| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nv0rid | Structured version Visualization version GIF version | ||
| Description: The zero vector is a right identity element. (Contributed by NM, 28-Nov-2007.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nv0id.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| nv0id.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
| nv0id.6 | ⊢ 𝑍 = (0vec‘𝑈) |
| Ref | Expression |
|---|---|
| nv0rid | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺𝑍) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nv0id.2 | . . . . 5 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
| 2 | nv0id.6 | . . . . 5 ⊢ 𝑍 = (0vec‘𝑈) | |
| 3 | 1, 2 | 0vfval 30542 | . . . 4 ⊢ (𝑈 ∈ NrmCVec → 𝑍 = (GId‘𝐺)) |
| 4 | 3 | oveq2d 7406 | . . 3 ⊢ (𝑈 ∈ NrmCVec → (𝐴𝐺𝑍) = (𝐴𝐺(GId‘𝐺))) |
| 5 | 4 | adantr 480 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺𝑍) = (𝐴𝐺(GId‘𝐺))) |
| 6 | 1 | nvgrp 30553 | . . 3 ⊢ (𝑈 ∈ NrmCVec → 𝐺 ∈ GrpOp) |
| 7 | nv0id.1 | . . . . 5 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 8 | 7, 1 | bafval 30540 | . . . 4 ⊢ 𝑋 = ran 𝐺 |
| 9 | eqid 2730 | . . . 4 ⊢ (GId‘𝐺) = (GId‘𝐺) | |
| 10 | 8, 9 | grporid 30453 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺(GId‘𝐺)) = 𝐴) |
| 11 | 6, 10 | sylan 580 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺(GId‘𝐺)) = 𝐴) |
| 12 | 5, 11 | eqtrd 2765 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺𝑍) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6514 (class class class)co 7390 GrpOpcgr 30425 GIdcgi 30426 NrmCVeccnv 30520 +𝑣 cpv 30521 BaseSetcba 30522 0veccn0v 30524 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-1st 7971 df-2nd 7972 df-grpo 30429 df-gid 30430 df-ablo 30481 df-vc 30495 df-nv 30528 df-va 30531 df-ba 30532 df-sm 30533 df-0v 30534 df-nmcv 30536 |
| This theorem is referenced by: nvabs 30608 nvnd 30624 imsmetlem 30626 lnomul 30696 0lno 30726 ipdirilem 30765 hladdid 30839 |
| Copyright terms: Public domain | W3C validator |