MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpoinvid2 Structured version   Visualization version   GIF version

Theorem grpoinvid2 30395
Description: The inverse of a group element expressed in terms of the identity element. (Contributed by NM, 27-Oct-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpinv.1 𝑋 = ran 𝐺
grpinv.2 π‘ˆ = (GIdβ€˜πΊ)
grpinv.3 𝑁 = (invβ€˜πΊ)
Assertion
Ref Expression
grpoinvid2 ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ ((π‘β€˜π΄) = 𝐡 ↔ (𝐡𝐺𝐴) = π‘ˆ))

Proof of Theorem grpoinvid2
StepHypRef Expression
1 oveq1 7424 . . . 4 ((π‘β€˜π΄) = 𝐡 β†’ ((π‘β€˜π΄)𝐺𝐴) = (𝐡𝐺𝐴))
21adantl 480 . . 3 (((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) ∧ (π‘β€˜π΄) = 𝐡) β†’ ((π‘β€˜π΄)𝐺𝐴) = (𝐡𝐺𝐴))
3 grpinv.1 . . . . . 6 𝑋 = ran 𝐺
4 grpinv.2 . . . . . 6 π‘ˆ = (GIdβ€˜πΊ)
5 grpinv.3 . . . . . 6 𝑁 = (invβ€˜πΊ)
63, 4, 5grpolinv 30392 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) β†’ ((π‘β€˜π΄)𝐺𝐴) = π‘ˆ)
763adant3 1129 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ ((π‘β€˜π΄)𝐺𝐴) = π‘ˆ)
87adantr 479 . . 3 (((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) ∧ (π‘β€˜π΄) = 𝐡) β†’ ((π‘β€˜π΄)𝐺𝐴) = π‘ˆ)
92, 8eqtr3d 2767 . 2 (((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) ∧ (π‘β€˜π΄) = 𝐡) β†’ (𝐡𝐺𝐴) = π‘ˆ)
103, 5grpoinvcl 30390 . . . . . . 7 ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) β†’ (π‘β€˜π΄) ∈ 𝑋)
113, 4grpolid 30382 . . . . . . 7 ((𝐺 ∈ GrpOp ∧ (π‘β€˜π΄) ∈ 𝑋) β†’ (π‘ˆπΊ(π‘β€˜π΄)) = (π‘β€˜π΄))
1210, 11syldan 589 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) β†’ (π‘ˆπΊ(π‘β€˜π΄)) = (π‘β€˜π΄))
13123adant3 1129 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (π‘ˆπΊ(π‘β€˜π΄)) = (π‘β€˜π΄))
1413eqcomd 2731 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (π‘β€˜π΄) = (π‘ˆπΊ(π‘β€˜π΄)))
1514adantr 479 . . 3 (((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) ∧ (𝐡𝐺𝐴) = π‘ˆ) β†’ (π‘β€˜π΄) = (π‘ˆπΊ(π‘β€˜π΄)))
16 oveq1 7424 . . . 4 ((𝐡𝐺𝐴) = π‘ˆ β†’ ((𝐡𝐺𝐴)𝐺(π‘β€˜π΄)) = (π‘ˆπΊ(π‘β€˜π΄)))
1716adantl 480 . . 3 (((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) ∧ (𝐡𝐺𝐴) = π‘ˆ) β†’ ((𝐡𝐺𝐴)𝐺(π‘β€˜π΄)) = (π‘ˆπΊ(π‘β€˜π΄)))
18 simprr 771 . . . . . . . 8 ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋)) β†’ 𝐡 ∈ 𝑋)
19 simprl 769 . . . . . . . 8 ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋)) β†’ 𝐴 ∈ 𝑋)
2010adantrr 715 . . . . . . . 8 ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋)) β†’ (π‘β€˜π΄) ∈ 𝑋)
2118, 19, 203jca 1125 . . . . . . 7 ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋)) β†’ (𝐡 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ (π‘β€˜π΄) ∈ 𝑋))
223grpoass 30369 . . . . . . 7 ((𝐺 ∈ GrpOp ∧ (𝐡 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ (π‘β€˜π΄) ∈ 𝑋)) β†’ ((𝐡𝐺𝐴)𝐺(π‘β€˜π΄)) = (𝐡𝐺(𝐴𝐺(π‘β€˜π΄))))
2321, 22syldan 589 . . . . . 6 ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋)) β†’ ((𝐡𝐺𝐴)𝐺(π‘β€˜π΄)) = (𝐡𝐺(𝐴𝐺(π‘β€˜π΄))))
24233impb 1112 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ ((𝐡𝐺𝐴)𝐺(π‘β€˜π΄)) = (𝐡𝐺(𝐴𝐺(π‘β€˜π΄))))
253, 4, 5grporinv 30393 . . . . . . 7 ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) β†’ (𝐴𝐺(π‘β€˜π΄)) = π‘ˆ)
2625oveq2d 7433 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) β†’ (𝐡𝐺(𝐴𝐺(π‘β€˜π΄))) = (π΅πΊπ‘ˆ))
27263adant3 1129 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (𝐡𝐺(𝐴𝐺(π‘β€˜π΄))) = (π΅πΊπ‘ˆ))
283, 4grporid 30383 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝐡 ∈ 𝑋) β†’ (π΅πΊπ‘ˆ) = 𝐡)
29283adant2 1128 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (π΅πΊπ‘ˆ) = 𝐡)
3024, 27, 293eqtrd 2769 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ ((𝐡𝐺𝐴)𝐺(π‘β€˜π΄)) = 𝐡)
3130adantr 479 . . 3 (((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) ∧ (𝐡𝐺𝐴) = π‘ˆ) β†’ ((𝐡𝐺𝐴)𝐺(π‘β€˜π΄)) = 𝐡)
3215, 17, 313eqtr2d 2771 . 2 (((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) ∧ (𝐡𝐺𝐴) = π‘ˆ) β†’ (π‘β€˜π΄) = 𝐡)
339, 32impbida 799 1 ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ ((π‘β€˜π΄) = 𝐡 ↔ (𝐡𝐺𝐴) = π‘ˆ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098  ran crn 5678  β€˜cfv 6547  (class class class)co 7417  GrpOpcgr 30355  GIdcgi 30356  invcgn 30357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5428  ax-un 7739
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6499  df-fun 6549  df-fn 6550  df-f 6551  df-f1 6552  df-fo 6553  df-f1o 6554  df-fv 6555  df-riota 7373  df-ov 7420  df-grpo 30359  df-gid 30360  df-ginv 30361
This theorem is referenced by:  rngonegmn1r  37485
  Copyright terms: Public domain W3C validator