Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > glbsscl | Structured version Visualization version GIF version |
Description: If a subset of 𝑆 contains the GLB of 𝑆, then the two sets have the same GLB. (Contributed by Zhi Wang, 26-Sep-2024.) |
Ref | Expression |
---|---|
lubsscl.k | ⊢ (𝜑 → 𝐾 ∈ Poset) |
lubsscl.t | ⊢ (𝜑 → 𝑇 ⊆ 𝑆) |
glbsscl.g | ⊢ 𝐺 = (glb‘𝐾) |
glbsscl.s | ⊢ (𝜑 → 𝑆 ∈ dom 𝐺) |
glbsscl.x | ⊢ (𝜑 → (𝐺‘𝑆) ∈ 𝑇) |
Ref | Expression |
---|---|
glbsscl | ⊢ (𝜑 → (𝑇 ∈ dom 𝐺 ∧ (𝐺‘𝑇) = (𝐺‘𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lubsscl.t | . . . 4 ⊢ (𝜑 → 𝑇 ⊆ 𝑆) | |
2 | eqid 2737 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
3 | eqid 2737 | . . . . 5 ⊢ (le‘𝐾) = (le‘𝐾) | |
4 | glbsscl.g | . . . . 5 ⊢ 𝐺 = (glb‘𝐾) | |
5 | lubsscl.k | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ Poset) | |
6 | glbsscl.s | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ dom 𝐺) | |
7 | 2, 3, 4, 5, 6 | glbelss 18155 | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝐾)) |
8 | 1, 7 | sstrd 3941 | . . 3 ⊢ (𝜑 → 𝑇 ⊆ (Base‘𝐾)) |
9 | glbsscl.x | . . . . 5 ⊢ (𝜑 → (𝐺‘𝑆) ∈ 𝑇) | |
10 | 8, 9 | sseldd 3932 | . . . 4 ⊢ (𝜑 → (𝐺‘𝑆) ∈ (Base‘𝐾)) |
11 | 5 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑇) → 𝐾 ∈ Poset) |
12 | 6 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑇) → 𝑆 ∈ dom 𝐺) |
13 | 1 | sselda 3931 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑇) → 𝑦 ∈ 𝑆) |
14 | 2, 3, 4, 11, 12, 13 | glble 18160 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑇) → (𝐺‘𝑆)(le‘𝐾)𝑦) |
15 | 14 | ralrimiva 3140 | . . . 4 ⊢ (𝜑 → ∀𝑦 ∈ 𝑇 (𝐺‘𝑆)(le‘𝐾)𝑦) |
16 | breq2 5091 | . . . . . . 7 ⊢ (𝑦 = (𝐺‘𝑆) → (𝑧(le‘𝐾)𝑦 ↔ 𝑧(le‘𝐾)(𝐺‘𝑆))) | |
17 | simp3 1137 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑧 ∈ (Base‘𝐾) ∧ ∀𝑦 ∈ 𝑇 𝑧(le‘𝐾)𝑦) → ∀𝑦 ∈ 𝑇 𝑧(le‘𝐾)𝑦) | |
18 | 9 | 3ad2ant1 1132 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑧 ∈ (Base‘𝐾) ∧ ∀𝑦 ∈ 𝑇 𝑧(le‘𝐾)𝑦) → (𝐺‘𝑆) ∈ 𝑇) |
19 | 16, 17, 18 | rspcdva 3571 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑧 ∈ (Base‘𝐾) ∧ ∀𝑦 ∈ 𝑇 𝑧(le‘𝐾)𝑦) → 𝑧(le‘𝐾)(𝐺‘𝑆)) |
20 | 19 | 3expia 1120 | . . . . 5 ⊢ ((𝜑 ∧ 𝑧 ∈ (Base‘𝐾)) → (∀𝑦 ∈ 𝑇 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)(𝐺‘𝑆))) |
21 | 20 | ralrimiva 3140 | . . . 4 ⊢ (𝜑 → ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ 𝑇 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)(𝐺‘𝑆))) |
22 | breq1 5090 | . . . . . . 7 ⊢ (𝑥 = (𝐺‘𝑆) → (𝑥(le‘𝐾)𝑦 ↔ (𝐺‘𝑆)(le‘𝐾)𝑦)) | |
23 | 22 | ralbidv 3171 | . . . . . 6 ⊢ (𝑥 = (𝐺‘𝑆) → (∀𝑦 ∈ 𝑇 𝑥(le‘𝐾)𝑦 ↔ ∀𝑦 ∈ 𝑇 (𝐺‘𝑆)(le‘𝐾)𝑦)) |
24 | breq2 5091 | . . . . . . . 8 ⊢ (𝑥 = (𝐺‘𝑆) → (𝑧(le‘𝐾)𝑥 ↔ 𝑧(le‘𝐾)(𝐺‘𝑆))) | |
25 | 24 | imbi2d 340 | . . . . . . 7 ⊢ (𝑥 = (𝐺‘𝑆) → ((∀𝑦 ∈ 𝑇 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)𝑥) ↔ (∀𝑦 ∈ 𝑇 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)(𝐺‘𝑆)))) |
26 | 25 | ralbidv 3171 | . . . . . 6 ⊢ (𝑥 = (𝐺‘𝑆) → (∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ 𝑇 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)𝑥) ↔ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ 𝑇 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)(𝐺‘𝑆)))) |
27 | 23, 26 | anbi12d 631 | . . . . 5 ⊢ (𝑥 = (𝐺‘𝑆) → ((∀𝑦 ∈ 𝑇 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ 𝑇 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)𝑥)) ↔ (∀𝑦 ∈ 𝑇 (𝐺‘𝑆)(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ 𝑇 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)(𝐺‘𝑆))))) |
28 | 27 | rspcev 3570 | . . . 4 ⊢ (((𝐺‘𝑆) ∈ (Base‘𝐾) ∧ (∀𝑦 ∈ 𝑇 (𝐺‘𝑆)(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ 𝑇 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)(𝐺‘𝑆)))) → ∃𝑥 ∈ (Base‘𝐾)(∀𝑦 ∈ 𝑇 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ 𝑇 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)𝑥))) |
29 | 10, 15, 21, 28 | syl12anc 834 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ (Base‘𝐾)(∀𝑦 ∈ 𝑇 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ 𝑇 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)𝑥))) |
30 | biid 260 | . . . 4 ⊢ ((∀𝑦 ∈ 𝑇 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ 𝑇 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)𝑥)) ↔ (∀𝑦 ∈ 𝑇 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ 𝑇 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)𝑥))) | |
31 | 2, 3, 4, 30, 5 | glbeldm2 46503 | . . 3 ⊢ (𝜑 → (𝑇 ∈ dom 𝐺 ↔ (𝑇 ⊆ (Base‘𝐾) ∧ ∃𝑥 ∈ (Base‘𝐾)(∀𝑦 ∈ 𝑇 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ 𝑇 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)𝑥))))) |
32 | 8, 29, 31 | mpbir2and 710 | . 2 ⊢ (𝜑 → 𝑇 ∈ dom 𝐺) |
33 | eqidd 2738 | . . 3 ⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐾)) | |
34 | 4 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐺 = (glb‘𝐾)) |
35 | 3, 33, 34, 5, 8, 10, 14, 19 | posglbdg 18203 | . 2 ⊢ (𝜑 → (𝐺‘𝑇) = (𝐺‘𝑆)) |
36 | 32, 35 | jca 512 | 1 ⊢ (𝜑 → (𝑇 ∈ dom 𝐺 ∧ (𝐺‘𝑇) = (𝐺‘𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ∀wral 3062 ∃wrex 3071 ⊆ wss 3897 class class class wbr 5087 dom cdm 5607 ‘cfv 6465 Basecbs 16982 lecple 17039 Posetcpo 18095 glbcglb 18098 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5224 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7628 ax-cnex 11000 ax-resscn 11001 ax-1cn 11002 ax-icn 11003 ax-addcl 11004 ax-addrcl 11005 ax-mulcl 11006 ax-mulrcl 11007 ax-mulcom 11008 ax-addass 11009 ax-mulass 11010 ax-distr 11011 ax-i2m1 11012 ax-1ne0 11013 ax-1rid 11014 ax-rnegex 11015 ax-rrecex 11016 ax-cnre 11017 ax-pre-lttri 11018 ax-pre-lttrn 11019 ax-pre-ltadd 11020 ax-pre-mulgt0 11021 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5562 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-riota 7272 df-ov 7318 df-oprab 7319 df-mpo 7320 df-om 7758 df-2nd 7877 df-frecs 8144 df-wrecs 8175 df-recs 8249 df-rdg 8288 df-er 8546 df-en 8782 df-dom 8783 df-sdom 8784 df-pnf 11084 df-mnf 11085 df-xr 11086 df-ltxr 11087 df-le 11088 df-sub 11280 df-neg 11281 df-nn 12047 df-2 12109 df-3 12110 df-4 12111 df-5 12112 df-6 12113 df-7 12114 df-8 12115 df-9 12116 df-dec 12511 df-sets 16935 df-slot 16953 df-ndx 16965 df-base 16983 df-ple 17052 df-odu 18075 df-proset 18083 df-poset 18101 df-lub 18134 df-glb 18135 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |