![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpsinv | Structured version Visualization version GIF version |
Description: Value of the negation operation in a binary structure product. (Contributed by AV, 18-Mar-2025.) |
Ref | Expression |
---|---|
xpsinv.t | ⊢ 𝑇 = (𝑅 ×s 𝑆) |
xpsinv.x | ⊢ 𝑋 = (Base‘𝑅) |
xpsinv.y | ⊢ 𝑌 = (Base‘𝑆) |
xpsinv.r | ⊢ (𝜑 → 𝑅 ∈ Grp) |
xpsinv.s | ⊢ (𝜑 → 𝑆 ∈ Grp) |
xpsinv.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
xpsinv.b | ⊢ (𝜑 → 𝐵 ∈ 𝑌) |
xpsinv.m | ⊢ 𝑀 = (invg‘𝑅) |
xpsinv.n | ⊢ 𝑁 = (invg‘𝑆) |
xpsinv.i | ⊢ 𝐼 = (invg‘𝑇) |
Ref | Expression |
---|---|
xpsinv | ⊢ (𝜑 → (𝐼‘〈𝐴, 𝐵〉) = 〈(𝑀‘𝐴), (𝑁‘𝐵)〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpsinv.x | . . . . 5 ⊢ 𝑋 = (Base‘𝑅) | |
2 | eqid 2726 | . . . . 5 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
3 | eqid 2726 | . . . . 5 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
4 | xpsinv.m | . . . . 5 ⊢ 𝑀 = (invg‘𝑅) | |
5 | xpsinv.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Grp) | |
6 | xpsinv.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
7 | 1, 2, 3, 4, 5, 6 | grplinvd 18984 | . . . 4 ⊢ (𝜑 → ((𝑀‘𝐴)(+g‘𝑅)𝐴) = (0g‘𝑅)) |
8 | xpsinv.y | . . . . 5 ⊢ 𝑌 = (Base‘𝑆) | |
9 | eqid 2726 | . . . . 5 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
10 | eqid 2726 | . . . . 5 ⊢ (0g‘𝑆) = (0g‘𝑆) | |
11 | xpsinv.n | . . . . 5 ⊢ 𝑁 = (invg‘𝑆) | |
12 | xpsinv.s | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ Grp) | |
13 | xpsinv.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑌) | |
14 | 8, 9, 10, 11, 12, 13 | grplinvd 18984 | . . . 4 ⊢ (𝜑 → ((𝑁‘𝐵)(+g‘𝑆)𝐵) = (0g‘𝑆)) |
15 | 7, 14 | opeq12d 4879 | . . 3 ⊢ (𝜑 → 〈((𝑀‘𝐴)(+g‘𝑅)𝐴), ((𝑁‘𝐵)(+g‘𝑆)𝐵)〉 = 〈(0g‘𝑅), (0g‘𝑆)〉) |
16 | xpsinv.t | . . . 4 ⊢ 𝑇 = (𝑅 ×s 𝑆) | |
17 | 1, 4, 5, 6 | grpinvcld 18978 | . . . 4 ⊢ (𝜑 → (𝑀‘𝐴) ∈ 𝑋) |
18 | 8, 11, 12, 13 | grpinvcld 18978 | . . . 4 ⊢ (𝜑 → (𝑁‘𝐵) ∈ 𝑌) |
19 | 1, 2, 5, 17, 6 | grpcld 18937 | . . . 4 ⊢ (𝜑 → ((𝑀‘𝐴)(+g‘𝑅)𝐴) ∈ 𝑋) |
20 | 8, 9, 12, 18, 13 | grpcld 18937 | . . . 4 ⊢ (𝜑 → ((𝑁‘𝐵)(+g‘𝑆)𝐵) ∈ 𝑌) |
21 | eqid 2726 | . . . 4 ⊢ (+g‘𝑇) = (+g‘𝑇) | |
22 | 16, 1, 8, 5, 12, 17, 18, 6, 13, 19, 20, 2, 9, 21 | xpsadd 17584 | . . 3 ⊢ (𝜑 → (〈(𝑀‘𝐴), (𝑁‘𝐵)〉(+g‘𝑇)〈𝐴, 𝐵〉) = 〈((𝑀‘𝐴)(+g‘𝑅)𝐴), ((𝑁‘𝐵)(+g‘𝑆)𝐵)〉) |
23 | 5 | grpmndd 18936 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Mnd) |
24 | 12 | grpmndd 18936 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ Mnd) |
25 | 16 | xpsmnd0 18763 | . . . 4 ⊢ ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → (0g‘𝑇) = 〈(0g‘𝑅), (0g‘𝑆)〉) |
26 | 23, 24, 25 | syl2anc 582 | . . 3 ⊢ (𝜑 → (0g‘𝑇) = 〈(0g‘𝑅), (0g‘𝑆)〉) |
27 | 15, 22, 26 | 3eqtr4d 2776 | . 2 ⊢ (𝜑 → (〈(𝑀‘𝐴), (𝑁‘𝐵)〉(+g‘𝑇)〈𝐴, 𝐵〉) = (0g‘𝑇)) |
28 | 16 | xpsgrp 19049 | . . . 4 ⊢ ((𝑅 ∈ Grp ∧ 𝑆 ∈ Grp) → 𝑇 ∈ Grp) |
29 | 5, 12, 28 | syl2anc 582 | . . 3 ⊢ (𝜑 → 𝑇 ∈ Grp) |
30 | 6, 13 | opelxpd 5713 | . . . 4 ⊢ (𝜑 → 〈𝐴, 𝐵〉 ∈ (𝑋 × 𝑌)) |
31 | 16, 1, 8, 5, 12 | xpsbas 17582 | . . . 4 ⊢ (𝜑 → (𝑋 × 𝑌) = (Base‘𝑇)) |
32 | 30, 31 | eleqtrd 2828 | . . 3 ⊢ (𝜑 → 〈𝐴, 𝐵〉 ∈ (Base‘𝑇)) |
33 | 17, 18 | opelxpd 5713 | . . . 4 ⊢ (𝜑 → 〈(𝑀‘𝐴), (𝑁‘𝐵)〉 ∈ (𝑋 × 𝑌)) |
34 | 33, 31 | eleqtrd 2828 | . . 3 ⊢ (𝜑 → 〈(𝑀‘𝐴), (𝑁‘𝐵)〉 ∈ (Base‘𝑇)) |
35 | eqid 2726 | . . . 4 ⊢ (Base‘𝑇) = (Base‘𝑇) | |
36 | eqid 2726 | . . . 4 ⊢ (0g‘𝑇) = (0g‘𝑇) | |
37 | xpsinv.i | . . . 4 ⊢ 𝐼 = (invg‘𝑇) | |
38 | 35, 21, 36, 37 | grpinvid2 18982 | . . 3 ⊢ ((𝑇 ∈ Grp ∧ 〈𝐴, 𝐵〉 ∈ (Base‘𝑇) ∧ 〈(𝑀‘𝐴), (𝑁‘𝐵)〉 ∈ (Base‘𝑇)) → ((𝐼‘〈𝐴, 𝐵〉) = 〈(𝑀‘𝐴), (𝑁‘𝐵)〉 ↔ (〈(𝑀‘𝐴), (𝑁‘𝐵)〉(+g‘𝑇)〈𝐴, 𝐵〉) = (0g‘𝑇))) |
39 | 29, 32, 34, 38 | syl3anc 1368 | . 2 ⊢ (𝜑 → ((𝐼‘〈𝐴, 𝐵〉) = 〈(𝑀‘𝐴), (𝑁‘𝐵)〉 ↔ (〈(𝑀‘𝐴), (𝑁‘𝐵)〉(+g‘𝑇)〈𝐴, 𝐵〉) = (0g‘𝑇))) |
40 | 27, 39 | mpbird 256 | 1 ⊢ (𝜑 → (𝐼‘〈𝐴, 𝐵〉) = 〈(𝑀‘𝐴), (𝑁‘𝐵)〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1534 ∈ wcel 2099 〈cop 4629 × cxp 5672 ‘cfv 6546 (class class class)co 7416 Basecbs 17208 +gcplusg 17261 0gc0g 17449 ×s cxps 17516 Mndcmnd 18722 Grpcgrp 18923 invgcminusg 18924 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5282 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 ax-cnex 11205 ax-resscn 11206 ax-1cn 11207 ax-icn 11208 ax-addcl 11209 ax-addrcl 11210 ax-mulcl 11211 ax-mulrcl 11212 ax-mulcom 11213 ax-addass 11214 ax-mulass 11215 ax-distr 11216 ax-i2m1 11217 ax-1ne0 11218 ax-1rid 11219 ax-rnegex 11220 ax-rrecex 11221 ax-cnre 11222 ax-pre-lttri 11223 ax-pre-lttrn 11224 ax-pre-ltadd 11225 ax-pre-mulgt0 11226 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4906 df-iun 4995 df-br 5146 df-opab 5208 df-mpt 5229 df-tr 5263 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6304 df-ord 6371 df-on 6372 df-lim 6373 df-suc 6374 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-om 7869 df-1st 7995 df-2nd 7996 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-2o 8489 df-er 8726 df-map 8849 df-ixp 8919 df-en 8967 df-dom 8968 df-sdom 8969 df-fin 8970 df-sup 9478 df-inf 9479 df-pnf 11291 df-mnf 11292 df-xr 11293 df-ltxr 11294 df-le 11295 df-sub 11487 df-neg 11488 df-nn 12259 df-2 12321 df-3 12322 df-4 12323 df-5 12324 df-6 12325 df-7 12326 df-8 12327 df-9 12328 df-n0 12519 df-z 12605 df-dec 12724 df-uz 12869 df-fz 13533 df-struct 17144 df-slot 17179 df-ndx 17191 df-base 17209 df-plusg 17274 df-mulr 17275 df-sca 17277 df-vsca 17278 df-ip 17279 df-tset 17280 df-ple 17281 df-ds 17283 df-hom 17285 df-cco 17286 df-0g 17451 df-prds 17457 df-imas 17518 df-xps 17520 df-mgm 18628 df-sgrp 18707 df-mnd 18723 df-grp 18926 df-minusg 18927 |
This theorem is referenced by: pzriprnglem4 21470 |
Copyright terms: Public domain | W3C validator |