Proof of Theorem grpoinvid2
| Step | Hyp | Ref
| Expression |
| 1 | | oveq1 7420 |
. . . 4
⊢ ((𝑁‘𝐴) = 𝐵 → ((𝑁‘𝐴)𝐺𝐴) = (𝐵𝐺𝐴)) |
| 2 | 1 | adantl 481 |
. . 3
⊢ (((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝑁‘𝐴) = 𝐵) → ((𝑁‘𝐴)𝐺𝐴) = (𝐵𝐺𝐴)) |
| 3 | | grpinv.1 |
. . . . . 6
⊢ 𝑋 = ran 𝐺 |
| 4 | | grpinv.2 |
. . . . . 6
⊢ 𝑈 = (GId‘𝐺) |
| 5 | | grpinv.3 |
. . . . . 6
⊢ 𝑁 = (inv‘𝐺) |
| 6 | 3, 4, 5 | grpolinv 30473 |
. . . . 5
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → ((𝑁‘𝐴)𝐺𝐴) = 𝑈) |
| 7 | 6 | 3adant3 1132 |
. . . 4
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝑁‘𝐴)𝐺𝐴) = 𝑈) |
| 8 | 7 | adantr 480 |
. . 3
⊢ (((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝑁‘𝐴) = 𝐵) → ((𝑁‘𝐴)𝐺𝐴) = 𝑈) |
| 9 | 2, 8 | eqtr3d 2771 |
. 2
⊢ (((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝑁‘𝐴) = 𝐵) → (𝐵𝐺𝐴) = 𝑈) |
| 10 | 3, 5 | grpoinvcl 30471 |
. . . . . . 7
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) ∈ 𝑋) |
| 11 | 3, 4 | grpolid 30463 |
. . . . . . 7
⊢ ((𝐺 ∈ GrpOp ∧ (𝑁‘𝐴) ∈ 𝑋) → (𝑈𝐺(𝑁‘𝐴)) = (𝑁‘𝐴)) |
| 12 | 10, 11 | syldan 591 |
. . . . . 6
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝑈𝐺(𝑁‘𝐴)) = (𝑁‘𝐴)) |
| 13 | 12 | 3adant3 1132 |
. . . . 5
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑈𝐺(𝑁‘𝐴)) = (𝑁‘𝐴)) |
| 14 | 13 | eqcomd 2740 |
. . . 4
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘𝐴) = (𝑈𝐺(𝑁‘𝐴))) |
| 15 | 14 | adantr 480 |
. . 3
⊢ (((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐵𝐺𝐴) = 𝑈) → (𝑁‘𝐴) = (𝑈𝐺(𝑁‘𝐴))) |
| 16 | | oveq1 7420 |
. . . 4
⊢ ((𝐵𝐺𝐴) = 𝑈 → ((𝐵𝐺𝐴)𝐺(𝑁‘𝐴)) = (𝑈𝐺(𝑁‘𝐴))) |
| 17 | 16 | adantl 481 |
. . 3
⊢ (((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐵𝐺𝐴) = 𝑈) → ((𝐵𝐺𝐴)𝐺(𝑁‘𝐴)) = (𝑈𝐺(𝑁‘𝐴))) |
| 18 | | simprr 772 |
. . . . . . . 8
⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → 𝐵 ∈ 𝑋) |
| 19 | | simprl 770 |
. . . . . . . 8
⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → 𝐴 ∈ 𝑋) |
| 20 | 10 | adantrr 717 |
. . . . . . . 8
⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝑁‘𝐴) ∈ 𝑋) |
| 21 | 18, 19, 20 | 3jca 1128 |
. . . . . . 7
⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ (𝑁‘𝐴) ∈ 𝑋)) |
| 22 | 3 | grpoass 30450 |
. . . . . . 7
⊢ ((𝐺 ∈ GrpOp ∧ (𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ (𝑁‘𝐴) ∈ 𝑋)) → ((𝐵𝐺𝐴)𝐺(𝑁‘𝐴)) = (𝐵𝐺(𝐴𝐺(𝑁‘𝐴)))) |
| 23 | 21, 22 | syldan 591 |
. . . . . 6
⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ((𝐵𝐺𝐴)𝐺(𝑁‘𝐴)) = (𝐵𝐺(𝐴𝐺(𝑁‘𝐴)))) |
| 24 | 23 | 3impb 1114 |
. . . . 5
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐵𝐺𝐴)𝐺(𝑁‘𝐴)) = (𝐵𝐺(𝐴𝐺(𝑁‘𝐴)))) |
| 25 | 3, 4, 5 | grporinv 30474 |
. . . . . . 7
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺(𝑁‘𝐴)) = 𝑈) |
| 26 | 25 | oveq2d 7429 |
. . . . . 6
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝐵𝐺(𝐴𝐺(𝑁‘𝐴))) = (𝐵𝐺𝑈)) |
| 27 | 26 | 3adant3 1132 |
. . . . 5
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐵𝐺(𝐴𝐺(𝑁‘𝐴))) = (𝐵𝐺𝑈)) |
| 28 | 3, 4 | grporid 30464 |
. . . . . 6
⊢ ((𝐺 ∈ GrpOp ∧ 𝐵 ∈ 𝑋) → (𝐵𝐺𝑈) = 𝐵) |
| 29 | 28 | 3adant2 1131 |
. . . . 5
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐵𝐺𝑈) = 𝐵) |
| 30 | 24, 27, 29 | 3eqtrd 2773 |
. . . 4
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐵𝐺𝐴)𝐺(𝑁‘𝐴)) = 𝐵) |
| 31 | 30 | adantr 480 |
. . 3
⊢ (((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐵𝐺𝐴) = 𝑈) → ((𝐵𝐺𝐴)𝐺(𝑁‘𝐴)) = 𝐵) |
| 32 | 15, 17, 31 | 3eqtr2d 2775 |
. 2
⊢ (((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐵𝐺𝐴) = 𝑈) → (𝑁‘𝐴) = 𝐵) |
| 33 | 9, 32 | impbida 800 |
1
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝑁‘𝐴) = 𝐵 ↔ (𝐵𝐺𝐴) = 𝑈)) |