MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpoinvid1 Structured version   Visualization version   GIF version

Theorem grpoinvid1 30455
Description: The inverse of a group element expressed in terms of the identity element. (Contributed by NM, 27-Oct-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpinv.1 𝑋 = ran 𝐺
grpinv.2 𝑈 = (GId‘𝐺)
grpinv.3 𝑁 = (inv‘𝐺)
Assertion
Ref Expression
grpoinvid1 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → ((𝑁𝐴) = 𝐵 ↔ (𝐴𝐺𝐵) = 𝑈))

Proof of Theorem grpoinvid1
StepHypRef Expression
1 oveq2 7411 . . . 4 ((𝑁𝐴) = 𝐵 → (𝐴𝐺(𝑁𝐴)) = (𝐴𝐺𝐵))
21adantl 481 . . 3 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) ∧ (𝑁𝐴) = 𝐵) → (𝐴𝐺(𝑁𝐴)) = (𝐴𝐺𝐵))
3 grpinv.1 . . . . . 6 𝑋 = ran 𝐺
4 grpinv.2 . . . . . 6 𝑈 = (GId‘𝐺)
5 grpinv.3 . . . . . 6 𝑁 = (inv‘𝐺)
63, 4, 5grporinv 30454 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝐴𝐺(𝑁𝐴)) = 𝑈)
763adant3 1132 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺(𝑁𝐴)) = 𝑈)
87adantr 480 . . 3 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) ∧ (𝑁𝐴) = 𝐵) → (𝐴𝐺(𝑁𝐴)) = 𝑈)
92, 8eqtr3d 2772 . 2 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) ∧ (𝑁𝐴) = 𝐵) → (𝐴𝐺𝐵) = 𝑈)
10 oveq2 7411 . . . 4 ((𝐴𝐺𝐵) = 𝑈 → ((𝑁𝐴)𝐺(𝐴𝐺𝐵)) = ((𝑁𝐴)𝐺𝑈))
1110adantl 481 . . 3 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝐺𝐵) = 𝑈) → ((𝑁𝐴)𝐺(𝐴𝐺𝐵)) = ((𝑁𝐴)𝐺𝑈))
123, 4, 5grpolinv 30453 . . . . . . . 8 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → ((𝑁𝐴)𝐺𝐴) = 𝑈)
1312oveq1d 7418 . . . . . . 7 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (((𝑁𝐴)𝐺𝐴)𝐺𝐵) = (𝑈𝐺𝐵))
14133adant3 1132 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (((𝑁𝐴)𝐺𝐴)𝐺𝐵) = (𝑈𝐺𝐵))
153, 5grpoinvcl 30451 . . . . . . . . . 10 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝑁𝐴) ∈ 𝑋)
1615adantrr 717 . . . . . . . . 9 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋)) → (𝑁𝐴) ∈ 𝑋)
17 simprl 770 . . . . . . . . 9 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋)) → 𝐴𝑋)
18 simprr 772 . . . . . . . . 9 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋)) → 𝐵𝑋)
1916, 17, 183jca 1128 . . . . . . . 8 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋)) → ((𝑁𝐴) ∈ 𝑋𝐴𝑋𝐵𝑋))
203grpoass 30430 . . . . . . . 8 ((𝐺 ∈ GrpOp ∧ ((𝑁𝐴) ∈ 𝑋𝐴𝑋𝐵𝑋)) → (((𝑁𝐴)𝐺𝐴)𝐺𝐵) = ((𝑁𝐴)𝐺(𝐴𝐺𝐵)))
2119, 20syldan 591 . . . . . . 7 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋)) → (((𝑁𝐴)𝐺𝐴)𝐺𝐵) = ((𝑁𝐴)𝐺(𝐴𝐺𝐵)))
22213impb 1114 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (((𝑁𝐴)𝐺𝐴)𝐺𝐵) = ((𝑁𝐴)𝐺(𝐴𝐺𝐵)))
2314, 22eqtr3d 2772 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝑈𝐺𝐵) = ((𝑁𝐴)𝐺(𝐴𝐺𝐵)))
243, 4grpolid 30443 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝐵𝑋) → (𝑈𝐺𝐵) = 𝐵)
25243adant2 1131 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝑈𝐺𝐵) = 𝐵)
2623, 25eqtr3d 2772 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → ((𝑁𝐴)𝐺(𝐴𝐺𝐵)) = 𝐵)
2726adantr 480 . . 3 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝐺𝐵) = 𝑈) → ((𝑁𝐴)𝐺(𝐴𝐺𝐵)) = 𝐵)
283, 4grporid 30444 . . . . . 6 ((𝐺 ∈ GrpOp ∧ (𝑁𝐴) ∈ 𝑋) → ((𝑁𝐴)𝐺𝑈) = (𝑁𝐴))
2915, 28syldan 591 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → ((𝑁𝐴)𝐺𝑈) = (𝑁𝐴))
30293adant3 1132 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → ((𝑁𝐴)𝐺𝑈) = (𝑁𝐴))
3130adantr 480 . . 3 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝐺𝐵) = 𝑈) → ((𝑁𝐴)𝐺𝑈) = (𝑁𝐴))
3211, 27, 313eqtr3rd 2779 . 2 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝐺𝐵) = 𝑈) → (𝑁𝐴) = 𝐵)
339, 32impbida 800 1 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → ((𝑁𝐴) = 𝐵 ↔ (𝐴𝐺𝐵) = 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  ran crn 5655  cfv 6530  (class class class)co 7403  GrpOpcgr 30416  GIdcgi 30417  invcgn 30418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-grpo 30420  df-gid 30421  df-ginv 30422
This theorem is referenced by:  grpoinvop  30460  rngonegmn1l  37911
  Copyright terms: Public domain W3C validator