | . . . 4 ⊢ (𝜑 → ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ 𝑇 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)(𝐺‘𝑆))) |
| 22 | breq1 5110 | . . . . . . 7 ⊢ (𝑥 = (𝐺‘𝑆) → (𝑥(le‘𝐾)𝑦 ↔ (𝐺‘𝑆)(le‘𝐾)𝑦)) | |
| 23 | 22 | ralbidv 3156 | . . . . . 6 ⊢ (𝑥 = (𝐺‘𝑆) → (∀𝑦 ∈ 𝑇 𝑥(le‘𝐾)𝑦 ↔ ∀𝑦 ∈ 𝑇 (𝐺‘𝑆)(le‘𝐾)𝑦)) |
| 24 | breq2 5111 | . . . . . . . 8 ⊢ (𝑥 = (𝐺‘𝑆) → (𝑧(le‘𝐾)𝑥 ↔ 𝑧(le‘𝐾)(𝐺‘𝑆))) | |
| 25 | 24 | imbi2d 340 | . . . . . . 7 ⊢ (𝑥 = (𝐺‘𝑆) → ((∀𝑦 ∈ 𝑇 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)𝑥) ↔ (∀𝑦 ∈ 𝑇 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)(𝐺‘𝑆)))) |
| 26 | 25 | ralbidv 3156 | . . . . . 6 ⊢ (𝑥 = (𝐺‘𝑆) → (∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ 𝑇 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)𝑥) ↔ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ 𝑇 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)(𝐺‘𝑆)))) |
| 27 | 23, 26 | anbi12d 632 | . . . . 5 ⊢ (𝑥 = (𝐺‘𝑆) → ((∀𝑦 ∈ 𝑇 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ 𝑇 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)𝑥)) ↔ (∀𝑦 ∈ 𝑇 (𝐺‘𝑆)(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ 𝑇 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)(𝐺‘𝑆))))) |
| 28 | 27 | rspcev 3588 | . . . 4 ⊢ (((𝐺‘𝑆) ∈ (Base‘𝐾) ∧ (∀𝑦 ∈ 𝑇 (𝐺‘𝑆)(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ 𝑇 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)(𝐺‘𝑆)))) → ∃𝑥 ∈ (Base‘𝐾)(∀𝑦 ∈ 𝑇 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ 𝑇 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)𝑥))) |
| 29 | 10, 15, 21, 28 | syl12anc 836 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ (Base‘𝐾)(∀𝑦 ∈ 𝑇 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ 𝑇 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)𝑥))) |
| 30 | biid 261 | . . . 4 ⊢ ((∀𝑦 ∈ 𝑇 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ 𝑇 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)𝑥)) ↔ (∀𝑦 ∈ 𝑇 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ 𝑇 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)𝑥))) | |
| 31 | 2, 3, 4, 30, 5 | glbeldm2 48945 | . . 3 ⊢ (𝜑 → (𝑇 ∈ dom 𝐺 ↔ (𝑇 ⊆ (Base‘𝐾) ∧ ∃𝑥 ∈ (Base‘𝐾)(∀𝑦 ∈ 𝑇 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ 𝑇 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)𝑥))))) |
| 32 | 8, 29, 31 | mpbir2and 713 | . 2 ⊢ (𝜑 → 𝑇 ∈ dom 𝐺) |
| 33 | eqidd 2730 | . . 3 ⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐾)) | |
| 34 | 4 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐺 = (glb‘𝐾)) |
| 35 | 3, 33, 34, 5, 8, 10, 14, 19 | posglbdg 18374 | . 2 ⊢ (𝜑 → (𝐺‘𝑇) = (𝐺‘𝑆)) |
| 36 | 32, 35 | jca 511 | 1 ⊢ (𝜑 → (𝑇 ∈ dom 𝐺 ∧ (𝐺‘𝑇) = (𝐺‘𝑆))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 ⊆ wss 3914 class class class wbr 5107 dom cdm 5638 ‘cfv 6511 Basecbs 17179 lecple 17227 Posetcpo 18268 glbcglb 18271 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-dec 12650 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ple 17240 df-odu 18248 df-proset 18255 df-poset 18274 df-lub 18305 df-glb 18306 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |