MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsinv Structured version   Visualization version   GIF version

Theorem xpsinv 18978
Description: Value of the negation operation in a binary structure product. (Contributed by AV, 18-Mar-2025.)
Hypotheses
Ref Expression
xpsinv.t 𝑇 = (𝑅 ×s 𝑆)
xpsinv.x 𝑋 = (Base‘𝑅)
xpsinv.y 𝑌 = (Base‘𝑆)
xpsinv.r (𝜑𝑅 ∈ Grp)
xpsinv.s (𝜑𝑆 ∈ Grp)
xpsinv.a (𝜑𝐴𝑋)
xpsinv.b (𝜑𝐵𝑌)
xpsinv.m 𝑀 = (invg𝑅)
xpsinv.n 𝑁 = (invg𝑆)
xpsinv.i 𝐼 = (invg𝑇)
Assertion
Ref Expression
xpsinv (𝜑 → (𝐼‘⟨𝐴, 𝐵⟩) = ⟨(𝑀𝐴), (𝑁𝐵)⟩)

Proof of Theorem xpsinv
StepHypRef Expression
1 xpsinv.x . . . . 5 𝑋 = (Base‘𝑅)
2 eqid 2724 . . . . 5 (+g𝑅) = (+g𝑅)
3 eqid 2724 . . . . 5 (0g𝑅) = (0g𝑅)
4 xpsinv.m . . . . 5 𝑀 = (invg𝑅)
5 xpsinv.r . . . . 5 (𝜑𝑅 ∈ Grp)
6 xpsinv.a . . . . 5 (𝜑𝐴𝑋)
71, 2, 3, 4, 5, 6grplinvd 18914 . . . 4 (𝜑 → ((𝑀𝐴)(+g𝑅)𝐴) = (0g𝑅))
8 xpsinv.y . . . . 5 𝑌 = (Base‘𝑆)
9 eqid 2724 . . . . 5 (+g𝑆) = (+g𝑆)
10 eqid 2724 . . . . 5 (0g𝑆) = (0g𝑆)
11 xpsinv.n . . . . 5 𝑁 = (invg𝑆)
12 xpsinv.s . . . . 5 (𝜑𝑆 ∈ Grp)
13 xpsinv.b . . . . 5 (𝜑𝐵𝑌)
148, 9, 10, 11, 12, 13grplinvd 18914 . . . 4 (𝜑 → ((𝑁𝐵)(+g𝑆)𝐵) = (0g𝑆))
157, 14opeq12d 4873 . . 3 (𝜑 → ⟨((𝑀𝐴)(+g𝑅)𝐴), ((𝑁𝐵)(+g𝑆)𝐵)⟩ = ⟨(0g𝑅), (0g𝑆)⟩)
16 xpsinv.t . . . 4 𝑇 = (𝑅 ×s 𝑆)
171, 4, 5, 6grpinvcld 18908 . . . 4 (𝜑 → (𝑀𝐴) ∈ 𝑋)
188, 11, 12, 13grpinvcld 18908 . . . 4 (𝜑 → (𝑁𝐵) ∈ 𝑌)
191, 2, 5, 17, 6grpcld 18867 . . . 4 (𝜑 → ((𝑀𝐴)(+g𝑅)𝐴) ∈ 𝑋)
208, 9, 12, 18, 13grpcld 18867 . . . 4 (𝜑 → ((𝑁𝐵)(+g𝑆)𝐵) ∈ 𝑌)
21 eqid 2724 . . . 4 (+g𝑇) = (+g𝑇)
2216, 1, 8, 5, 12, 17, 18, 6, 13, 19, 20, 2, 9, 21xpsadd 17519 . . 3 (𝜑 → (⟨(𝑀𝐴), (𝑁𝐵)⟩(+g𝑇)⟨𝐴, 𝐵⟩) = ⟨((𝑀𝐴)(+g𝑅)𝐴), ((𝑁𝐵)(+g𝑆)𝐵)⟩)
235grpmndd 18866 . . . 4 (𝜑𝑅 ∈ Mnd)
2412grpmndd 18866 . . . 4 (𝜑𝑆 ∈ Mnd)
2516xpsmnd0 18698 . . . 4 ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → (0g𝑇) = ⟨(0g𝑅), (0g𝑆)⟩)
2623, 24, 25syl2anc 583 . . 3 (𝜑 → (0g𝑇) = ⟨(0g𝑅), (0g𝑆)⟩)
2715, 22, 263eqtr4d 2774 . 2 (𝜑 → (⟨(𝑀𝐴), (𝑁𝐵)⟩(+g𝑇)⟨𝐴, 𝐵⟩) = (0g𝑇))
2816xpsgrp 18977 . . . 4 ((𝑅 ∈ Grp ∧ 𝑆 ∈ Grp) → 𝑇 ∈ Grp)
295, 12, 28syl2anc 583 . . 3 (𝜑𝑇 ∈ Grp)
306, 13opelxpd 5705 . . . 4 (𝜑 → ⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑌))
3116, 1, 8, 5, 12xpsbas 17517 . . . 4 (𝜑 → (𝑋 × 𝑌) = (Base‘𝑇))
3230, 31eleqtrd 2827 . . 3 (𝜑 → ⟨𝐴, 𝐵⟩ ∈ (Base‘𝑇))
3317, 18opelxpd 5705 . . . 4 (𝜑 → ⟨(𝑀𝐴), (𝑁𝐵)⟩ ∈ (𝑋 × 𝑌))
3433, 31eleqtrd 2827 . . 3 (𝜑 → ⟨(𝑀𝐴), (𝑁𝐵)⟩ ∈ (Base‘𝑇))
35 eqid 2724 . . . 4 (Base‘𝑇) = (Base‘𝑇)
36 eqid 2724 . . . 4 (0g𝑇) = (0g𝑇)
37 xpsinv.i . . . 4 𝐼 = (invg𝑇)
3835, 21, 36, 37grpinvid2 18912 . . 3 ((𝑇 ∈ Grp ∧ ⟨𝐴, 𝐵⟩ ∈ (Base‘𝑇) ∧ ⟨(𝑀𝐴), (𝑁𝐵)⟩ ∈ (Base‘𝑇)) → ((𝐼‘⟨𝐴, 𝐵⟩) = ⟨(𝑀𝐴), (𝑁𝐵)⟩ ↔ (⟨(𝑀𝐴), (𝑁𝐵)⟩(+g𝑇)⟨𝐴, 𝐵⟩) = (0g𝑇)))
3929, 32, 34, 38syl3anc 1368 . 2 (𝜑 → ((𝐼‘⟨𝐴, 𝐵⟩) = ⟨(𝑀𝐴), (𝑁𝐵)⟩ ↔ (⟨(𝑀𝐴), (𝑁𝐵)⟩(+g𝑇)⟨𝐴, 𝐵⟩) = (0g𝑇)))
4027, 39mpbird 257 1 (𝜑 → (𝐼‘⟨𝐴, 𝐵⟩) = ⟨(𝑀𝐴), (𝑁𝐵)⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1533  wcel 2098  cop 4626   × cxp 5664  cfv 6533  (class class class)co 7401  Basecbs 17143  +gcplusg 17196  0gc0g 17384   ×s cxps 17451  Mndcmnd 18657  Grpcgrp 18853  invgcminusg 18854
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-tp 4625  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-1st 7968  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-2o 8462  df-er 8699  df-map 8818  df-ixp 8888  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-inf 9434  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-nn 12210  df-2 12272  df-3 12273  df-4 12274  df-5 12275  df-6 12276  df-7 12277  df-8 12278  df-9 12279  df-n0 12470  df-z 12556  df-dec 12675  df-uz 12820  df-fz 13482  df-struct 17079  df-slot 17114  df-ndx 17126  df-base 17144  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-hom 17220  df-cco 17221  df-0g 17386  df-prds 17392  df-imas 17453  df-xps 17455  df-mgm 18563  df-sgrp 18642  df-mnd 18658  df-grp 18856  df-minusg 18857
This theorem is referenced by:  pzriprnglem4  21339
  Copyright terms: Public domain W3C validator