MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsinv Structured version   Visualization version   GIF version

Theorem xpsinv 19009
Description: Value of the negation operation in a binary structure product. (Contributed by AV, 18-Mar-2025.)
Hypotheses
Ref Expression
xpsinv.t 𝑇 = (𝑅 ×s 𝑆)
xpsinv.x 𝑋 = (Base‘𝑅)
xpsinv.y 𝑌 = (Base‘𝑆)
xpsinv.r (𝜑𝑅 ∈ Grp)
xpsinv.s (𝜑𝑆 ∈ Grp)
xpsinv.a (𝜑𝐴𝑋)
xpsinv.b (𝜑𝐵𝑌)
xpsinv.m 𝑀 = (invg𝑅)
xpsinv.n 𝑁 = (invg𝑆)
xpsinv.i 𝐼 = (invg𝑇)
Assertion
Ref Expression
xpsinv (𝜑 → (𝐼‘⟨𝐴, 𝐵⟩) = ⟨(𝑀𝐴), (𝑁𝐵)⟩)

Proof of Theorem xpsinv
StepHypRef Expression
1 xpsinv.x . . . . 5 𝑋 = (Base‘𝑅)
2 eqid 2727 . . . . 5 (+g𝑅) = (+g𝑅)
3 eqid 2727 . . . . 5 (0g𝑅) = (0g𝑅)
4 xpsinv.m . . . . 5 𝑀 = (invg𝑅)
5 xpsinv.r . . . . 5 (𝜑𝑅 ∈ Grp)
6 xpsinv.a . . . . 5 (𝜑𝐴𝑋)
71, 2, 3, 4, 5, 6grplinvd 18944 . . . 4 (𝜑 → ((𝑀𝐴)(+g𝑅)𝐴) = (0g𝑅))
8 xpsinv.y . . . . 5 𝑌 = (Base‘𝑆)
9 eqid 2727 . . . . 5 (+g𝑆) = (+g𝑆)
10 eqid 2727 . . . . 5 (0g𝑆) = (0g𝑆)
11 xpsinv.n . . . . 5 𝑁 = (invg𝑆)
12 xpsinv.s . . . . 5 (𝜑𝑆 ∈ Grp)
13 xpsinv.b . . . . 5 (𝜑𝐵𝑌)
148, 9, 10, 11, 12, 13grplinvd 18944 . . . 4 (𝜑 → ((𝑁𝐵)(+g𝑆)𝐵) = (0g𝑆))
157, 14opeq12d 4877 . . 3 (𝜑 → ⟨((𝑀𝐴)(+g𝑅)𝐴), ((𝑁𝐵)(+g𝑆)𝐵)⟩ = ⟨(0g𝑅), (0g𝑆)⟩)
16 xpsinv.t . . . 4 𝑇 = (𝑅 ×s 𝑆)
171, 4, 5, 6grpinvcld 18938 . . . 4 (𝜑 → (𝑀𝐴) ∈ 𝑋)
188, 11, 12, 13grpinvcld 18938 . . . 4 (𝜑 → (𝑁𝐵) ∈ 𝑌)
191, 2, 5, 17, 6grpcld 18897 . . . 4 (𝜑 → ((𝑀𝐴)(+g𝑅)𝐴) ∈ 𝑋)
208, 9, 12, 18, 13grpcld 18897 . . . 4 (𝜑 → ((𝑁𝐵)(+g𝑆)𝐵) ∈ 𝑌)
21 eqid 2727 . . . 4 (+g𝑇) = (+g𝑇)
2216, 1, 8, 5, 12, 17, 18, 6, 13, 19, 20, 2, 9, 21xpsadd 17549 . . 3 (𝜑 → (⟨(𝑀𝐴), (𝑁𝐵)⟩(+g𝑇)⟨𝐴, 𝐵⟩) = ⟨((𝑀𝐴)(+g𝑅)𝐴), ((𝑁𝐵)(+g𝑆)𝐵)⟩)
235grpmndd 18896 . . . 4 (𝜑𝑅 ∈ Mnd)
2412grpmndd 18896 . . . 4 (𝜑𝑆 ∈ Mnd)
2516xpsmnd0 18728 . . . 4 ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → (0g𝑇) = ⟨(0g𝑅), (0g𝑆)⟩)
2623, 24, 25syl2anc 583 . . 3 (𝜑 → (0g𝑇) = ⟨(0g𝑅), (0g𝑆)⟩)
2715, 22, 263eqtr4d 2777 . 2 (𝜑 → (⟨(𝑀𝐴), (𝑁𝐵)⟩(+g𝑇)⟨𝐴, 𝐵⟩) = (0g𝑇))
2816xpsgrp 19008 . . . 4 ((𝑅 ∈ Grp ∧ 𝑆 ∈ Grp) → 𝑇 ∈ Grp)
295, 12, 28syl2anc 583 . . 3 (𝜑𝑇 ∈ Grp)
306, 13opelxpd 5711 . . . 4 (𝜑 → ⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑌))
3116, 1, 8, 5, 12xpsbas 17547 . . . 4 (𝜑 → (𝑋 × 𝑌) = (Base‘𝑇))
3230, 31eleqtrd 2830 . . 3 (𝜑 → ⟨𝐴, 𝐵⟩ ∈ (Base‘𝑇))
3317, 18opelxpd 5711 . . . 4 (𝜑 → ⟨(𝑀𝐴), (𝑁𝐵)⟩ ∈ (𝑋 × 𝑌))
3433, 31eleqtrd 2830 . . 3 (𝜑 → ⟨(𝑀𝐴), (𝑁𝐵)⟩ ∈ (Base‘𝑇))
35 eqid 2727 . . . 4 (Base‘𝑇) = (Base‘𝑇)
36 eqid 2727 . . . 4 (0g𝑇) = (0g𝑇)
37 xpsinv.i . . . 4 𝐼 = (invg𝑇)
3835, 21, 36, 37grpinvid2 18942 . . 3 ((𝑇 ∈ Grp ∧ ⟨𝐴, 𝐵⟩ ∈ (Base‘𝑇) ∧ ⟨(𝑀𝐴), (𝑁𝐵)⟩ ∈ (Base‘𝑇)) → ((𝐼‘⟨𝐴, 𝐵⟩) = ⟨(𝑀𝐴), (𝑁𝐵)⟩ ↔ (⟨(𝑀𝐴), (𝑁𝐵)⟩(+g𝑇)⟨𝐴, 𝐵⟩) = (0g𝑇)))
3929, 32, 34, 38syl3anc 1369 . 2 (𝜑 → ((𝐼‘⟨𝐴, 𝐵⟩) = ⟨(𝑀𝐴), (𝑁𝐵)⟩ ↔ (⟨(𝑀𝐴), (𝑁𝐵)⟩(+g𝑇)⟨𝐴, 𝐵⟩) = (0g𝑇)))
4027, 39mpbird 257 1 (𝜑 → (𝐼‘⟨𝐴, 𝐵⟩) = ⟨(𝑀𝐴), (𝑁𝐵)⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1534  wcel 2099  cop 4630   × cxp 5670  cfv 6542  (class class class)co 7414  Basecbs 17173  +gcplusg 17226  0gc0g 17414   ×s cxps 17481  Mndcmnd 18687  Grpcgrp 18883  invgcminusg 18884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8718  df-map 8840  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-sup 9459  df-inf 9460  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-nn 12237  df-2 12299  df-3 12300  df-4 12301  df-5 12302  df-6 12303  df-7 12304  df-8 12305  df-9 12306  df-n0 12497  df-z 12583  df-dec 12702  df-uz 12847  df-fz 13511  df-struct 17109  df-slot 17144  df-ndx 17156  df-base 17174  df-plusg 17239  df-mulr 17240  df-sca 17242  df-vsca 17243  df-ip 17244  df-tset 17245  df-ple 17246  df-ds 17248  df-hom 17250  df-cco 17251  df-0g 17416  df-prds 17422  df-imas 17483  df-xps 17485  df-mgm 18593  df-sgrp 18672  df-mnd 18688  df-grp 18886  df-minusg 18887
This theorem is referenced by:  pzriprnglem4  21403
  Copyright terms: Public domain W3C validator