![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpsinv | Structured version Visualization version GIF version |
Description: Value of the negation operation in a binary structure product. (Contributed by AV, 18-Mar-2025.) |
Ref | Expression |
---|---|
xpsinv.t | ⊢ 𝑇 = (𝑅 ×s 𝑆) |
xpsinv.x | ⊢ 𝑋 = (Base‘𝑅) |
xpsinv.y | ⊢ 𝑌 = (Base‘𝑆) |
xpsinv.r | ⊢ (𝜑 → 𝑅 ∈ Grp) |
xpsinv.s | ⊢ (𝜑 → 𝑆 ∈ Grp) |
xpsinv.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
xpsinv.b | ⊢ (𝜑 → 𝐵 ∈ 𝑌) |
xpsinv.m | ⊢ 𝑀 = (invg‘𝑅) |
xpsinv.n | ⊢ 𝑁 = (invg‘𝑆) |
xpsinv.i | ⊢ 𝐼 = (invg‘𝑇) |
Ref | Expression |
---|---|
xpsinv | ⊢ (𝜑 → (𝐼‘⟨𝐴, 𝐵⟩) = ⟨(𝑀‘𝐴), (𝑁‘𝐵)⟩) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpsinv.x | . . . . 5 ⊢ 𝑋 = (Base‘𝑅) | |
2 | eqid 2732 | . . . . 5 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
3 | eqid 2732 | . . . . 5 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
4 | xpsinv.m | . . . . 5 ⊢ 𝑀 = (invg‘𝑅) | |
5 | xpsinv.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Grp) | |
6 | xpsinv.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
7 | 1, 2, 3, 4, 5, 6 | grplinvd 18878 | . . . 4 ⊢ (𝜑 → ((𝑀‘𝐴)(+g‘𝑅)𝐴) = (0g‘𝑅)) |
8 | xpsinv.y | . . . . 5 ⊢ 𝑌 = (Base‘𝑆) | |
9 | eqid 2732 | . . . . 5 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
10 | eqid 2732 | . . . . 5 ⊢ (0g‘𝑆) = (0g‘𝑆) | |
11 | xpsinv.n | . . . . 5 ⊢ 𝑁 = (invg‘𝑆) | |
12 | xpsinv.s | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ Grp) | |
13 | xpsinv.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑌) | |
14 | 8, 9, 10, 11, 12, 13 | grplinvd 18878 | . . . 4 ⊢ (𝜑 → ((𝑁‘𝐵)(+g‘𝑆)𝐵) = (0g‘𝑆)) |
15 | 7, 14 | opeq12d 4881 | . . 3 ⊢ (𝜑 → ⟨((𝑀‘𝐴)(+g‘𝑅)𝐴), ((𝑁‘𝐵)(+g‘𝑆)𝐵)⟩ = ⟨(0g‘𝑅), (0g‘𝑆)⟩) |
16 | xpsinv.t | . . . 4 ⊢ 𝑇 = (𝑅 ×s 𝑆) | |
17 | 1, 4, 5, 6 | grpinvcld 18872 | . . . 4 ⊢ (𝜑 → (𝑀‘𝐴) ∈ 𝑋) |
18 | 8, 11, 12, 13 | grpinvcld 18872 | . . . 4 ⊢ (𝜑 → (𝑁‘𝐵) ∈ 𝑌) |
19 | 1, 2, 5, 17, 6 | grpcld 18832 | . . . 4 ⊢ (𝜑 → ((𝑀‘𝐴)(+g‘𝑅)𝐴) ∈ 𝑋) |
20 | 8, 9, 12, 18, 13 | grpcld 18832 | . . . 4 ⊢ (𝜑 → ((𝑁‘𝐵)(+g‘𝑆)𝐵) ∈ 𝑌) |
21 | eqid 2732 | . . . 4 ⊢ (+g‘𝑇) = (+g‘𝑇) | |
22 | 16, 1, 8, 5, 12, 17, 18, 6, 13, 19, 20, 2, 9, 21 | xpsadd 17519 | . . 3 ⊢ (𝜑 → (⟨(𝑀‘𝐴), (𝑁‘𝐵)⟩(+g‘𝑇)⟨𝐴, 𝐵⟩) = ⟨((𝑀‘𝐴)(+g‘𝑅)𝐴), ((𝑁‘𝐵)(+g‘𝑆)𝐵)⟩) |
23 | 5 | grpmndd 18831 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Mnd) |
24 | 12 | grpmndd 18831 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ Mnd) |
25 | 16 | xpsmnd0 18665 | . . . 4 ⊢ ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → (0g‘𝑇) = ⟨(0g‘𝑅), (0g‘𝑆)⟩) |
26 | 23, 24, 25 | syl2anc 584 | . . 3 ⊢ (𝜑 → (0g‘𝑇) = ⟨(0g‘𝑅), (0g‘𝑆)⟩) |
27 | 15, 22, 26 | 3eqtr4d 2782 | . 2 ⊢ (𝜑 → (⟨(𝑀‘𝐴), (𝑁‘𝐵)⟩(+g‘𝑇)⟨𝐴, 𝐵⟩) = (0g‘𝑇)) |
28 | 16 | xpsgrp 18941 | . . . 4 ⊢ ((𝑅 ∈ Grp ∧ 𝑆 ∈ Grp) → 𝑇 ∈ Grp) |
29 | 5, 12, 28 | syl2anc 584 | . . 3 ⊢ (𝜑 → 𝑇 ∈ Grp) |
30 | 6, 13 | opelxpd 5715 | . . . 4 ⊢ (𝜑 → ⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑌)) |
31 | 16, 1, 8, 5, 12 | xpsbas 17517 | . . . 4 ⊢ (𝜑 → (𝑋 × 𝑌) = (Base‘𝑇)) |
32 | 30, 31 | eleqtrd 2835 | . . 3 ⊢ (𝜑 → ⟨𝐴, 𝐵⟩ ∈ (Base‘𝑇)) |
33 | 17, 18 | opelxpd 5715 | . . . 4 ⊢ (𝜑 → ⟨(𝑀‘𝐴), (𝑁‘𝐵)⟩ ∈ (𝑋 × 𝑌)) |
34 | 33, 31 | eleqtrd 2835 | . . 3 ⊢ (𝜑 → ⟨(𝑀‘𝐴), (𝑁‘𝐵)⟩ ∈ (Base‘𝑇)) |
35 | eqid 2732 | . . . 4 ⊢ (Base‘𝑇) = (Base‘𝑇) | |
36 | eqid 2732 | . . . 4 ⊢ (0g‘𝑇) = (0g‘𝑇) | |
37 | xpsinv.i | . . . 4 ⊢ 𝐼 = (invg‘𝑇) | |
38 | 35, 21, 36, 37 | grpinvid2 18876 | . . 3 ⊢ ((𝑇 ∈ Grp ∧ ⟨𝐴, 𝐵⟩ ∈ (Base‘𝑇) ∧ ⟨(𝑀‘𝐴), (𝑁‘𝐵)⟩ ∈ (Base‘𝑇)) → ((𝐼‘⟨𝐴, 𝐵⟩) = ⟨(𝑀‘𝐴), (𝑁‘𝐵)⟩ ↔ (⟨(𝑀‘𝐴), (𝑁‘𝐵)⟩(+g‘𝑇)⟨𝐴, 𝐵⟩) = (0g‘𝑇))) |
39 | 29, 32, 34, 38 | syl3anc 1371 | . 2 ⊢ (𝜑 → ((𝐼‘⟨𝐴, 𝐵⟩) = ⟨(𝑀‘𝐴), (𝑁‘𝐵)⟩ ↔ (⟨(𝑀‘𝐴), (𝑁‘𝐵)⟩(+g‘𝑇)⟨𝐴, 𝐵⟩) = (0g‘𝑇))) |
40 | 27, 39 | mpbird 256 | 1 ⊢ (𝜑 → (𝐼‘⟨𝐴, 𝐵⟩) = ⟨(𝑀‘𝐴), (𝑁‘𝐵)⟩) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 ∈ wcel 2106 ⟨cop 4634 × cxp 5674 ‘cfv 6543 (class class class)co 7408 Basecbs 17143 +gcplusg 17196 0gc0g 17384 ×s cxps 17451 Mndcmnd 18624 Grpcgrp 18818 invgcminusg 18819 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-2o 8466 df-er 8702 df-map 8821 df-ixp 8891 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-sup 9436 df-inf 9437 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-9 12281 df-n0 12472 df-z 12558 df-dec 12677 df-uz 12822 df-fz 13484 df-struct 17079 df-slot 17114 df-ndx 17126 df-base 17144 df-plusg 17209 df-mulr 17210 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-hom 17220 df-cco 17221 df-0g 17386 df-prds 17392 df-imas 17453 df-xps 17455 df-mgm 18560 df-sgrp 18609 df-mnd 18625 df-grp 18821 df-minusg 18822 |
This theorem is referenced by: pzriprnglem4 46798 |
Copyright terms: Public domain | W3C validator |