MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpoinvid1 Structured version   Visualization version   GIF version

Theorem grpoinvid1 30506
Description: The inverse of a group element expressed in terms of the identity element. (Contributed by NM, 27-Oct-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpinv.1 𝑋 = ran 𝐺
grpinv.2 𝑈 = (GId‘𝐺)
grpinv.3 𝑁 = (inv‘𝐺)
Assertion
Ref Expression
grpoinvid1 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → ((𝑁𝐴) = 𝐵 ↔ (𝐴𝐺𝐵) = 𝑈))

Proof of Theorem grpoinvid1
StepHypRef Expression
1 oveq2 7354 . . . 4 ((𝑁𝐴) = 𝐵 → (𝐴𝐺(𝑁𝐴)) = (𝐴𝐺𝐵))
21adantl 481 . . 3 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) ∧ (𝑁𝐴) = 𝐵) → (𝐴𝐺(𝑁𝐴)) = (𝐴𝐺𝐵))
3 grpinv.1 . . . . . 6 𝑋 = ran 𝐺
4 grpinv.2 . . . . . 6 𝑈 = (GId‘𝐺)
5 grpinv.3 . . . . . 6 𝑁 = (inv‘𝐺)
63, 4, 5grporinv 30505 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝐴𝐺(𝑁𝐴)) = 𝑈)
763adant3 1132 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺(𝑁𝐴)) = 𝑈)
87adantr 480 . . 3 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) ∧ (𝑁𝐴) = 𝐵) → (𝐴𝐺(𝑁𝐴)) = 𝑈)
92, 8eqtr3d 2768 . 2 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) ∧ (𝑁𝐴) = 𝐵) → (𝐴𝐺𝐵) = 𝑈)
10 oveq2 7354 . . . 4 ((𝐴𝐺𝐵) = 𝑈 → ((𝑁𝐴)𝐺(𝐴𝐺𝐵)) = ((𝑁𝐴)𝐺𝑈))
1110adantl 481 . . 3 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝐺𝐵) = 𝑈) → ((𝑁𝐴)𝐺(𝐴𝐺𝐵)) = ((𝑁𝐴)𝐺𝑈))
123, 4, 5grpolinv 30504 . . . . . . . 8 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → ((𝑁𝐴)𝐺𝐴) = 𝑈)
1312oveq1d 7361 . . . . . . 7 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (((𝑁𝐴)𝐺𝐴)𝐺𝐵) = (𝑈𝐺𝐵))
14133adant3 1132 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (((𝑁𝐴)𝐺𝐴)𝐺𝐵) = (𝑈𝐺𝐵))
153, 5grpoinvcl 30502 . . . . . . . . . 10 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝑁𝐴) ∈ 𝑋)
1615adantrr 717 . . . . . . . . 9 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋)) → (𝑁𝐴) ∈ 𝑋)
17 simprl 770 . . . . . . . . 9 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋)) → 𝐴𝑋)
18 simprr 772 . . . . . . . . 9 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋)) → 𝐵𝑋)
1916, 17, 183jca 1128 . . . . . . . 8 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋)) → ((𝑁𝐴) ∈ 𝑋𝐴𝑋𝐵𝑋))
203grpoass 30481 . . . . . . . 8 ((𝐺 ∈ GrpOp ∧ ((𝑁𝐴) ∈ 𝑋𝐴𝑋𝐵𝑋)) → (((𝑁𝐴)𝐺𝐴)𝐺𝐵) = ((𝑁𝐴)𝐺(𝐴𝐺𝐵)))
2119, 20syldan 591 . . . . . . 7 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋)) → (((𝑁𝐴)𝐺𝐴)𝐺𝐵) = ((𝑁𝐴)𝐺(𝐴𝐺𝐵)))
22213impb 1114 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (((𝑁𝐴)𝐺𝐴)𝐺𝐵) = ((𝑁𝐴)𝐺(𝐴𝐺𝐵)))
2314, 22eqtr3d 2768 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝑈𝐺𝐵) = ((𝑁𝐴)𝐺(𝐴𝐺𝐵)))
243, 4grpolid 30494 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝐵𝑋) → (𝑈𝐺𝐵) = 𝐵)
25243adant2 1131 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝑈𝐺𝐵) = 𝐵)
2623, 25eqtr3d 2768 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → ((𝑁𝐴)𝐺(𝐴𝐺𝐵)) = 𝐵)
2726adantr 480 . . 3 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝐺𝐵) = 𝑈) → ((𝑁𝐴)𝐺(𝐴𝐺𝐵)) = 𝐵)
283, 4grporid 30495 . . . . . 6 ((𝐺 ∈ GrpOp ∧ (𝑁𝐴) ∈ 𝑋) → ((𝑁𝐴)𝐺𝑈) = (𝑁𝐴))
2915, 28syldan 591 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → ((𝑁𝐴)𝐺𝑈) = (𝑁𝐴))
30293adant3 1132 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → ((𝑁𝐴)𝐺𝑈) = (𝑁𝐴))
3130adantr 480 . . 3 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝐺𝐵) = 𝑈) → ((𝑁𝐴)𝐺𝑈) = (𝑁𝐴))
3211, 27, 313eqtr3rd 2775 . 2 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝐺𝐵) = 𝑈) → (𝑁𝐴) = 𝐵)
339, 32impbida 800 1 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → ((𝑁𝐴) = 𝐵 ↔ (𝐴𝐺𝐵) = 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  ran crn 5617  cfv 6481  (class class class)co 7346  GrpOpcgr 30467  GIdcgi 30468  invcgn 30469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-grpo 30471  df-gid 30472  df-ginv 30473
This theorem is referenced by:  grpoinvop  30511  rngonegmn1l  37987
  Copyright terms: Public domain W3C validator