Proof of Theorem grpoinvid2
Step | Hyp | Ref
| Expression |
1 | | oveq1 7262 |
. . . 4
⊢ ((𝑁‘𝐴) = 𝐵 → ((𝑁‘𝐴)𝐺𝐴) = (𝐵𝐺𝐴)) |
2 | 1 | adantl 481 |
. . 3
⊢ (((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝑁‘𝐴) = 𝐵) → ((𝑁‘𝐴)𝐺𝐴) = (𝐵𝐺𝐴)) |
3 | | grpinv.1 |
. . . . . 6
⊢ 𝑋 = ran 𝐺 |
4 | | grpinv.2 |
. . . . . 6
⊢ 𝑈 = (GId‘𝐺) |
5 | | grpinv.3 |
. . . . . 6
⊢ 𝑁 = (inv‘𝐺) |
6 | 3, 4, 5 | grpolinv 28789 |
. . . . 5
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → ((𝑁‘𝐴)𝐺𝐴) = 𝑈) |
7 | 6 | 3adant3 1130 |
. . . 4
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝑁‘𝐴)𝐺𝐴) = 𝑈) |
8 | 7 | adantr 480 |
. . 3
⊢ (((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝑁‘𝐴) = 𝐵) → ((𝑁‘𝐴)𝐺𝐴) = 𝑈) |
9 | 2, 8 | eqtr3d 2780 |
. 2
⊢ (((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝑁‘𝐴) = 𝐵) → (𝐵𝐺𝐴) = 𝑈) |
10 | 3, 5 | grpoinvcl 28787 |
. . . . . . 7
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) ∈ 𝑋) |
11 | 3, 4 | grpolid 28779 |
. . . . . . 7
⊢ ((𝐺 ∈ GrpOp ∧ (𝑁‘𝐴) ∈ 𝑋) → (𝑈𝐺(𝑁‘𝐴)) = (𝑁‘𝐴)) |
12 | 10, 11 | syldan 590 |
. . . . . 6
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝑈𝐺(𝑁‘𝐴)) = (𝑁‘𝐴)) |
13 | 12 | 3adant3 1130 |
. . . . 5
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑈𝐺(𝑁‘𝐴)) = (𝑁‘𝐴)) |
14 | 13 | eqcomd 2744 |
. . . 4
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘𝐴) = (𝑈𝐺(𝑁‘𝐴))) |
15 | 14 | adantr 480 |
. . 3
⊢ (((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐵𝐺𝐴) = 𝑈) → (𝑁‘𝐴) = (𝑈𝐺(𝑁‘𝐴))) |
16 | | oveq1 7262 |
. . . 4
⊢ ((𝐵𝐺𝐴) = 𝑈 → ((𝐵𝐺𝐴)𝐺(𝑁‘𝐴)) = (𝑈𝐺(𝑁‘𝐴))) |
17 | 16 | adantl 481 |
. . 3
⊢ (((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐵𝐺𝐴) = 𝑈) → ((𝐵𝐺𝐴)𝐺(𝑁‘𝐴)) = (𝑈𝐺(𝑁‘𝐴))) |
18 | | simprr 769 |
. . . . . . . 8
⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → 𝐵 ∈ 𝑋) |
19 | | simprl 767 |
. . . . . . . 8
⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → 𝐴 ∈ 𝑋) |
20 | 10 | adantrr 713 |
. . . . . . . 8
⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝑁‘𝐴) ∈ 𝑋) |
21 | 18, 19, 20 | 3jca 1126 |
. . . . . . 7
⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ (𝑁‘𝐴) ∈ 𝑋)) |
22 | 3 | grpoass 28766 |
. . . . . . 7
⊢ ((𝐺 ∈ GrpOp ∧ (𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ (𝑁‘𝐴) ∈ 𝑋)) → ((𝐵𝐺𝐴)𝐺(𝑁‘𝐴)) = (𝐵𝐺(𝐴𝐺(𝑁‘𝐴)))) |
23 | 21, 22 | syldan 590 |
. . . . . 6
⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ((𝐵𝐺𝐴)𝐺(𝑁‘𝐴)) = (𝐵𝐺(𝐴𝐺(𝑁‘𝐴)))) |
24 | 23 | 3impb 1113 |
. . . . 5
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐵𝐺𝐴)𝐺(𝑁‘𝐴)) = (𝐵𝐺(𝐴𝐺(𝑁‘𝐴)))) |
25 | 3, 4, 5 | grporinv 28790 |
. . . . . . 7
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺(𝑁‘𝐴)) = 𝑈) |
26 | 25 | oveq2d 7271 |
. . . . . 6
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝐵𝐺(𝐴𝐺(𝑁‘𝐴))) = (𝐵𝐺𝑈)) |
27 | 26 | 3adant3 1130 |
. . . . 5
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐵𝐺(𝐴𝐺(𝑁‘𝐴))) = (𝐵𝐺𝑈)) |
28 | 3, 4 | grporid 28780 |
. . . . . 6
⊢ ((𝐺 ∈ GrpOp ∧ 𝐵 ∈ 𝑋) → (𝐵𝐺𝑈) = 𝐵) |
29 | 28 | 3adant2 1129 |
. . . . 5
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐵𝐺𝑈) = 𝐵) |
30 | 24, 27, 29 | 3eqtrd 2782 |
. . . 4
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐵𝐺𝐴)𝐺(𝑁‘𝐴)) = 𝐵) |
31 | 30 | adantr 480 |
. . 3
⊢ (((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐵𝐺𝐴) = 𝑈) → ((𝐵𝐺𝐴)𝐺(𝑁‘𝐴)) = 𝐵) |
32 | 15, 17, 31 | 3eqtr2d 2784 |
. 2
⊢ (((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐵𝐺𝐴) = 𝑈) → (𝑁‘𝐴) = 𝐵) |
33 | 9, 32 | impbida 797 |
1
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝑁‘𝐴) = 𝐵 ↔ (𝐵𝐺𝐴) = 𝑈)) |