![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpsinv | Structured version Visualization version GIF version |
Description: Value of the negation operation in a binary structure product. (Contributed by AV, 18-Mar-2025.) |
Ref | Expression |
---|---|
xpsinv.t | ⊢ 𝑇 = (𝑅 ×s 𝑆) |
xpsinv.x | ⊢ 𝑋 = (Base‘𝑅) |
xpsinv.y | ⊢ 𝑌 = (Base‘𝑆) |
xpsinv.r | ⊢ (𝜑 → 𝑅 ∈ Grp) |
xpsinv.s | ⊢ (𝜑 → 𝑆 ∈ Grp) |
xpsinv.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
xpsinv.b | ⊢ (𝜑 → 𝐵 ∈ 𝑌) |
xpsinv.m | ⊢ 𝑀 = (invg‘𝑅) |
xpsinv.n | ⊢ 𝑁 = (invg‘𝑆) |
xpsinv.i | ⊢ 𝐼 = (invg‘𝑇) |
Ref | Expression |
---|---|
xpsinv | ⊢ (𝜑 → (𝐼‘⟨𝐴, 𝐵⟩) = ⟨(𝑀‘𝐴), (𝑁‘𝐵)⟩) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpsinv.x | . . . . 5 ⊢ 𝑋 = (Base‘𝑅) | |
2 | eqid 2727 | . . . . 5 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
3 | eqid 2727 | . . . . 5 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
4 | xpsinv.m | . . . . 5 ⊢ 𝑀 = (invg‘𝑅) | |
5 | xpsinv.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Grp) | |
6 | xpsinv.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
7 | 1, 2, 3, 4, 5, 6 | grplinvd 18944 | . . . 4 ⊢ (𝜑 → ((𝑀‘𝐴)(+g‘𝑅)𝐴) = (0g‘𝑅)) |
8 | xpsinv.y | . . . . 5 ⊢ 𝑌 = (Base‘𝑆) | |
9 | eqid 2727 | . . . . 5 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
10 | eqid 2727 | . . . . 5 ⊢ (0g‘𝑆) = (0g‘𝑆) | |
11 | xpsinv.n | . . . . 5 ⊢ 𝑁 = (invg‘𝑆) | |
12 | xpsinv.s | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ Grp) | |
13 | xpsinv.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑌) | |
14 | 8, 9, 10, 11, 12, 13 | grplinvd 18944 | . . . 4 ⊢ (𝜑 → ((𝑁‘𝐵)(+g‘𝑆)𝐵) = (0g‘𝑆)) |
15 | 7, 14 | opeq12d 4877 | . . 3 ⊢ (𝜑 → ⟨((𝑀‘𝐴)(+g‘𝑅)𝐴), ((𝑁‘𝐵)(+g‘𝑆)𝐵)⟩ = ⟨(0g‘𝑅), (0g‘𝑆)⟩) |
16 | xpsinv.t | . . . 4 ⊢ 𝑇 = (𝑅 ×s 𝑆) | |
17 | 1, 4, 5, 6 | grpinvcld 18938 | . . . 4 ⊢ (𝜑 → (𝑀‘𝐴) ∈ 𝑋) |
18 | 8, 11, 12, 13 | grpinvcld 18938 | . . . 4 ⊢ (𝜑 → (𝑁‘𝐵) ∈ 𝑌) |
19 | 1, 2, 5, 17, 6 | grpcld 18897 | . . . 4 ⊢ (𝜑 → ((𝑀‘𝐴)(+g‘𝑅)𝐴) ∈ 𝑋) |
20 | 8, 9, 12, 18, 13 | grpcld 18897 | . . . 4 ⊢ (𝜑 → ((𝑁‘𝐵)(+g‘𝑆)𝐵) ∈ 𝑌) |
21 | eqid 2727 | . . . 4 ⊢ (+g‘𝑇) = (+g‘𝑇) | |
22 | 16, 1, 8, 5, 12, 17, 18, 6, 13, 19, 20, 2, 9, 21 | xpsadd 17549 | . . 3 ⊢ (𝜑 → (⟨(𝑀‘𝐴), (𝑁‘𝐵)⟩(+g‘𝑇)⟨𝐴, 𝐵⟩) = ⟨((𝑀‘𝐴)(+g‘𝑅)𝐴), ((𝑁‘𝐵)(+g‘𝑆)𝐵)⟩) |
23 | 5 | grpmndd 18896 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Mnd) |
24 | 12 | grpmndd 18896 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ Mnd) |
25 | 16 | xpsmnd0 18728 | . . . 4 ⊢ ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → (0g‘𝑇) = ⟨(0g‘𝑅), (0g‘𝑆)⟩) |
26 | 23, 24, 25 | syl2anc 583 | . . 3 ⊢ (𝜑 → (0g‘𝑇) = ⟨(0g‘𝑅), (0g‘𝑆)⟩) |
27 | 15, 22, 26 | 3eqtr4d 2777 | . 2 ⊢ (𝜑 → (⟨(𝑀‘𝐴), (𝑁‘𝐵)⟩(+g‘𝑇)⟨𝐴, 𝐵⟩) = (0g‘𝑇)) |
28 | 16 | xpsgrp 19008 | . . . 4 ⊢ ((𝑅 ∈ Grp ∧ 𝑆 ∈ Grp) → 𝑇 ∈ Grp) |
29 | 5, 12, 28 | syl2anc 583 | . . 3 ⊢ (𝜑 → 𝑇 ∈ Grp) |
30 | 6, 13 | opelxpd 5711 | . . . 4 ⊢ (𝜑 → ⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑌)) |
31 | 16, 1, 8, 5, 12 | xpsbas 17547 | . . . 4 ⊢ (𝜑 → (𝑋 × 𝑌) = (Base‘𝑇)) |
32 | 30, 31 | eleqtrd 2830 | . . 3 ⊢ (𝜑 → ⟨𝐴, 𝐵⟩ ∈ (Base‘𝑇)) |
33 | 17, 18 | opelxpd 5711 | . . . 4 ⊢ (𝜑 → ⟨(𝑀‘𝐴), (𝑁‘𝐵)⟩ ∈ (𝑋 × 𝑌)) |
34 | 33, 31 | eleqtrd 2830 | . . 3 ⊢ (𝜑 → ⟨(𝑀‘𝐴), (𝑁‘𝐵)⟩ ∈ (Base‘𝑇)) |
35 | eqid 2727 | . . . 4 ⊢ (Base‘𝑇) = (Base‘𝑇) | |
36 | eqid 2727 | . . . 4 ⊢ (0g‘𝑇) = (0g‘𝑇) | |
37 | xpsinv.i | . . . 4 ⊢ 𝐼 = (invg‘𝑇) | |
38 | 35, 21, 36, 37 | grpinvid2 18942 | . . 3 ⊢ ((𝑇 ∈ Grp ∧ ⟨𝐴, 𝐵⟩ ∈ (Base‘𝑇) ∧ ⟨(𝑀‘𝐴), (𝑁‘𝐵)⟩ ∈ (Base‘𝑇)) → ((𝐼‘⟨𝐴, 𝐵⟩) = ⟨(𝑀‘𝐴), (𝑁‘𝐵)⟩ ↔ (⟨(𝑀‘𝐴), (𝑁‘𝐵)⟩(+g‘𝑇)⟨𝐴, 𝐵⟩) = (0g‘𝑇))) |
39 | 29, 32, 34, 38 | syl3anc 1369 | . 2 ⊢ (𝜑 → ((𝐼‘⟨𝐴, 𝐵⟩) = ⟨(𝑀‘𝐴), (𝑁‘𝐵)⟩ ↔ (⟨(𝑀‘𝐴), (𝑁‘𝐵)⟩(+g‘𝑇)⟨𝐴, 𝐵⟩) = (0g‘𝑇))) |
40 | 27, 39 | mpbird 257 | 1 ⊢ (𝜑 → (𝐼‘⟨𝐴, 𝐵⟩) = ⟨(𝑀‘𝐴), (𝑁‘𝐵)⟩) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1534 ∈ wcel 2099 ⟨cop 4630 × cxp 5670 ‘cfv 6542 (class class class)co 7414 Basecbs 17173 +gcplusg 17226 0gc0g 17414 ×s cxps 17481 Mndcmnd 18687 Grpcgrp 18883 invgcminusg 18884 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8718 df-map 8840 df-ixp 8910 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-sup 9459 df-inf 9460 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-nn 12237 df-2 12299 df-3 12300 df-4 12301 df-5 12302 df-6 12303 df-7 12304 df-8 12305 df-9 12306 df-n0 12497 df-z 12583 df-dec 12702 df-uz 12847 df-fz 13511 df-struct 17109 df-slot 17144 df-ndx 17156 df-base 17174 df-plusg 17239 df-mulr 17240 df-sca 17242 df-vsca 17243 df-ip 17244 df-tset 17245 df-ple 17246 df-ds 17248 df-hom 17250 df-cco 17251 df-0g 17416 df-prds 17422 df-imas 17483 df-xps 17485 df-mgm 18593 df-sgrp 18672 df-mnd 18688 df-grp 18886 df-minusg 18887 |
This theorem is referenced by: pzriprnglem4 21403 |
Copyright terms: Public domain | W3C validator |