![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpsinv | Structured version Visualization version GIF version |
Description: Value of the negation operation in a binary structure product. (Contributed by AV, 18-Mar-2025.) |
Ref | Expression |
---|---|
xpsinv.t | ⊢ 𝑇 = (𝑅 ×s 𝑆) |
xpsinv.x | ⊢ 𝑋 = (Base‘𝑅) |
xpsinv.y | ⊢ 𝑌 = (Base‘𝑆) |
xpsinv.r | ⊢ (𝜑 → 𝑅 ∈ Grp) |
xpsinv.s | ⊢ (𝜑 → 𝑆 ∈ Grp) |
xpsinv.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
xpsinv.b | ⊢ (𝜑 → 𝐵 ∈ 𝑌) |
xpsinv.m | ⊢ 𝑀 = (invg‘𝑅) |
xpsinv.n | ⊢ 𝑁 = (invg‘𝑆) |
xpsinv.i | ⊢ 𝐼 = (invg‘𝑇) |
Ref | Expression |
---|---|
xpsinv | ⊢ (𝜑 → (𝐼‘〈𝐴, 𝐵〉) = 〈(𝑀‘𝐴), (𝑁‘𝐵)〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpsinv.x | . . . . 5 ⊢ 𝑋 = (Base‘𝑅) | |
2 | eqid 2740 | . . . . 5 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
3 | eqid 2740 | . . . . 5 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
4 | xpsinv.m | . . . . 5 ⊢ 𝑀 = (invg‘𝑅) | |
5 | xpsinv.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Grp) | |
6 | xpsinv.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
7 | 1, 2, 3, 4, 5, 6 | grplinvd 19034 | . . . 4 ⊢ (𝜑 → ((𝑀‘𝐴)(+g‘𝑅)𝐴) = (0g‘𝑅)) |
8 | xpsinv.y | . . . . 5 ⊢ 𝑌 = (Base‘𝑆) | |
9 | eqid 2740 | . . . . 5 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
10 | eqid 2740 | . . . . 5 ⊢ (0g‘𝑆) = (0g‘𝑆) | |
11 | xpsinv.n | . . . . 5 ⊢ 𝑁 = (invg‘𝑆) | |
12 | xpsinv.s | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ Grp) | |
13 | xpsinv.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑌) | |
14 | 8, 9, 10, 11, 12, 13 | grplinvd 19034 | . . . 4 ⊢ (𝜑 → ((𝑁‘𝐵)(+g‘𝑆)𝐵) = (0g‘𝑆)) |
15 | 7, 14 | opeq12d 4905 | . . 3 ⊢ (𝜑 → 〈((𝑀‘𝐴)(+g‘𝑅)𝐴), ((𝑁‘𝐵)(+g‘𝑆)𝐵)〉 = 〈(0g‘𝑅), (0g‘𝑆)〉) |
16 | xpsinv.t | . . . 4 ⊢ 𝑇 = (𝑅 ×s 𝑆) | |
17 | 1, 4, 5, 6 | grpinvcld 19028 | . . . 4 ⊢ (𝜑 → (𝑀‘𝐴) ∈ 𝑋) |
18 | 8, 11, 12, 13 | grpinvcld 19028 | . . . 4 ⊢ (𝜑 → (𝑁‘𝐵) ∈ 𝑌) |
19 | 1, 2, 5, 17, 6 | grpcld 18987 | . . . 4 ⊢ (𝜑 → ((𝑀‘𝐴)(+g‘𝑅)𝐴) ∈ 𝑋) |
20 | 8, 9, 12, 18, 13 | grpcld 18987 | . . . 4 ⊢ (𝜑 → ((𝑁‘𝐵)(+g‘𝑆)𝐵) ∈ 𝑌) |
21 | eqid 2740 | . . . 4 ⊢ (+g‘𝑇) = (+g‘𝑇) | |
22 | 16, 1, 8, 5, 12, 17, 18, 6, 13, 19, 20, 2, 9, 21 | xpsadd 17634 | . . 3 ⊢ (𝜑 → (〈(𝑀‘𝐴), (𝑁‘𝐵)〉(+g‘𝑇)〈𝐴, 𝐵〉) = 〈((𝑀‘𝐴)(+g‘𝑅)𝐴), ((𝑁‘𝐵)(+g‘𝑆)𝐵)〉) |
23 | 5 | grpmndd 18986 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Mnd) |
24 | 12 | grpmndd 18986 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ Mnd) |
25 | 16 | xpsmnd0 18813 | . . . 4 ⊢ ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → (0g‘𝑇) = 〈(0g‘𝑅), (0g‘𝑆)〉) |
26 | 23, 24, 25 | syl2anc 583 | . . 3 ⊢ (𝜑 → (0g‘𝑇) = 〈(0g‘𝑅), (0g‘𝑆)〉) |
27 | 15, 22, 26 | 3eqtr4d 2790 | . 2 ⊢ (𝜑 → (〈(𝑀‘𝐴), (𝑁‘𝐵)〉(+g‘𝑇)〈𝐴, 𝐵〉) = (0g‘𝑇)) |
28 | 16 | xpsgrp 19099 | . . . 4 ⊢ ((𝑅 ∈ Grp ∧ 𝑆 ∈ Grp) → 𝑇 ∈ Grp) |
29 | 5, 12, 28 | syl2anc 583 | . . 3 ⊢ (𝜑 → 𝑇 ∈ Grp) |
30 | 6, 13 | opelxpd 5739 | . . . 4 ⊢ (𝜑 → 〈𝐴, 𝐵〉 ∈ (𝑋 × 𝑌)) |
31 | 16, 1, 8, 5, 12 | xpsbas 17632 | . . . 4 ⊢ (𝜑 → (𝑋 × 𝑌) = (Base‘𝑇)) |
32 | 30, 31 | eleqtrd 2846 | . . 3 ⊢ (𝜑 → 〈𝐴, 𝐵〉 ∈ (Base‘𝑇)) |
33 | 17, 18 | opelxpd 5739 | . . . 4 ⊢ (𝜑 → 〈(𝑀‘𝐴), (𝑁‘𝐵)〉 ∈ (𝑋 × 𝑌)) |
34 | 33, 31 | eleqtrd 2846 | . . 3 ⊢ (𝜑 → 〈(𝑀‘𝐴), (𝑁‘𝐵)〉 ∈ (Base‘𝑇)) |
35 | eqid 2740 | . . . 4 ⊢ (Base‘𝑇) = (Base‘𝑇) | |
36 | eqid 2740 | . . . 4 ⊢ (0g‘𝑇) = (0g‘𝑇) | |
37 | xpsinv.i | . . . 4 ⊢ 𝐼 = (invg‘𝑇) | |
38 | 35, 21, 36, 37 | grpinvid2 19032 | . . 3 ⊢ ((𝑇 ∈ Grp ∧ 〈𝐴, 𝐵〉 ∈ (Base‘𝑇) ∧ 〈(𝑀‘𝐴), (𝑁‘𝐵)〉 ∈ (Base‘𝑇)) → ((𝐼‘〈𝐴, 𝐵〉) = 〈(𝑀‘𝐴), (𝑁‘𝐵)〉 ↔ (〈(𝑀‘𝐴), (𝑁‘𝐵)〉(+g‘𝑇)〈𝐴, 𝐵〉) = (0g‘𝑇))) |
39 | 29, 32, 34, 38 | syl3anc 1371 | . 2 ⊢ (𝜑 → ((𝐼‘〈𝐴, 𝐵〉) = 〈(𝑀‘𝐴), (𝑁‘𝐵)〉 ↔ (〈(𝑀‘𝐴), (𝑁‘𝐵)〉(+g‘𝑇)〈𝐴, 𝐵〉) = (0g‘𝑇))) |
40 | 27, 39 | mpbird 257 | 1 ⊢ (𝜑 → (𝐼‘〈𝐴, 𝐵〉) = 〈(𝑀‘𝐴), (𝑁‘𝐵)〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 〈cop 4654 × cxp 5698 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 +gcplusg 17311 0gc0g 17499 ×s cxps 17566 Mndcmnd 18772 Grpcgrp 18973 invgcminusg 18974 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-fz 13568 df-struct 17194 df-slot 17229 df-ndx 17241 df-base 17259 df-plusg 17324 df-mulr 17325 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-hom 17335 df-cco 17336 df-0g 17501 df-prds 17507 df-imas 17568 df-xps 17570 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-minusg 18977 |
This theorem is referenced by: pzriprnglem4 21518 |
Copyright terms: Public domain | W3C validator |