Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdpglem30 Structured version   Visualization version   GIF version

Theorem mapdpglem30 38842
Description: Lemma for mapdpg 38846. Baer p. 45 line 18: "Hence we deduce (from mapdpglem28 38841, using lvecindp2 19914) that v = 1 and v = u...". TODO: would it be shorter to have only the 𝑣 = (1r𝐴) part and use mapdpglem28.u2 in mapdpglem31 38843? (Contributed by NM, 22-Mar-2015.)
Hypotheses
Ref Expression
mapdpg.h 𝐻 = (LHyp‘𝐾)
mapdpg.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdpg.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdpg.v 𝑉 = (Base‘𝑈)
mapdpg.s = (-g𝑈)
mapdpg.z 0 = (0g𝑈)
mapdpg.n 𝑁 = (LSpan‘𝑈)
mapdpg.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdpg.f 𝐹 = (Base‘𝐶)
mapdpg.r 𝑅 = (-g𝐶)
mapdpg.j 𝐽 = (LSpan‘𝐶)
mapdpg.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdpg.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
mapdpg.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
mapdpg.g (𝜑𝐺𝐹)
mapdpg.ne (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
mapdpg.e (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
mapdpgem25.h1 (𝜑 → (𝐹 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)}))))
mapdpgem25.i1 (𝜑 → (𝑖𝐹 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)}))))
mapdpglem26.a 𝐴 = (Scalar‘𝑈)
mapdpglem26.b 𝐵 = (Base‘𝐴)
mapdpglem26.t · = ( ·𝑠𝐶)
mapdpglem26.o 𝑂 = (0g𝐴)
mapdpglem28.ve (𝜑𝑣𝐵)
mapdpglem28.u1 (𝜑 = (𝑢 · 𝑖))
mapdpglem28.u2 (𝜑 → (𝐺𝑅) = (𝑣 · (𝐺𝑅𝑖)))
mapdpglem28.ue (𝜑𝑢𝐵)
Assertion
Ref Expression
mapdpglem30 (𝜑 → (𝑣 = (1r𝐴) ∧ 𝑣 = 𝑢))
Distinct variable groups:   ,𝑖,𝑢,𝑣   𝑢,𝐵,𝑣   𝑢,𝐶,𝑣   𝑢,𝑂,𝑣   𝑢, · ,𝑣   𝑣,𝐺   𝑣,𝑅
Allowed substitution hints:   𝜑(𝑣,𝑢,,𝑖)   𝐴(𝑣,𝑢,,𝑖)   𝐵(,𝑖)   𝐶(,𝑖)   𝑅(𝑢,,𝑖)   · (,𝑖)   𝑈(𝑣,𝑢,,𝑖)   𝐹(𝑣,𝑢,,𝑖)   𝐺(𝑢,,𝑖)   𝐻(𝑣,𝑢,,𝑖)   𝐽(𝑣,𝑢,,𝑖)   𝐾(𝑣,𝑢,,𝑖)   𝑀(𝑣,𝑢,,𝑖)   (𝑣,𝑢,,𝑖)   𝑁(𝑣,𝑢,,𝑖)   𝑂(,𝑖)   𝑉(𝑣,𝑢,,𝑖)   𝑊(𝑣,𝑢,,𝑖)   𝑋(𝑣,𝑢,,𝑖)   𝑌(𝑣,𝑢,,𝑖)   0 (𝑣,𝑢,,𝑖)

Proof of Theorem mapdpglem30
StepHypRef Expression
1 mapdpg.f . . 3 𝐹 = (Base‘𝐶)
2 eqid 2824 . . 3 (+g𝐶) = (+g𝐶)
3 eqid 2824 . . 3 (Scalar‘𝐶) = (Scalar‘𝐶)
4 eqid 2824 . . 3 (Base‘(Scalar‘𝐶)) = (Base‘(Scalar‘𝐶))
5 mapdpglem26.t . . 3 · = ( ·𝑠𝐶)
6 eqid 2824 . . 3 (0g𝐶) = (0g𝐶)
7 mapdpg.j . . 3 𝐽 = (LSpan‘𝐶)
8 mapdpg.h . . . 4 𝐻 = (LHyp‘𝐾)
9 mapdpg.c . . . 4 𝐶 = ((LCDual‘𝐾)‘𝑊)
10 mapdpg.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
118, 9, 10lcdlvec 38731 . . 3 (𝜑𝐶 ∈ LVec)
12 mapdpg.g . . . 4 (𝜑𝐺𝐹)
13 mapdpg.m . . . . 5 𝑀 = ((mapd‘𝐾)‘𝑊)
14 mapdpg.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
15 mapdpg.v . . . . 5 𝑉 = (Base‘𝑈)
16 mapdpg.s . . . . 5 = (-g𝑈)
17 mapdpg.z . . . . 5 0 = (0g𝑈)
18 mapdpg.n . . . . 5 𝑁 = (LSpan‘𝑈)
19 mapdpg.r . . . . 5 𝑅 = (-g𝐶)
20 mapdpg.x . . . . 5 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
21 mapdpg.y . . . . 5 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
22 mapdpg.ne . . . . 5 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
23 mapdpg.e . . . . 5 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
248, 13, 14, 15, 16, 17, 18, 9, 1, 19, 7, 10, 20, 21, 12, 22, 23mapdpglem30a 38835 . . . 4 (𝜑𝐺 ≠ (0g𝐶))
25 eldifsn 4722 . . . 4 (𝐺 ∈ (𝐹 ∖ {(0g𝐶)}) ↔ (𝐺𝐹𝐺 ≠ (0g𝐶)))
2612, 24, 25sylanbrc 585 . . 3 (𝜑𝐺 ∈ (𝐹 ∖ {(0g𝐶)}))
27 mapdpgem25.i1 . . . . 5 (𝜑 → (𝑖𝐹 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)}))))
2827simpld 497 . . . 4 (𝜑𝑖𝐹)
29 mapdpgem25.h1 . . . . 5 (𝜑 → (𝐹 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)}))))
308, 13, 14, 15, 16, 17, 18, 9, 1, 19, 7, 10, 20, 21, 12, 22, 23, 29, 27mapdpglem30b 38836 . . . 4 (𝜑𝑖 ≠ (0g𝐶))
31 eldifsn 4722 . . . 4 (𝑖 ∈ (𝐹 ∖ {(0g𝐶)}) ↔ (𝑖𝐹𝑖 ≠ (0g𝐶)))
3228, 30, 31sylanbrc 585 . . 3 (𝜑𝑖 ∈ (𝐹 ∖ {(0g𝐶)}))
33 mapdpglem28.ve . . . 4 (𝜑𝑣𝐵)
34 mapdpglem26.a . . . . 5 𝐴 = (Scalar‘𝑈)
35 mapdpglem26.b . . . . 5 𝐵 = (Base‘𝐴)
368, 14, 34, 35, 9, 3, 4, 10lcdsbase 38740 . . . 4 (𝜑 → (Base‘(Scalar‘𝐶)) = 𝐵)
3733, 36eleqtrrd 2919 . . 3 (𝜑𝑣 ∈ (Base‘(Scalar‘𝐶)))
388, 14, 10dvhlmod 38250 . . . . . 6 (𝜑𝑈 ∈ LMod)
3934lmodring 19645 . . . . . 6 (𝑈 ∈ LMod → 𝐴 ∈ Ring)
4038, 39syl 17 . . . . 5 (𝜑𝐴 ∈ Ring)
41 ringgrp 19305 . . . . . . 7 (𝐴 ∈ Ring → 𝐴 ∈ Grp)
4240, 41syl 17 . . . . . 6 (𝜑𝐴 ∈ Grp)
43 eqid 2824 . . . . . . . 8 (1r𝐴) = (1r𝐴)
4435, 43ringidcl 19321 . . . . . . 7 (𝐴 ∈ Ring → (1r𝐴) ∈ 𝐵)
4540, 44syl 17 . . . . . 6 (𝜑 → (1r𝐴) ∈ 𝐵)
46 eqid 2824 . . . . . . 7 (invg𝐴) = (invg𝐴)
4735, 46grpinvcl 18154 . . . . . 6 ((𝐴 ∈ Grp ∧ (1r𝐴) ∈ 𝐵) → ((invg𝐴)‘(1r𝐴)) ∈ 𝐵)
4842, 45, 47syl2anc 586 . . . . 5 (𝜑 → ((invg𝐴)‘(1r𝐴)) ∈ 𝐵)
49 eqid 2824 . . . . . 6 (.r𝐴) = (.r𝐴)
5035, 49ringcl 19314 . . . . 5 ((𝐴 ∈ Ring ∧ 𝑣𝐵 ∧ ((invg𝐴)‘(1r𝐴)) ∈ 𝐵) → (𝑣(.r𝐴)((invg𝐴)‘(1r𝐴))) ∈ 𝐵)
5140, 33, 48, 50syl3anc 1367 . . . 4 (𝜑 → (𝑣(.r𝐴)((invg𝐴)‘(1r𝐴))) ∈ 𝐵)
5251, 36eleqtrrd 2919 . . 3 (𝜑 → (𝑣(.r𝐴)((invg𝐴)‘(1r𝐴))) ∈ (Base‘(Scalar‘𝐶)))
5345, 36eleqtrrd 2919 . . 3 (𝜑 → (1r𝐴) ∈ (Base‘(Scalar‘𝐶)))
54 mapdpglem28.ue . . . . 5 (𝜑𝑢𝐵)
5535, 49ringcl 19314 . . . . 5 ((𝐴 ∈ Ring ∧ 𝑢𝐵 ∧ ((invg𝐴)‘(1r𝐴)) ∈ 𝐵) → (𝑢(.r𝐴)((invg𝐴)‘(1r𝐴))) ∈ 𝐵)
5640, 54, 48, 55syl3anc 1367 . . . 4 (𝜑 → (𝑢(.r𝐴)((invg𝐴)‘(1r𝐴))) ∈ 𝐵)
5756, 36eleqtrrd 2919 . . 3 (𝜑 → (𝑢(.r𝐴)((invg𝐴)‘(1r𝐴))) ∈ (Base‘(Scalar‘𝐶)))
58 mapdpglem26.o . . . 4 𝑂 = (0g𝐴)
59 mapdpglem28.u1 . . . 4 (𝜑 = (𝑢 · 𝑖))
60 mapdpglem28.u2 . . . 4 (𝜑 → (𝐺𝑅) = (𝑣 · (𝐺𝑅𝑖)))
618, 13, 14, 15, 16, 17, 18, 9, 1, 19, 7, 10, 20, 21, 12, 22, 23, 29, 27, 34, 35, 5, 58, 33, 59, 60mapdpglem29 38840 . . 3 (𝜑 → (𝐽‘{𝐺}) ≠ (𝐽‘{𝑖}))
628, 14, 34, 35, 49, 9, 1, 5, 10, 48, 54, 28lcdvsass 38747 . . . . 5 (𝜑 → ((𝑢(.r𝐴)((invg𝐴)‘(1r𝐴))) · 𝑖) = (((invg𝐴)‘(1r𝐴)) · (𝑢 · 𝑖)))
6362oveq2d 7175 . . . 4 (𝜑 → (((1r𝐴) · 𝐺)(+g𝐶)((𝑢(.r𝐴)((invg𝐴)‘(1r𝐴))) · 𝑖)) = (((1r𝐴) · 𝐺)(+g𝐶)(((invg𝐴)‘(1r𝐴)) · (𝑢 · 𝑖))))
648, 14, 34, 35, 9, 1, 5, 10, 45, 12lcdvscl 38745 . . . . 5 (𝜑 → ((1r𝐴) · 𝐺) ∈ 𝐹)
658, 14, 34, 35, 9, 1, 5, 10, 54, 28lcdvscl 38745 . . . . 5 (𝜑 → (𝑢 · 𝑖) ∈ 𝐹)
668, 14, 34, 46, 43, 9, 1, 2, 5, 19, 10, 64, 65lcdvsub 38757 . . . 4 (𝜑 → (((1r𝐴) · 𝐺)𝑅(𝑢 · 𝑖)) = (((1r𝐴) · 𝐺)(+g𝐶)(((invg𝐴)‘(1r𝐴)) · (𝑢 · 𝑖))))
678, 14, 34, 35, 49, 9, 1, 5, 10, 48, 33, 28lcdvsass 38747 . . . . . 6 (𝜑 → ((𝑣(.r𝐴)((invg𝐴)‘(1r𝐴))) · 𝑖) = (((invg𝐴)‘(1r𝐴)) · (𝑣 · 𝑖)))
6867oveq2d 7175 . . . . 5 (𝜑 → ((𝑣 · 𝐺)(+g𝐶)((𝑣(.r𝐴)((invg𝐴)‘(1r𝐴))) · 𝑖)) = ((𝑣 · 𝐺)(+g𝐶)(((invg𝐴)‘(1r𝐴)) · (𝑣 · 𝑖))))
698, 14, 34, 35, 9, 1, 5, 10, 33, 12lcdvscl 38745 . . . . . 6 (𝜑 → (𝑣 · 𝐺) ∈ 𝐹)
708, 14, 34, 35, 9, 1, 5, 10, 33, 28lcdvscl 38745 . . . . . 6 (𝜑 → (𝑣 · 𝑖) ∈ 𝐹)
718, 14, 34, 46, 43, 9, 1, 2, 5, 19, 10, 69, 70lcdvsub 38757 . . . . 5 (𝜑 → ((𝑣 · 𝐺)𝑅(𝑣 · 𝑖)) = ((𝑣 · 𝐺)(+g𝐶)(((invg𝐴)‘(1r𝐴)) · (𝑣 · 𝑖))))
728, 13, 14, 15, 16, 17, 18, 9, 1, 19, 7, 10, 20, 21, 12, 22, 23, 29, 27, 34, 35, 5, 58, 33, 59, 60mapdpglem28 38841 . . . . . 6 (𝜑 → ((𝑣 · 𝐺)𝑅(𝑣 · 𝑖)) = (𝐺𝑅(𝑢 · 𝑖)))
73 eqid 2824 . . . . . . . . . 10 (1r‘(Scalar‘𝐶)) = (1r‘(Scalar‘𝐶))
748, 14, 34, 43, 9, 3, 73, 10lcd1 38749 . . . . . . . . 9 (𝜑 → (1r‘(Scalar‘𝐶)) = (1r𝐴))
7574oveq1d 7174 . . . . . . . 8 (𝜑 → ((1r‘(Scalar‘𝐶)) · 𝐺) = ((1r𝐴) · 𝐺))
768, 9, 10lcdlmod 38732 . . . . . . . . 9 (𝜑𝐶 ∈ LMod)
771, 3, 5, 73lmodvs1 19665 . . . . . . . . 9 ((𝐶 ∈ LMod ∧ 𝐺𝐹) → ((1r‘(Scalar‘𝐶)) · 𝐺) = 𝐺)
7876, 12, 77syl2anc 586 . . . . . . . 8 (𝜑 → ((1r‘(Scalar‘𝐶)) · 𝐺) = 𝐺)
7975, 78eqtr3d 2861 . . . . . . 7 (𝜑 → ((1r𝐴) · 𝐺) = 𝐺)
8079oveq1d 7174 . . . . . 6 (𝜑 → (((1r𝐴) · 𝐺)𝑅(𝑢 · 𝑖)) = (𝐺𝑅(𝑢 · 𝑖)))
8172, 80eqtr4d 2862 . . . . 5 (𝜑 → ((𝑣 · 𝐺)𝑅(𝑣 · 𝑖)) = (((1r𝐴) · 𝐺)𝑅(𝑢 · 𝑖)))
8268, 71, 813eqtr2rd 2866 . . . 4 (𝜑 → (((1r𝐴) · 𝐺)𝑅(𝑢 · 𝑖)) = ((𝑣 · 𝐺)(+g𝐶)((𝑣(.r𝐴)((invg𝐴)‘(1r𝐴))) · 𝑖)))
8363, 66, 823eqtr2rd 2866 . . 3 (𝜑 → ((𝑣 · 𝐺)(+g𝐶)((𝑣(.r𝐴)((invg𝐴)‘(1r𝐴))) · 𝑖)) = (((1r𝐴) · 𝐺)(+g𝐶)((𝑢(.r𝐴)((invg𝐴)‘(1r𝐴))) · 𝑖)))
841, 2, 3, 4, 5, 6, 7, 11, 26, 32, 37, 52, 53, 57, 61, 83lvecindp2 19914 . 2 (𝜑 → (𝑣 = (1r𝐴) ∧ (𝑣(.r𝐴)((invg𝐴)‘(1r𝐴))) = (𝑢(.r𝐴)((invg𝐴)‘(1r𝐴)))))
8535, 49, 43, 46, 40, 33rngnegr 19348 . . . . 5 (𝜑 → (𝑣(.r𝐴)((invg𝐴)‘(1r𝐴))) = ((invg𝐴)‘𝑣))
8635, 49, 43, 46, 40, 54rngnegr 19348 . . . . 5 (𝜑 → (𝑢(.r𝐴)((invg𝐴)‘(1r𝐴))) = ((invg𝐴)‘𝑢))
8785, 86eqeq12d 2840 . . . 4 (𝜑 → ((𝑣(.r𝐴)((invg𝐴)‘(1r𝐴))) = (𝑢(.r𝐴)((invg𝐴)‘(1r𝐴))) ↔ ((invg𝐴)‘𝑣) = ((invg𝐴)‘𝑢)))
8835, 46, 42, 33, 54grpinv11 18171 . . . 4 (𝜑 → (((invg𝐴)‘𝑣) = ((invg𝐴)‘𝑢) ↔ 𝑣 = 𝑢))
8987, 88bitrd 281 . . 3 (𝜑 → ((𝑣(.r𝐴)((invg𝐴)‘(1r𝐴))) = (𝑢(.r𝐴)((invg𝐴)‘(1r𝐴))) ↔ 𝑣 = 𝑢))
9089anbi2d 630 . 2 (𝜑 → ((𝑣 = (1r𝐴) ∧ (𝑣(.r𝐴)((invg𝐴)‘(1r𝐴))) = (𝑢(.r𝐴)((invg𝐴)‘(1r𝐴)))) ↔ (𝑣 = (1r𝐴) ∧ 𝑣 = 𝑢)))
9184, 90mpbid 234 1 (𝜑 → (𝑣 = (1r𝐴) ∧ 𝑣 = 𝑢))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1536  wcel 2113  wne 3019  cdif 3936  {csn 4570  cfv 6358  (class class class)co 7159  Basecbs 16486  +gcplusg 16568  .rcmulr 16569  Scalarcsca 16571   ·𝑠 cvsca 16572  0gc0g 16716  Grpcgrp 18106  invgcminusg 18107  -gcsg 18108  1rcur 19254  Ringcrg 19300  LModclmod 19637  LSpanclspn 19746  HLchlt 36490  LHypclh 37124  DVecHcdvh 38218  LCDualclcd 38726  mapdcmpd 38764
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-riotaBAD 36093
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-iin 4925  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-of 7412  df-om 7584  df-1st 7692  df-2nd 7693  df-tpos 7895  df-undef 7942  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-er 8292  df-map 8411  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-struct 16488  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-mulr 16582  df-sca 16584  df-vsca 16585  df-0g 16718  df-mre 16860  df-mrc 16861  df-acs 16863  df-proset 17541  df-poset 17559  df-plt 17571  df-lub 17587  df-glb 17588  df-join 17589  df-meet 17590  df-p0 17652  df-p1 17653  df-lat 17659  df-clat 17721  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-submnd 17960  df-grp 18109  df-minusg 18110  df-sbg 18111  df-subg 18279  df-cntz 18450  df-oppg 18477  df-lsm 18764  df-cmn 18911  df-abl 18912  df-mgp 19243  df-ur 19255  df-ring 19302  df-oppr 19376  df-dvdsr 19394  df-unit 19395  df-invr 19425  df-dvr 19436  df-drng 19507  df-lmod 19639  df-lss 19707  df-lsp 19747  df-lvec 19878  df-lsatoms 36116  df-lshyp 36117  df-lcv 36159  df-lfl 36198  df-lkr 36226  df-ldual 36264  df-oposet 36316  df-ol 36318  df-oml 36319  df-covers 36406  df-ats 36407  df-atl 36438  df-cvlat 36462  df-hlat 36491  df-llines 36638  df-lplanes 36639  df-lvols 36640  df-lines 36641  df-psubsp 36643  df-pmap 36644  df-padd 36936  df-lhyp 37128  df-laut 37129  df-ldil 37244  df-ltrn 37245  df-trl 37299  df-tgrp 37883  df-tendo 37895  df-edring 37897  df-dveca 38143  df-disoa 38169  df-dvech 38219  df-dib 38279  df-dic 38313  df-dih 38369  df-doch 38488  df-djh 38535  df-lcdual 38727  df-mapd 38765
This theorem is referenced by:  mapdpglem31  38843
  Copyright terms: Public domain W3C validator