MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpoinvid1 Structured version   Visualization version   GIF version

Theorem grpoinvid1 28581
Description: The inverse of a group element expressed in terms of the identity element. (Contributed by NM, 27-Oct-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpinv.1 𝑋 = ran 𝐺
grpinv.2 𝑈 = (GId‘𝐺)
grpinv.3 𝑁 = (inv‘𝐺)
Assertion
Ref Expression
grpoinvid1 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → ((𝑁𝐴) = 𝐵 ↔ (𝐴𝐺𝐵) = 𝑈))

Proof of Theorem grpoinvid1
StepHypRef Expression
1 oveq2 7210 . . . 4 ((𝑁𝐴) = 𝐵 → (𝐴𝐺(𝑁𝐴)) = (𝐴𝐺𝐵))
21adantl 485 . . 3 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) ∧ (𝑁𝐴) = 𝐵) → (𝐴𝐺(𝑁𝐴)) = (𝐴𝐺𝐵))
3 grpinv.1 . . . . . 6 𝑋 = ran 𝐺
4 grpinv.2 . . . . . 6 𝑈 = (GId‘𝐺)
5 grpinv.3 . . . . . 6 𝑁 = (inv‘𝐺)
63, 4, 5grporinv 28580 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝐴𝐺(𝑁𝐴)) = 𝑈)
763adant3 1134 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺(𝑁𝐴)) = 𝑈)
87adantr 484 . . 3 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) ∧ (𝑁𝐴) = 𝐵) → (𝐴𝐺(𝑁𝐴)) = 𝑈)
92, 8eqtr3d 2776 . 2 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) ∧ (𝑁𝐴) = 𝐵) → (𝐴𝐺𝐵) = 𝑈)
10 oveq2 7210 . . . 4 ((𝐴𝐺𝐵) = 𝑈 → ((𝑁𝐴)𝐺(𝐴𝐺𝐵)) = ((𝑁𝐴)𝐺𝑈))
1110adantl 485 . . 3 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝐺𝐵) = 𝑈) → ((𝑁𝐴)𝐺(𝐴𝐺𝐵)) = ((𝑁𝐴)𝐺𝑈))
123, 4, 5grpolinv 28579 . . . . . . . 8 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → ((𝑁𝐴)𝐺𝐴) = 𝑈)
1312oveq1d 7217 . . . . . . 7 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (((𝑁𝐴)𝐺𝐴)𝐺𝐵) = (𝑈𝐺𝐵))
14133adant3 1134 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (((𝑁𝐴)𝐺𝐴)𝐺𝐵) = (𝑈𝐺𝐵))
153, 5grpoinvcl 28577 . . . . . . . . . 10 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝑁𝐴) ∈ 𝑋)
1615adantrr 717 . . . . . . . . 9 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋)) → (𝑁𝐴) ∈ 𝑋)
17 simprl 771 . . . . . . . . 9 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋)) → 𝐴𝑋)
18 simprr 773 . . . . . . . . 9 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋)) → 𝐵𝑋)
1916, 17, 183jca 1130 . . . . . . . 8 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋)) → ((𝑁𝐴) ∈ 𝑋𝐴𝑋𝐵𝑋))
203grpoass 28556 . . . . . . . 8 ((𝐺 ∈ GrpOp ∧ ((𝑁𝐴) ∈ 𝑋𝐴𝑋𝐵𝑋)) → (((𝑁𝐴)𝐺𝐴)𝐺𝐵) = ((𝑁𝐴)𝐺(𝐴𝐺𝐵)))
2119, 20syldan 594 . . . . . . 7 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋)) → (((𝑁𝐴)𝐺𝐴)𝐺𝐵) = ((𝑁𝐴)𝐺(𝐴𝐺𝐵)))
22213impb 1117 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (((𝑁𝐴)𝐺𝐴)𝐺𝐵) = ((𝑁𝐴)𝐺(𝐴𝐺𝐵)))
2314, 22eqtr3d 2776 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝑈𝐺𝐵) = ((𝑁𝐴)𝐺(𝐴𝐺𝐵)))
243, 4grpolid 28569 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝐵𝑋) → (𝑈𝐺𝐵) = 𝐵)
25243adant2 1133 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝑈𝐺𝐵) = 𝐵)
2623, 25eqtr3d 2776 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → ((𝑁𝐴)𝐺(𝐴𝐺𝐵)) = 𝐵)
2726adantr 484 . . 3 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝐺𝐵) = 𝑈) → ((𝑁𝐴)𝐺(𝐴𝐺𝐵)) = 𝐵)
283, 4grporid 28570 . . . . . 6 ((𝐺 ∈ GrpOp ∧ (𝑁𝐴) ∈ 𝑋) → ((𝑁𝐴)𝐺𝑈) = (𝑁𝐴))
2915, 28syldan 594 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → ((𝑁𝐴)𝐺𝑈) = (𝑁𝐴))
30293adant3 1134 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → ((𝑁𝐴)𝐺𝑈) = (𝑁𝐴))
3130adantr 484 . . 3 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝐺𝐵) = 𝑈) → ((𝑁𝐴)𝐺𝑈) = (𝑁𝐴))
3211, 27, 313eqtr3rd 2783 . 2 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝐺𝐵) = 𝑈) → (𝑁𝐴) = 𝐵)
339, 32impbida 801 1 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → ((𝑁𝐴) = 𝐵 ↔ (𝐴𝐺𝐵) = 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110  ran crn 5541  cfv 6369  (class class class)co 7202  GrpOpcgr 28542  GIdcgi 28543  invcgn 28544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pr 5311  ax-un 7512
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-nul 4228  df-if 4430  df-sn 4532  df-pr 4534  df-op 4538  df-uni 4810  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-id 5444  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-riota 7159  df-ov 7205  df-grpo 28546  df-gid 28547  df-ginv 28548
This theorem is referenced by:  grpoinvop  28586  rngonegmn1l  35793
  Copyright terms: Public domain W3C validator