Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdpglem30 Structured version   Visualization version   GIF version

Theorem mapdpglem30 39716
Description: Lemma for mapdpg 39720. Baer p. 45 line 18: "Hence we deduce (from mapdpglem28 39715, using lvecindp2 20401) that v = 1 and v = u...". TODO: would it be shorter to have only the 𝑣 = (1r𝐴) part and use mapdpglem28.u2 in mapdpglem31 39717? (Contributed by NM, 22-Mar-2015.)
Hypotheses
Ref Expression
mapdpg.h 𝐻 = (LHyp‘𝐾)
mapdpg.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdpg.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdpg.v 𝑉 = (Base‘𝑈)
mapdpg.s = (-g𝑈)
mapdpg.z 0 = (0g𝑈)
mapdpg.n 𝑁 = (LSpan‘𝑈)
mapdpg.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdpg.f 𝐹 = (Base‘𝐶)
mapdpg.r 𝑅 = (-g𝐶)
mapdpg.j 𝐽 = (LSpan‘𝐶)
mapdpg.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdpg.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
mapdpg.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
mapdpg.g (𝜑𝐺𝐹)
mapdpg.ne (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
mapdpg.e (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
mapdpgem25.h1 (𝜑 → (𝐹 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)}))))
mapdpgem25.i1 (𝜑 → (𝑖𝐹 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)}))))
mapdpglem26.a 𝐴 = (Scalar‘𝑈)
mapdpglem26.b 𝐵 = (Base‘𝐴)
mapdpglem26.t · = ( ·𝑠𝐶)
mapdpglem26.o 𝑂 = (0g𝐴)
mapdpglem28.ve (𝜑𝑣𝐵)
mapdpglem28.u1 (𝜑 = (𝑢 · 𝑖))
mapdpglem28.u2 (𝜑 → (𝐺𝑅) = (𝑣 · (𝐺𝑅𝑖)))
mapdpglem28.ue (𝜑𝑢𝐵)
Assertion
Ref Expression
mapdpglem30 (𝜑 → (𝑣 = (1r𝐴) ∧ 𝑣 = 𝑢))
Distinct variable groups:   ,𝑖,𝑢,𝑣   𝑢,𝐵,𝑣   𝑢,𝐶,𝑣   𝑢,𝑂,𝑣   𝑢, · ,𝑣   𝑣,𝐺   𝑣,𝑅
Allowed substitution hints:   𝜑(𝑣,𝑢,,𝑖)   𝐴(𝑣,𝑢,,𝑖)   𝐵(,𝑖)   𝐶(,𝑖)   𝑅(𝑢,,𝑖)   · (,𝑖)   𝑈(𝑣,𝑢,,𝑖)   𝐹(𝑣,𝑢,,𝑖)   𝐺(𝑢,,𝑖)   𝐻(𝑣,𝑢,,𝑖)   𝐽(𝑣,𝑢,,𝑖)   𝐾(𝑣,𝑢,,𝑖)   𝑀(𝑣,𝑢,,𝑖)   (𝑣,𝑢,,𝑖)   𝑁(𝑣,𝑢,,𝑖)   𝑂(,𝑖)   𝑉(𝑣,𝑢,,𝑖)   𝑊(𝑣,𝑢,,𝑖)   𝑋(𝑣,𝑢,,𝑖)   𝑌(𝑣,𝑢,,𝑖)   0 (𝑣,𝑢,,𝑖)

Proof of Theorem mapdpglem30
StepHypRef Expression
1 mapdpg.f . . 3 𝐹 = (Base‘𝐶)
2 eqid 2738 . . 3 (+g𝐶) = (+g𝐶)
3 eqid 2738 . . 3 (Scalar‘𝐶) = (Scalar‘𝐶)
4 eqid 2738 . . 3 (Base‘(Scalar‘𝐶)) = (Base‘(Scalar‘𝐶))
5 mapdpglem26.t . . 3 · = ( ·𝑠𝐶)
6 eqid 2738 . . 3 (0g𝐶) = (0g𝐶)
7 mapdpg.j . . 3 𝐽 = (LSpan‘𝐶)
8 mapdpg.h . . . 4 𝐻 = (LHyp‘𝐾)
9 mapdpg.c . . . 4 𝐶 = ((LCDual‘𝐾)‘𝑊)
10 mapdpg.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
118, 9, 10lcdlvec 39605 . . 3 (𝜑𝐶 ∈ LVec)
12 mapdpg.g . . . 4 (𝜑𝐺𝐹)
13 mapdpg.m . . . . 5 𝑀 = ((mapd‘𝐾)‘𝑊)
14 mapdpg.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
15 mapdpg.v . . . . 5 𝑉 = (Base‘𝑈)
16 mapdpg.s . . . . 5 = (-g𝑈)
17 mapdpg.z . . . . 5 0 = (0g𝑈)
18 mapdpg.n . . . . 5 𝑁 = (LSpan‘𝑈)
19 mapdpg.r . . . . 5 𝑅 = (-g𝐶)
20 mapdpg.x . . . . 5 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
21 mapdpg.y . . . . 5 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
22 mapdpg.ne . . . . 5 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
23 mapdpg.e . . . . 5 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
248, 13, 14, 15, 16, 17, 18, 9, 1, 19, 7, 10, 20, 21, 12, 22, 23mapdpglem30a 39709 . . . 4 (𝜑𝐺 ≠ (0g𝐶))
25 eldifsn 4720 . . . 4 (𝐺 ∈ (𝐹 ∖ {(0g𝐶)}) ↔ (𝐺𝐹𝐺 ≠ (0g𝐶)))
2612, 24, 25sylanbrc 583 . . 3 (𝜑𝐺 ∈ (𝐹 ∖ {(0g𝐶)}))
27 mapdpgem25.i1 . . . . 5 (𝜑 → (𝑖𝐹 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)}))))
2827simpld 495 . . . 4 (𝜑𝑖𝐹)
29 mapdpgem25.h1 . . . . 5 (𝜑 → (𝐹 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)}))))
308, 13, 14, 15, 16, 17, 18, 9, 1, 19, 7, 10, 20, 21, 12, 22, 23, 29, 27mapdpglem30b 39710 . . . 4 (𝜑𝑖 ≠ (0g𝐶))
31 eldifsn 4720 . . . 4 (𝑖 ∈ (𝐹 ∖ {(0g𝐶)}) ↔ (𝑖𝐹𝑖 ≠ (0g𝐶)))
3228, 30, 31sylanbrc 583 . . 3 (𝜑𝑖 ∈ (𝐹 ∖ {(0g𝐶)}))
33 mapdpglem28.ve . . . 4 (𝜑𝑣𝐵)
34 mapdpglem26.a . . . . 5 𝐴 = (Scalar‘𝑈)
35 mapdpglem26.b . . . . 5 𝐵 = (Base‘𝐴)
368, 14, 34, 35, 9, 3, 4, 10lcdsbase 39614 . . . 4 (𝜑 → (Base‘(Scalar‘𝐶)) = 𝐵)
3733, 36eleqtrrd 2842 . . 3 (𝜑𝑣 ∈ (Base‘(Scalar‘𝐶)))
388, 14, 10dvhlmod 39124 . . . . . 6 (𝜑𝑈 ∈ LMod)
3934lmodring 20131 . . . . . 6 (𝑈 ∈ LMod → 𝐴 ∈ Ring)
4038, 39syl 17 . . . . 5 (𝜑𝐴 ∈ Ring)
41 ringgrp 19788 . . . . . . 7 (𝐴 ∈ Ring → 𝐴 ∈ Grp)
4240, 41syl 17 . . . . . 6 (𝜑𝐴 ∈ Grp)
43 eqid 2738 . . . . . . . 8 (1r𝐴) = (1r𝐴)
4435, 43ringidcl 19807 . . . . . . 7 (𝐴 ∈ Ring → (1r𝐴) ∈ 𝐵)
4540, 44syl 17 . . . . . 6 (𝜑 → (1r𝐴) ∈ 𝐵)
46 eqid 2738 . . . . . . 7 (invg𝐴) = (invg𝐴)
4735, 46grpinvcl 18627 . . . . . 6 ((𝐴 ∈ Grp ∧ (1r𝐴) ∈ 𝐵) → ((invg𝐴)‘(1r𝐴)) ∈ 𝐵)
4842, 45, 47syl2anc 584 . . . . 5 (𝜑 → ((invg𝐴)‘(1r𝐴)) ∈ 𝐵)
49 eqid 2738 . . . . . 6 (.r𝐴) = (.r𝐴)
5035, 49ringcl 19800 . . . . 5 ((𝐴 ∈ Ring ∧ 𝑣𝐵 ∧ ((invg𝐴)‘(1r𝐴)) ∈ 𝐵) → (𝑣(.r𝐴)((invg𝐴)‘(1r𝐴))) ∈ 𝐵)
5140, 33, 48, 50syl3anc 1370 . . . 4 (𝜑 → (𝑣(.r𝐴)((invg𝐴)‘(1r𝐴))) ∈ 𝐵)
5251, 36eleqtrrd 2842 . . 3 (𝜑 → (𝑣(.r𝐴)((invg𝐴)‘(1r𝐴))) ∈ (Base‘(Scalar‘𝐶)))
5345, 36eleqtrrd 2842 . . 3 (𝜑 → (1r𝐴) ∈ (Base‘(Scalar‘𝐶)))
54 mapdpglem28.ue . . . . 5 (𝜑𝑢𝐵)
5535, 49ringcl 19800 . . . . 5 ((𝐴 ∈ Ring ∧ 𝑢𝐵 ∧ ((invg𝐴)‘(1r𝐴)) ∈ 𝐵) → (𝑢(.r𝐴)((invg𝐴)‘(1r𝐴))) ∈ 𝐵)
5640, 54, 48, 55syl3anc 1370 . . . 4 (𝜑 → (𝑢(.r𝐴)((invg𝐴)‘(1r𝐴))) ∈ 𝐵)
5756, 36eleqtrrd 2842 . . 3 (𝜑 → (𝑢(.r𝐴)((invg𝐴)‘(1r𝐴))) ∈ (Base‘(Scalar‘𝐶)))
58 mapdpglem26.o . . . 4 𝑂 = (0g𝐴)
59 mapdpglem28.u1 . . . 4 (𝜑 = (𝑢 · 𝑖))
60 mapdpglem28.u2 . . . 4 (𝜑 → (𝐺𝑅) = (𝑣 · (𝐺𝑅𝑖)))
618, 13, 14, 15, 16, 17, 18, 9, 1, 19, 7, 10, 20, 21, 12, 22, 23, 29, 27, 34, 35, 5, 58, 33, 59, 60mapdpglem29 39714 . . 3 (𝜑 → (𝐽‘{𝐺}) ≠ (𝐽‘{𝑖}))
628, 14, 34, 35, 49, 9, 1, 5, 10, 48, 54, 28lcdvsass 39621 . . . . 5 (𝜑 → ((𝑢(.r𝐴)((invg𝐴)‘(1r𝐴))) · 𝑖) = (((invg𝐴)‘(1r𝐴)) · (𝑢 · 𝑖)))
6362oveq2d 7291 . . . 4 (𝜑 → (((1r𝐴) · 𝐺)(+g𝐶)((𝑢(.r𝐴)((invg𝐴)‘(1r𝐴))) · 𝑖)) = (((1r𝐴) · 𝐺)(+g𝐶)(((invg𝐴)‘(1r𝐴)) · (𝑢 · 𝑖))))
648, 14, 34, 35, 9, 1, 5, 10, 45, 12lcdvscl 39619 . . . . 5 (𝜑 → ((1r𝐴) · 𝐺) ∈ 𝐹)
658, 14, 34, 35, 9, 1, 5, 10, 54, 28lcdvscl 39619 . . . . 5 (𝜑 → (𝑢 · 𝑖) ∈ 𝐹)
668, 14, 34, 46, 43, 9, 1, 2, 5, 19, 10, 64, 65lcdvsub 39631 . . . 4 (𝜑 → (((1r𝐴) · 𝐺)𝑅(𝑢 · 𝑖)) = (((1r𝐴) · 𝐺)(+g𝐶)(((invg𝐴)‘(1r𝐴)) · (𝑢 · 𝑖))))
678, 14, 34, 35, 49, 9, 1, 5, 10, 48, 33, 28lcdvsass 39621 . . . . . 6 (𝜑 → ((𝑣(.r𝐴)((invg𝐴)‘(1r𝐴))) · 𝑖) = (((invg𝐴)‘(1r𝐴)) · (𝑣 · 𝑖)))
6867oveq2d 7291 . . . . 5 (𝜑 → ((𝑣 · 𝐺)(+g𝐶)((𝑣(.r𝐴)((invg𝐴)‘(1r𝐴))) · 𝑖)) = ((𝑣 · 𝐺)(+g𝐶)(((invg𝐴)‘(1r𝐴)) · (𝑣 · 𝑖))))
698, 14, 34, 35, 9, 1, 5, 10, 33, 12lcdvscl 39619 . . . . . 6 (𝜑 → (𝑣 · 𝐺) ∈ 𝐹)
708, 14, 34, 35, 9, 1, 5, 10, 33, 28lcdvscl 39619 . . . . . 6 (𝜑 → (𝑣 · 𝑖) ∈ 𝐹)
718, 14, 34, 46, 43, 9, 1, 2, 5, 19, 10, 69, 70lcdvsub 39631 . . . . 5 (𝜑 → ((𝑣 · 𝐺)𝑅(𝑣 · 𝑖)) = ((𝑣 · 𝐺)(+g𝐶)(((invg𝐴)‘(1r𝐴)) · (𝑣 · 𝑖))))
728, 13, 14, 15, 16, 17, 18, 9, 1, 19, 7, 10, 20, 21, 12, 22, 23, 29, 27, 34, 35, 5, 58, 33, 59, 60mapdpglem28 39715 . . . . . 6 (𝜑 → ((𝑣 · 𝐺)𝑅(𝑣 · 𝑖)) = (𝐺𝑅(𝑢 · 𝑖)))
73 eqid 2738 . . . . . . . . . 10 (1r‘(Scalar‘𝐶)) = (1r‘(Scalar‘𝐶))
748, 14, 34, 43, 9, 3, 73, 10lcd1 39623 . . . . . . . . 9 (𝜑 → (1r‘(Scalar‘𝐶)) = (1r𝐴))
7574oveq1d 7290 . . . . . . . 8 (𝜑 → ((1r‘(Scalar‘𝐶)) · 𝐺) = ((1r𝐴) · 𝐺))
768, 9, 10lcdlmod 39606 . . . . . . . . 9 (𝜑𝐶 ∈ LMod)
771, 3, 5, 73lmodvs1 20151 . . . . . . . . 9 ((𝐶 ∈ LMod ∧ 𝐺𝐹) → ((1r‘(Scalar‘𝐶)) · 𝐺) = 𝐺)
7876, 12, 77syl2anc 584 . . . . . . . 8 (𝜑 → ((1r‘(Scalar‘𝐶)) · 𝐺) = 𝐺)
7975, 78eqtr3d 2780 . . . . . . 7 (𝜑 → ((1r𝐴) · 𝐺) = 𝐺)
8079oveq1d 7290 . . . . . 6 (𝜑 → (((1r𝐴) · 𝐺)𝑅(𝑢 · 𝑖)) = (𝐺𝑅(𝑢 · 𝑖)))
8172, 80eqtr4d 2781 . . . . 5 (𝜑 → ((𝑣 · 𝐺)𝑅(𝑣 · 𝑖)) = (((1r𝐴) · 𝐺)𝑅(𝑢 · 𝑖)))
8268, 71, 813eqtr2rd 2785 . . . 4 (𝜑 → (((1r𝐴) · 𝐺)𝑅(𝑢 · 𝑖)) = ((𝑣 · 𝐺)(+g𝐶)((𝑣(.r𝐴)((invg𝐴)‘(1r𝐴))) · 𝑖)))
8363, 66, 823eqtr2rd 2785 . . 3 (𝜑 → ((𝑣 · 𝐺)(+g𝐶)((𝑣(.r𝐴)((invg𝐴)‘(1r𝐴))) · 𝑖)) = (((1r𝐴) · 𝐺)(+g𝐶)((𝑢(.r𝐴)((invg𝐴)‘(1r𝐴))) · 𝑖)))
841, 2, 3, 4, 5, 6, 7, 11, 26, 32, 37, 52, 53, 57, 61, 83lvecindp2 20401 . 2 (𝜑 → (𝑣 = (1r𝐴) ∧ (𝑣(.r𝐴)((invg𝐴)‘(1r𝐴))) = (𝑢(.r𝐴)((invg𝐴)‘(1r𝐴)))))
8535, 49, 43, 46, 40, 33rngnegr 19834 . . . . 5 (𝜑 → (𝑣(.r𝐴)((invg𝐴)‘(1r𝐴))) = ((invg𝐴)‘𝑣))
8635, 49, 43, 46, 40, 54rngnegr 19834 . . . . 5 (𝜑 → (𝑢(.r𝐴)((invg𝐴)‘(1r𝐴))) = ((invg𝐴)‘𝑢))
8785, 86eqeq12d 2754 . . . 4 (𝜑 → ((𝑣(.r𝐴)((invg𝐴)‘(1r𝐴))) = (𝑢(.r𝐴)((invg𝐴)‘(1r𝐴))) ↔ ((invg𝐴)‘𝑣) = ((invg𝐴)‘𝑢)))
8835, 46, 42, 33, 54grpinv11 18644 . . . 4 (𝜑 → (((invg𝐴)‘𝑣) = ((invg𝐴)‘𝑢) ↔ 𝑣 = 𝑢))
8987, 88bitrd 278 . . 3 (𝜑 → ((𝑣(.r𝐴)((invg𝐴)‘(1r𝐴))) = (𝑢(.r𝐴)((invg𝐴)‘(1r𝐴))) ↔ 𝑣 = 𝑢))
9089anbi2d 629 . 2 (𝜑 → ((𝑣 = (1r𝐴) ∧ (𝑣(.r𝐴)((invg𝐴)‘(1r𝐴))) = (𝑢(.r𝐴)((invg𝐴)‘(1r𝐴)))) ↔ (𝑣 = (1r𝐴) ∧ 𝑣 = 𝑢)))
9184, 90mpbid 231 1 (𝜑 → (𝑣 = (1r𝐴) ∧ 𝑣 = 𝑢))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wne 2943  cdif 3884  {csn 4561  cfv 6433  (class class class)co 7275  Basecbs 16912  +gcplusg 16962  .rcmulr 16963  Scalarcsca 16965   ·𝑠 cvsca 16966  0gc0g 17150  Grpcgrp 18577  invgcminusg 18578  -gcsg 18579  1rcur 19737  Ringcrg 19783  LModclmod 20123  LSpanclspn 20233  HLchlt 37364  LHypclh 37998  DVecHcdvh 39092  LCDualclcd 39600  mapdcmpd 39638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-riotaBAD 36967
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-tpos 8042  df-undef 8089  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-sca 16978  df-vsca 16979  df-0g 17152  df-mre 17295  df-mrc 17296  df-acs 17298  df-proset 18013  df-poset 18031  df-plt 18048  df-lub 18064  df-glb 18065  df-join 18066  df-meet 18067  df-p0 18143  df-p1 18144  df-lat 18150  df-clat 18217  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-grp 18580  df-minusg 18581  df-sbg 18582  df-subg 18752  df-cntz 18923  df-oppg 18950  df-lsm 19241  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-oppr 19862  df-dvdsr 19883  df-unit 19884  df-invr 19914  df-dvr 19925  df-drng 19993  df-lmod 20125  df-lss 20194  df-lsp 20234  df-lvec 20365  df-lsatoms 36990  df-lshyp 36991  df-lcv 37033  df-lfl 37072  df-lkr 37100  df-ldual 37138  df-oposet 37190  df-ol 37192  df-oml 37193  df-covers 37280  df-ats 37281  df-atl 37312  df-cvlat 37336  df-hlat 37365  df-llines 37512  df-lplanes 37513  df-lvols 37514  df-lines 37515  df-psubsp 37517  df-pmap 37518  df-padd 37810  df-lhyp 38002  df-laut 38003  df-ldil 38118  df-ltrn 38119  df-trl 38173  df-tgrp 38757  df-tendo 38769  df-edring 38771  df-dveca 39017  df-disoa 39043  df-dvech 39093  df-dib 39153  df-dic 39187  df-dih 39243  df-doch 39362  df-djh 39409  df-lcdual 39601  df-mapd 39639
This theorem is referenced by:  mapdpglem31  39717
  Copyright terms: Public domain W3C validator