Proof of Theorem grpoinvid1
Step | Hyp | Ref
| Expression |
1 | | oveq2 7263 |
. . . 4
⊢ ((𝑁‘𝐴) = 𝐵 → (𝐴𝐺(𝑁‘𝐴)) = (𝐴𝐺𝐵)) |
2 | 1 | adantl 481 |
. . 3
⊢ (((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝑁‘𝐴) = 𝐵) → (𝐴𝐺(𝑁‘𝐴)) = (𝐴𝐺𝐵)) |
3 | | grpinv.1 |
. . . . . 6
⊢ 𝑋 = ran 𝐺 |
4 | | grpinv.2 |
. . . . . 6
⊢ 𝑈 = (GId‘𝐺) |
5 | | grpinv.3 |
. . . . . 6
⊢ 𝑁 = (inv‘𝐺) |
6 | 3, 4, 5 | grporinv 28790 |
. . . . 5
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺(𝑁‘𝐴)) = 𝑈) |
7 | 6 | 3adant3 1130 |
. . . 4
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺(𝑁‘𝐴)) = 𝑈) |
8 | 7 | adantr 480 |
. . 3
⊢ (((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝑁‘𝐴) = 𝐵) → (𝐴𝐺(𝑁‘𝐴)) = 𝑈) |
9 | 2, 8 | eqtr3d 2780 |
. 2
⊢ (((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝑁‘𝐴) = 𝐵) → (𝐴𝐺𝐵) = 𝑈) |
10 | | oveq2 7263 |
. . . 4
⊢ ((𝐴𝐺𝐵) = 𝑈 → ((𝑁‘𝐴)𝐺(𝐴𝐺𝐵)) = ((𝑁‘𝐴)𝐺𝑈)) |
11 | 10 | adantl 481 |
. . 3
⊢ (((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝐺𝐵) = 𝑈) → ((𝑁‘𝐴)𝐺(𝐴𝐺𝐵)) = ((𝑁‘𝐴)𝐺𝑈)) |
12 | 3, 4, 5 | grpolinv 28789 |
. . . . . . . 8
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → ((𝑁‘𝐴)𝐺𝐴) = 𝑈) |
13 | 12 | oveq1d 7270 |
. . . . . . 7
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (((𝑁‘𝐴)𝐺𝐴)𝐺𝐵) = (𝑈𝐺𝐵)) |
14 | 13 | 3adant3 1130 |
. . . . . 6
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((𝑁‘𝐴)𝐺𝐴)𝐺𝐵) = (𝑈𝐺𝐵)) |
15 | 3, 5 | grpoinvcl 28787 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) ∈ 𝑋) |
16 | 15 | adantrr 713 |
. . . . . . . . 9
⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝑁‘𝐴) ∈ 𝑋) |
17 | | simprl 767 |
. . . . . . . . 9
⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → 𝐴 ∈ 𝑋) |
18 | | simprr 769 |
. . . . . . . . 9
⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → 𝐵 ∈ 𝑋) |
19 | 16, 17, 18 | 3jca 1126 |
. . . . . . . 8
⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ((𝑁‘𝐴) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) |
20 | 3 | grpoass 28766 |
. . . . . . . 8
⊢ ((𝐺 ∈ GrpOp ∧ ((𝑁‘𝐴) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (((𝑁‘𝐴)𝐺𝐴)𝐺𝐵) = ((𝑁‘𝐴)𝐺(𝐴𝐺𝐵))) |
21 | 19, 20 | syldan 590 |
. . . . . . 7
⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (((𝑁‘𝐴)𝐺𝐴)𝐺𝐵) = ((𝑁‘𝐴)𝐺(𝐴𝐺𝐵))) |
22 | 21 | 3impb 1113 |
. . . . . 6
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((𝑁‘𝐴)𝐺𝐴)𝐺𝐵) = ((𝑁‘𝐴)𝐺(𝐴𝐺𝐵))) |
23 | 14, 22 | eqtr3d 2780 |
. . . . 5
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑈𝐺𝐵) = ((𝑁‘𝐴)𝐺(𝐴𝐺𝐵))) |
24 | 3, 4 | grpolid 28779 |
. . . . . 6
⊢ ((𝐺 ∈ GrpOp ∧ 𝐵 ∈ 𝑋) → (𝑈𝐺𝐵) = 𝐵) |
25 | 24 | 3adant2 1129 |
. . . . 5
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑈𝐺𝐵) = 𝐵) |
26 | 23, 25 | eqtr3d 2780 |
. . . 4
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝑁‘𝐴)𝐺(𝐴𝐺𝐵)) = 𝐵) |
27 | 26 | adantr 480 |
. . 3
⊢ (((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝐺𝐵) = 𝑈) → ((𝑁‘𝐴)𝐺(𝐴𝐺𝐵)) = 𝐵) |
28 | 3, 4 | grporid 28780 |
. . . . . 6
⊢ ((𝐺 ∈ GrpOp ∧ (𝑁‘𝐴) ∈ 𝑋) → ((𝑁‘𝐴)𝐺𝑈) = (𝑁‘𝐴)) |
29 | 15, 28 | syldan 590 |
. . . . 5
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → ((𝑁‘𝐴)𝐺𝑈) = (𝑁‘𝐴)) |
30 | 29 | 3adant3 1130 |
. . . 4
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝑁‘𝐴)𝐺𝑈) = (𝑁‘𝐴)) |
31 | 30 | adantr 480 |
. . 3
⊢ (((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝐺𝐵) = 𝑈) → ((𝑁‘𝐴)𝐺𝑈) = (𝑁‘𝐴)) |
32 | 11, 27, 31 | 3eqtr3rd 2787 |
. 2
⊢ (((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝐺𝐵) = 𝑈) → (𝑁‘𝐴) = 𝐵) |
33 | 9, 32 | impbida 797 |
1
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝑁‘𝐴) = 𝐵 ↔ (𝐴𝐺𝐵) = 𝑈)) |