MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpoinvid2 Structured version   Visualization version   GIF version

Theorem grpoinvid2 28891
Description: The inverse of a group element expressed in terms of the identity element. (Contributed by NM, 27-Oct-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpinv.1 𝑋 = ran 𝐺
grpinv.2 𝑈 = (GId‘𝐺)
grpinv.3 𝑁 = (inv‘𝐺)
Assertion
Ref Expression
grpoinvid2 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → ((𝑁𝐴) = 𝐵 ↔ (𝐵𝐺𝐴) = 𝑈))

Proof of Theorem grpoinvid2
StepHypRef Expression
1 oveq1 7282 . . . 4 ((𝑁𝐴) = 𝐵 → ((𝑁𝐴)𝐺𝐴) = (𝐵𝐺𝐴))
21adantl 482 . . 3 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) ∧ (𝑁𝐴) = 𝐵) → ((𝑁𝐴)𝐺𝐴) = (𝐵𝐺𝐴))
3 grpinv.1 . . . . . 6 𝑋 = ran 𝐺
4 grpinv.2 . . . . . 6 𝑈 = (GId‘𝐺)
5 grpinv.3 . . . . . 6 𝑁 = (inv‘𝐺)
63, 4, 5grpolinv 28888 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → ((𝑁𝐴)𝐺𝐴) = 𝑈)
763adant3 1131 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → ((𝑁𝐴)𝐺𝐴) = 𝑈)
87adantr 481 . . 3 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) ∧ (𝑁𝐴) = 𝐵) → ((𝑁𝐴)𝐺𝐴) = 𝑈)
92, 8eqtr3d 2780 . 2 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) ∧ (𝑁𝐴) = 𝐵) → (𝐵𝐺𝐴) = 𝑈)
103, 5grpoinvcl 28886 . . . . . . 7 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝑁𝐴) ∈ 𝑋)
113, 4grpolid 28878 . . . . . . 7 ((𝐺 ∈ GrpOp ∧ (𝑁𝐴) ∈ 𝑋) → (𝑈𝐺(𝑁𝐴)) = (𝑁𝐴))
1210, 11syldan 591 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝑈𝐺(𝑁𝐴)) = (𝑁𝐴))
13123adant3 1131 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝑈𝐺(𝑁𝐴)) = (𝑁𝐴))
1413eqcomd 2744 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝑁𝐴) = (𝑈𝐺(𝑁𝐴)))
1514adantr 481 . . 3 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐵𝐺𝐴) = 𝑈) → (𝑁𝐴) = (𝑈𝐺(𝑁𝐴)))
16 oveq1 7282 . . . 4 ((𝐵𝐺𝐴) = 𝑈 → ((𝐵𝐺𝐴)𝐺(𝑁𝐴)) = (𝑈𝐺(𝑁𝐴)))
1716adantl 482 . . 3 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐵𝐺𝐴) = 𝑈) → ((𝐵𝐺𝐴)𝐺(𝑁𝐴)) = (𝑈𝐺(𝑁𝐴)))
18 simprr 770 . . . . . . . 8 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋)) → 𝐵𝑋)
19 simprl 768 . . . . . . . 8 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋)) → 𝐴𝑋)
2010adantrr 714 . . . . . . . 8 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋)) → (𝑁𝐴) ∈ 𝑋)
2118, 19, 203jca 1127 . . . . . . 7 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋)) → (𝐵𝑋𝐴𝑋 ∧ (𝑁𝐴) ∈ 𝑋))
223grpoass 28865 . . . . . . 7 ((𝐺 ∈ GrpOp ∧ (𝐵𝑋𝐴𝑋 ∧ (𝑁𝐴) ∈ 𝑋)) → ((𝐵𝐺𝐴)𝐺(𝑁𝐴)) = (𝐵𝐺(𝐴𝐺(𝑁𝐴))))
2321, 22syldan 591 . . . . . 6 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋)) → ((𝐵𝐺𝐴)𝐺(𝑁𝐴)) = (𝐵𝐺(𝐴𝐺(𝑁𝐴))))
24233impb 1114 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → ((𝐵𝐺𝐴)𝐺(𝑁𝐴)) = (𝐵𝐺(𝐴𝐺(𝑁𝐴))))
253, 4, 5grporinv 28889 . . . . . . 7 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝐴𝐺(𝑁𝐴)) = 𝑈)
2625oveq2d 7291 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝐵𝐺(𝐴𝐺(𝑁𝐴))) = (𝐵𝐺𝑈))
27263adant3 1131 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝐵𝐺(𝐴𝐺(𝑁𝐴))) = (𝐵𝐺𝑈))
283, 4grporid 28879 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝐵𝑋) → (𝐵𝐺𝑈) = 𝐵)
29283adant2 1130 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝐵𝐺𝑈) = 𝐵)
3024, 27, 293eqtrd 2782 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → ((𝐵𝐺𝐴)𝐺(𝑁𝐴)) = 𝐵)
3130adantr 481 . . 3 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐵𝐺𝐴) = 𝑈) → ((𝐵𝐺𝐴)𝐺(𝑁𝐴)) = 𝐵)
3215, 17, 313eqtr2d 2784 . 2 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐵𝐺𝐴) = 𝑈) → (𝑁𝐴) = 𝐵)
339, 32impbida 798 1 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → ((𝑁𝐴) = 𝐵 ↔ (𝐵𝐺𝐴) = 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  ran crn 5590  cfv 6433  (class class class)co 7275  GrpOpcgr 28851  GIdcgi 28852  invcgn 28853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-grpo 28855  df-gid 28856  df-ginv 28857
This theorem is referenced by:  rngonegmn1r  36100
  Copyright terms: Public domain W3C validator