MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpoinvid2 Structured version   Visualization version   GIF version

Theorem grpoinvid2 30574
Description: The inverse of a group element expressed in terms of the identity element. (Contributed by NM, 27-Oct-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpinv.1 𝑋 = ran 𝐺
grpinv.2 𝑈 = (GId‘𝐺)
grpinv.3 𝑁 = (inv‘𝐺)
Assertion
Ref Expression
grpoinvid2 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → ((𝑁𝐴) = 𝐵 ↔ (𝐵𝐺𝐴) = 𝑈))

Proof of Theorem grpoinvid2
StepHypRef Expression
1 oveq1 7445 . . . 4 ((𝑁𝐴) = 𝐵 → ((𝑁𝐴)𝐺𝐴) = (𝐵𝐺𝐴))
21adantl 481 . . 3 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) ∧ (𝑁𝐴) = 𝐵) → ((𝑁𝐴)𝐺𝐴) = (𝐵𝐺𝐴))
3 grpinv.1 . . . . . 6 𝑋 = ran 𝐺
4 grpinv.2 . . . . . 6 𝑈 = (GId‘𝐺)
5 grpinv.3 . . . . . 6 𝑁 = (inv‘𝐺)
63, 4, 5grpolinv 30571 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → ((𝑁𝐴)𝐺𝐴) = 𝑈)
763adant3 1133 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → ((𝑁𝐴)𝐺𝐴) = 𝑈)
87adantr 480 . . 3 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) ∧ (𝑁𝐴) = 𝐵) → ((𝑁𝐴)𝐺𝐴) = 𝑈)
92, 8eqtr3d 2779 . 2 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) ∧ (𝑁𝐴) = 𝐵) → (𝐵𝐺𝐴) = 𝑈)
103, 5grpoinvcl 30569 . . . . . . 7 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝑁𝐴) ∈ 𝑋)
113, 4grpolid 30561 . . . . . . 7 ((𝐺 ∈ GrpOp ∧ (𝑁𝐴) ∈ 𝑋) → (𝑈𝐺(𝑁𝐴)) = (𝑁𝐴))
1210, 11syldan 591 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝑈𝐺(𝑁𝐴)) = (𝑁𝐴))
13123adant3 1133 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝑈𝐺(𝑁𝐴)) = (𝑁𝐴))
1413eqcomd 2743 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝑁𝐴) = (𝑈𝐺(𝑁𝐴)))
1514adantr 480 . . 3 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐵𝐺𝐴) = 𝑈) → (𝑁𝐴) = (𝑈𝐺(𝑁𝐴)))
16 oveq1 7445 . . . 4 ((𝐵𝐺𝐴) = 𝑈 → ((𝐵𝐺𝐴)𝐺(𝑁𝐴)) = (𝑈𝐺(𝑁𝐴)))
1716adantl 481 . . 3 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐵𝐺𝐴) = 𝑈) → ((𝐵𝐺𝐴)𝐺(𝑁𝐴)) = (𝑈𝐺(𝑁𝐴)))
18 simprr 773 . . . . . . . 8 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋)) → 𝐵𝑋)
19 simprl 771 . . . . . . . 8 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋)) → 𝐴𝑋)
2010adantrr 717 . . . . . . . 8 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋)) → (𝑁𝐴) ∈ 𝑋)
2118, 19, 203jca 1129 . . . . . . 7 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋)) → (𝐵𝑋𝐴𝑋 ∧ (𝑁𝐴) ∈ 𝑋))
223grpoass 30548 . . . . . . 7 ((𝐺 ∈ GrpOp ∧ (𝐵𝑋𝐴𝑋 ∧ (𝑁𝐴) ∈ 𝑋)) → ((𝐵𝐺𝐴)𝐺(𝑁𝐴)) = (𝐵𝐺(𝐴𝐺(𝑁𝐴))))
2321, 22syldan 591 . . . . . 6 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋)) → ((𝐵𝐺𝐴)𝐺(𝑁𝐴)) = (𝐵𝐺(𝐴𝐺(𝑁𝐴))))
24233impb 1115 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → ((𝐵𝐺𝐴)𝐺(𝑁𝐴)) = (𝐵𝐺(𝐴𝐺(𝑁𝐴))))
253, 4, 5grporinv 30572 . . . . . . 7 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝐴𝐺(𝑁𝐴)) = 𝑈)
2625oveq2d 7454 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝐵𝐺(𝐴𝐺(𝑁𝐴))) = (𝐵𝐺𝑈))
27263adant3 1133 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝐵𝐺(𝐴𝐺(𝑁𝐴))) = (𝐵𝐺𝑈))
283, 4grporid 30562 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝐵𝑋) → (𝐵𝐺𝑈) = 𝐵)
29283adant2 1132 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝐵𝐺𝑈) = 𝐵)
3024, 27, 293eqtrd 2781 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → ((𝐵𝐺𝐴)𝐺(𝑁𝐴)) = 𝐵)
3130adantr 480 . . 3 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐵𝐺𝐴) = 𝑈) → ((𝐵𝐺𝐴)𝐺(𝑁𝐴)) = 𝐵)
3215, 17, 313eqtr2d 2783 . 2 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐵𝐺𝐴) = 𝑈) → (𝑁𝐴) = 𝐵)
339, 32impbida 801 1 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → ((𝑁𝐴) = 𝐵 ↔ (𝐵𝐺𝐴) = 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1539  wcel 2108  ran crn 5694  cfv 6569  (class class class)co 7438  GrpOpcgr 30534  GIdcgi 30535  invcgn 30536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pr 5441  ax-un 7761
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-riota 7395  df-ov 7441  df-grpo 30538  df-gid 30539  df-ginv 30540
This theorem is referenced by:  rngonegmn1r  37943
  Copyright terms: Public domain W3C validator