| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpsinv | Structured version Visualization version GIF version | ||
| Description: Value of the negation operation in a binary structure product. (Contributed by AV, 18-Mar-2025.) |
| Ref | Expression |
|---|---|
| xpsinv.t | ⊢ 𝑇 = (𝑅 ×s 𝑆) |
| xpsinv.x | ⊢ 𝑋 = (Base‘𝑅) |
| xpsinv.y | ⊢ 𝑌 = (Base‘𝑆) |
| xpsinv.r | ⊢ (𝜑 → 𝑅 ∈ Grp) |
| xpsinv.s | ⊢ (𝜑 → 𝑆 ∈ Grp) |
| xpsinv.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
| xpsinv.b | ⊢ (𝜑 → 𝐵 ∈ 𝑌) |
| xpsinv.m | ⊢ 𝑀 = (invg‘𝑅) |
| xpsinv.n | ⊢ 𝑁 = (invg‘𝑆) |
| xpsinv.i | ⊢ 𝐼 = (invg‘𝑇) |
| Ref | Expression |
|---|---|
| xpsinv | ⊢ (𝜑 → (𝐼‘〈𝐴, 𝐵〉) = 〈(𝑀‘𝐴), (𝑁‘𝐵)〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpsinv.x | . . . . 5 ⊢ 𝑋 = (Base‘𝑅) | |
| 2 | eqid 2729 | . . . . 5 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 3 | eqid 2729 | . . . . 5 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 4 | xpsinv.m | . . . . 5 ⊢ 𝑀 = (invg‘𝑅) | |
| 5 | xpsinv.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Grp) | |
| 6 | xpsinv.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
| 7 | 1, 2, 3, 4, 5, 6 | grplinvd 18926 | . . . 4 ⊢ (𝜑 → ((𝑀‘𝐴)(+g‘𝑅)𝐴) = (0g‘𝑅)) |
| 8 | xpsinv.y | . . . . 5 ⊢ 𝑌 = (Base‘𝑆) | |
| 9 | eqid 2729 | . . . . 5 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
| 10 | eqid 2729 | . . . . 5 ⊢ (0g‘𝑆) = (0g‘𝑆) | |
| 11 | xpsinv.n | . . . . 5 ⊢ 𝑁 = (invg‘𝑆) | |
| 12 | xpsinv.s | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ Grp) | |
| 13 | xpsinv.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑌) | |
| 14 | 8, 9, 10, 11, 12, 13 | grplinvd 18926 | . . . 4 ⊢ (𝜑 → ((𝑁‘𝐵)(+g‘𝑆)𝐵) = (0g‘𝑆)) |
| 15 | 7, 14 | opeq12d 4845 | . . 3 ⊢ (𝜑 → 〈((𝑀‘𝐴)(+g‘𝑅)𝐴), ((𝑁‘𝐵)(+g‘𝑆)𝐵)〉 = 〈(0g‘𝑅), (0g‘𝑆)〉) |
| 16 | xpsinv.t | . . . 4 ⊢ 𝑇 = (𝑅 ×s 𝑆) | |
| 17 | 1, 4, 5, 6 | grpinvcld 18920 | . . . 4 ⊢ (𝜑 → (𝑀‘𝐴) ∈ 𝑋) |
| 18 | 8, 11, 12, 13 | grpinvcld 18920 | . . . 4 ⊢ (𝜑 → (𝑁‘𝐵) ∈ 𝑌) |
| 19 | 1, 2, 5, 17, 6 | grpcld 18879 | . . . 4 ⊢ (𝜑 → ((𝑀‘𝐴)(+g‘𝑅)𝐴) ∈ 𝑋) |
| 20 | 8, 9, 12, 18, 13 | grpcld 18879 | . . . 4 ⊢ (𝜑 → ((𝑁‘𝐵)(+g‘𝑆)𝐵) ∈ 𝑌) |
| 21 | eqid 2729 | . . . 4 ⊢ (+g‘𝑇) = (+g‘𝑇) | |
| 22 | 16, 1, 8, 5, 12, 17, 18, 6, 13, 19, 20, 2, 9, 21 | xpsadd 17537 | . . 3 ⊢ (𝜑 → (〈(𝑀‘𝐴), (𝑁‘𝐵)〉(+g‘𝑇)〈𝐴, 𝐵〉) = 〈((𝑀‘𝐴)(+g‘𝑅)𝐴), ((𝑁‘𝐵)(+g‘𝑆)𝐵)〉) |
| 23 | 5 | grpmndd 18878 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Mnd) |
| 24 | 12 | grpmndd 18878 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ Mnd) |
| 25 | 16 | xpsmnd0 18705 | . . . 4 ⊢ ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → (0g‘𝑇) = 〈(0g‘𝑅), (0g‘𝑆)〉) |
| 26 | 23, 24, 25 | syl2anc 584 | . . 3 ⊢ (𝜑 → (0g‘𝑇) = 〈(0g‘𝑅), (0g‘𝑆)〉) |
| 27 | 15, 22, 26 | 3eqtr4d 2774 | . 2 ⊢ (𝜑 → (〈(𝑀‘𝐴), (𝑁‘𝐵)〉(+g‘𝑇)〈𝐴, 𝐵〉) = (0g‘𝑇)) |
| 28 | 16 | xpsgrp 18991 | . . . 4 ⊢ ((𝑅 ∈ Grp ∧ 𝑆 ∈ Grp) → 𝑇 ∈ Grp) |
| 29 | 5, 12, 28 | syl2anc 584 | . . 3 ⊢ (𝜑 → 𝑇 ∈ Grp) |
| 30 | 6, 13 | opelxpd 5677 | . . . 4 ⊢ (𝜑 → 〈𝐴, 𝐵〉 ∈ (𝑋 × 𝑌)) |
| 31 | 16, 1, 8, 5, 12 | xpsbas 17535 | . . . 4 ⊢ (𝜑 → (𝑋 × 𝑌) = (Base‘𝑇)) |
| 32 | 30, 31 | eleqtrd 2830 | . . 3 ⊢ (𝜑 → 〈𝐴, 𝐵〉 ∈ (Base‘𝑇)) |
| 33 | 17, 18 | opelxpd 5677 | . . . 4 ⊢ (𝜑 → 〈(𝑀‘𝐴), (𝑁‘𝐵)〉 ∈ (𝑋 × 𝑌)) |
| 34 | 33, 31 | eleqtrd 2830 | . . 3 ⊢ (𝜑 → 〈(𝑀‘𝐴), (𝑁‘𝐵)〉 ∈ (Base‘𝑇)) |
| 35 | eqid 2729 | . . . 4 ⊢ (Base‘𝑇) = (Base‘𝑇) | |
| 36 | eqid 2729 | . . . 4 ⊢ (0g‘𝑇) = (0g‘𝑇) | |
| 37 | xpsinv.i | . . . 4 ⊢ 𝐼 = (invg‘𝑇) | |
| 38 | 35, 21, 36, 37 | grpinvid2 18924 | . . 3 ⊢ ((𝑇 ∈ Grp ∧ 〈𝐴, 𝐵〉 ∈ (Base‘𝑇) ∧ 〈(𝑀‘𝐴), (𝑁‘𝐵)〉 ∈ (Base‘𝑇)) → ((𝐼‘〈𝐴, 𝐵〉) = 〈(𝑀‘𝐴), (𝑁‘𝐵)〉 ↔ (〈(𝑀‘𝐴), (𝑁‘𝐵)〉(+g‘𝑇)〈𝐴, 𝐵〉) = (0g‘𝑇))) |
| 39 | 29, 32, 34, 38 | syl3anc 1373 | . 2 ⊢ (𝜑 → ((𝐼‘〈𝐴, 𝐵〉) = 〈(𝑀‘𝐴), (𝑁‘𝐵)〉 ↔ (〈(𝑀‘𝐴), (𝑁‘𝐵)〉(+g‘𝑇)〈𝐴, 𝐵〉) = (0g‘𝑇))) |
| 40 | 27, 39 | mpbird 257 | 1 ⊢ (𝜑 → (𝐼‘〈𝐴, 𝐵〉) = 〈(𝑀‘𝐴), (𝑁‘𝐵)〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 〈cop 4595 × cxp 5636 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 +gcplusg 17220 0gc0g 17402 ×s cxps 17469 Mndcmnd 18661 Grpcgrp 18865 invgcminusg 18866 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-struct 17117 df-slot 17152 df-ndx 17164 df-base 17180 df-plusg 17233 df-mulr 17234 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-hom 17244 df-cco 17245 df-0g 17404 df-prds 17410 df-imas 17471 df-xps 17473 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-minusg 18869 |
| This theorem is referenced by: pzriprnglem4 21394 |
| Copyright terms: Public domain | W3C validator |