MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpoinvid1 Structured version   Visualization version   GIF version

Theorem grpoinvid1 29776
Description: The inverse of a group element expressed in terms of the identity element. (Contributed by NM, 27-Oct-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpinv.1 𝑋 = ran 𝐺
grpinv.2 π‘ˆ = (GIdβ€˜πΊ)
grpinv.3 𝑁 = (invβ€˜πΊ)
Assertion
Ref Expression
grpoinvid1 ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ ((π‘β€˜π΄) = 𝐡 ↔ (𝐴𝐺𝐡) = π‘ˆ))

Proof of Theorem grpoinvid1
StepHypRef Expression
1 oveq2 7416 . . . 4 ((π‘β€˜π΄) = 𝐡 β†’ (𝐴𝐺(π‘β€˜π΄)) = (𝐴𝐺𝐡))
21adantl 482 . . 3 (((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) ∧ (π‘β€˜π΄) = 𝐡) β†’ (𝐴𝐺(π‘β€˜π΄)) = (𝐴𝐺𝐡))
3 grpinv.1 . . . . . 6 𝑋 = ran 𝐺
4 grpinv.2 . . . . . 6 π‘ˆ = (GIdβ€˜πΊ)
5 grpinv.3 . . . . . 6 𝑁 = (invβ€˜πΊ)
63, 4, 5grporinv 29775 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) β†’ (𝐴𝐺(π‘β€˜π΄)) = π‘ˆ)
763adant3 1132 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (𝐴𝐺(π‘β€˜π΄)) = π‘ˆ)
87adantr 481 . . 3 (((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) ∧ (π‘β€˜π΄) = 𝐡) β†’ (𝐴𝐺(π‘β€˜π΄)) = π‘ˆ)
92, 8eqtr3d 2774 . 2 (((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) ∧ (π‘β€˜π΄) = 𝐡) β†’ (𝐴𝐺𝐡) = π‘ˆ)
10 oveq2 7416 . . . 4 ((𝐴𝐺𝐡) = π‘ˆ β†’ ((π‘β€˜π΄)𝐺(𝐴𝐺𝐡)) = ((π‘β€˜π΄)πΊπ‘ˆ))
1110adantl 482 . . 3 (((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) ∧ (𝐴𝐺𝐡) = π‘ˆ) β†’ ((π‘β€˜π΄)𝐺(𝐴𝐺𝐡)) = ((π‘β€˜π΄)πΊπ‘ˆ))
123, 4, 5grpolinv 29774 . . . . . . . 8 ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) β†’ ((π‘β€˜π΄)𝐺𝐴) = π‘ˆ)
1312oveq1d 7423 . . . . . . 7 ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) β†’ (((π‘β€˜π΄)𝐺𝐴)𝐺𝐡) = (π‘ˆπΊπ΅))
14133adant3 1132 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (((π‘β€˜π΄)𝐺𝐴)𝐺𝐡) = (π‘ˆπΊπ΅))
153, 5grpoinvcl 29772 . . . . . . . . . 10 ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) β†’ (π‘β€˜π΄) ∈ 𝑋)
1615adantrr 715 . . . . . . . . 9 ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋)) β†’ (π‘β€˜π΄) ∈ 𝑋)
17 simprl 769 . . . . . . . . 9 ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋)) β†’ 𝐴 ∈ 𝑋)
18 simprr 771 . . . . . . . . 9 ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋)) β†’ 𝐡 ∈ 𝑋)
1916, 17, 183jca 1128 . . . . . . . 8 ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋)) β†’ ((π‘β€˜π΄) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋))
203grpoass 29751 . . . . . . . 8 ((𝐺 ∈ GrpOp ∧ ((π‘β€˜π΄) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋)) β†’ (((π‘β€˜π΄)𝐺𝐴)𝐺𝐡) = ((π‘β€˜π΄)𝐺(𝐴𝐺𝐡)))
2119, 20syldan 591 . . . . . . 7 ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋)) β†’ (((π‘β€˜π΄)𝐺𝐴)𝐺𝐡) = ((π‘β€˜π΄)𝐺(𝐴𝐺𝐡)))
22213impb 1115 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (((π‘β€˜π΄)𝐺𝐴)𝐺𝐡) = ((π‘β€˜π΄)𝐺(𝐴𝐺𝐡)))
2314, 22eqtr3d 2774 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (π‘ˆπΊπ΅) = ((π‘β€˜π΄)𝐺(𝐴𝐺𝐡)))
243, 4grpolid 29764 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝐡 ∈ 𝑋) β†’ (π‘ˆπΊπ΅) = 𝐡)
25243adant2 1131 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (π‘ˆπΊπ΅) = 𝐡)
2623, 25eqtr3d 2774 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ ((π‘β€˜π΄)𝐺(𝐴𝐺𝐡)) = 𝐡)
2726adantr 481 . . 3 (((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) ∧ (𝐴𝐺𝐡) = π‘ˆ) β†’ ((π‘β€˜π΄)𝐺(𝐴𝐺𝐡)) = 𝐡)
283, 4grporid 29765 . . . . . 6 ((𝐺 ∈ GrpOp ∧ (π‘β€˜π΄) ∈ 𝑋) β†’ ((π‘β€˜π΄)πΊπ‘ˆ) = (π‘β€˜π΄))
2915, 28syldan 591 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) β†’ ((π‘β€˜π΄)πΊπ‘ˆ) = (π‘β€˜π΄))
30293adant3 1132 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ ((π‘β€˜π΄)πΊπ‘ˆ) = (π‘β€˜π΄))
3130adantr 481 . . 3 (((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) ∧ (𝐴𝐺𝐡) = π‘ˆ) β†’ ((π‘β€˜π΄)πΊπ‘ˆ) = (π‘β€˜π΄))
3211, 27, 313eqtr3rd 2781 . 2 (((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) ∧ (𝐴𝐺𝐡) = π‘ˆ) β†’ (π‘β€˜π΄) = 𝐡)
339, 32impbida 799 1 ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ ((π‘β€˜π΄) = 𝐡 ↔ (𝐴𝐺𝐡) = π‘ˆ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  ran crn 5677  β€˜cfv 6543  (class class class)co 7408  GrpOpcgr 29737  GIdcgi 29738  invcgn 29739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-grpo 29741  df-gid 29742  df-ginv 29743
This theorem is referenced by:  grpoinvop  29781  rngonegmn1l  36804
  Copyright terms: Public domain W3C validator