Proof of Theorem grpoinvid1
| Step | Hyp | Ref
| Expression |
| 1 | | oveq2 7440 |
. . . 4
⊢ ((𝑁‘𝐴) = 𝐵 → (𝐴𝐺(𝑁‘𝐴)) = (𝐴𝐺𝐵)) |
| 2 | 1 | adantl 481 |
. . 3
⊢ (((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝑁‘𝐴) = 𝐵) → (𝐴𝐺(𝑁‘𝐴)) = (𝐴𝐺𝐵)) |
| 3 | | grpinv.1 |
. . . . . 6
⊢ 𝑋 = ran 𝐺 |
| 4 | | grpinv.2 |
. . . . . 6
⊢ 𝑈 = (GId‘𝐺) |
| 5 | | grpinv.3 |
. . . . . 6
⊢ 𝑁 = (inv‘𝐺) |
| 6 | 3, 4, 5 | grporinv 30547 |
. . . . 5
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺(𝑁‘𝐴)) = 𝑈) |
| 7 | 6 | 3adant3 1132 |
. . . 4
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺(𝑁‘𝐴)) = 𝑈) |
| 8 | 7 | adantr 480 |
. . 3
⊢ (((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝑁‘𝐴) = 𝐵) → (𝐴𝐺(𝑁‘𝐴)) = 𝑈) |
| 9 | 2, 8 | eqtr3d 2778 |
. 2
⊢ (((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝑁‘𝐴) = 𝐵) → (𝐴𝐺𝐵) = 𝑈) |
| 10 | | oveq2 7440 |
. . . 4
⊢ ((𝐴𝐺𝐵) = 𝑈 → ((𝑁‘𝐴)𝐺(𝐴𝐺𝐵)) = ((𝑁‘𝐴)𝐺𝑈)) |
| 11 | 10 | adantl 481 |
. . 3
⊢ (((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝐺𝐵) = 𝑈) → ((𝑁‘𝐴)𝐺(𝐴𝐺𝐵)) = ((𝑁‘𝐴)𝐺𝑈)) |
| 12 | 3, 4, 5 | grpolinv 30546 |
. . . . . . . 8
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → ((𝑁‘𝐴)𝐺𝐴) = 𝑈) |
| 13 | 12 | oveq1d 7447 |
. . . . . . 7
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (((𝑁‘𝐴)𝐺𝐴)𝐺𝐵) = (𝑈𝐺𝐵)) |
| 14 | 13 | 3adant3 1132 |
. . . . . 6
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((𝑁‘𝐴)𝐺𝐴)𝐺𝐵) = (𝑈𝐺𝐵)) |
| 15 | 3, 5 | grpoinvcl 30544 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) ∈ 𝑋) |
| 16 | 15 | adantrr 717 |
. . . . . . . . 9
⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝑁‘𝐴) ∈ 𝑋) |
| 17 | | simprl 770 |
. . . . . . . . 9
⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → 𝐴 ∈ 𝑋) |
| 18 | | simprr 772 |
. . . . . . . . 9
⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → 𝐵 ∈ 𝑋) |
| 19 | 16, 17, 18 | 3jca 1128 |
. . . . . . . 8
⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ((𝑁‘𝐴) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) |
| 20 | 3 | grpoass 30523 |
. . . . . . . 8
⊢ ((𝐺 ∈ GrpOp ∧ ((𝑁‘𝐴) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (((𝑁‘𝐴)𝐺𝐴)𝐺𝐵) = ((𝑁‘𝐴)𝐺(𝐴𝐺𝐵))) |
| 21 | 19, 20 | syldan 591 |
. . . . . . 7
⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (((𝑁‘𝐴)𝐺𝐴)𝐺𝐵) = ((𝑁‘𝐴)𝐺(𝐴𝐺𝐵))) |
| 22 | 21 | 3impb 1114 |
. . . . . 6
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((𝑁‘𝐴)𝐺𝐴)𝐺𝐵) = ((𝑁‘𝐴)𝐺(𝐴𝐺𝐵))) |
| 23 | 14, 22 | eqtr3d 2778 |
. . . . 5
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑈𝐺𝐵) = ((𝑁‘𝐴)𝐺(𝐴𝐺𝐵))) |
| 24 | 3, 4 | grpolid 30536 |
. . . . . 6
⊢ ((𝐺 ∈ GrpOp ∧ 𝐵 ∈ 𝑋) → (𝑈𝐺𝐵) = 𝐵) |
| 25 | 24 | 3adant2 1131 |
. . . . 5
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑈𝐺𝐵) = 𝐵) |
| 26 | 23, 25 | eqtr3d 2778 |
. . . 4
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝑁‘𝐴)𝐺(𝐴𝐺𝐵)) = 𝐵) |
| 27 | 26 | adantr 480 |
. . 3
⊢ (((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝐺𝐵) = 𝑈) → ((𝑁‘𝐴)𝐺(𝐴𝐺𝐵)) = 𝐵) |
| 28 | 3, 4 | grporid 30537 |
. . . . . 6
⊢ ((𝐺 ∈ GrpOp ∧ (𝑁‘𝐴) ∈ 𝑋) → ((𝑁‘𝐴)𝐺𝑈) = (𝑁‘𝐴)) |
| 29 | 15, 28 | syldan 591 |
. . . . 5
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → ((𝑁‘𝐴)𝐺𝑈) = (𝑁‘𝐴)) |
| 30 | 29 | 3adant3 1132 |
. . . 4
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝑁‘𝐴)𝐺𝑈) = (𝑁‘𝐴)) |
| 31 | 30 | adantr 480 |
. . 3
⊢ (((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝐺𝐵) = 𝑈) → ((𝑁‘𝐴)𝐺𝑈) = (𝑁‘𝐴)) |
| 32 | 11, 27, 31 | 3eqtr3rd 2785 |
. 2
⊢ (((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝐺𝐵) = 𝑈) → (𝑁‘𝐴) = 𝐵) |
| 33 | 9, 32 | impbida 800 |
1
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝑁‘𝐴) = 𝐵 ↔ (𝐴𝐺𝐵) = 𝑈)) |