MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpoinvid2 Structured version   Visualization version   GIF version

Theorem grpoinvid2 30552
Description: The inverse of a group element expressed in terms of the identity element. (Contributed by NM, 27-Oct-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpinv.1 𝑋 = ran 𝐺
grpinv.2 𝑈 = (GId‘𝐺)
grpinv.3 𝑁 = (inv‘𝐺)
Assertion
Ref Expression
grpoinvid2 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → ((𝑁𝐴) = 𝐵 ↔ (𝐵𝐺𝐴) = 𝑈))

Proof of Theorem grpoinvid2
StepHypRef Expression
1 oveq1 7452 . . . 4 ((𝑁𝐴) = 𝐵 → ((𝑁𝐴)𝐺𝐴) = (𝐵𝐺𝐴))
21adantl 481 . . 3 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) ∧ (𝑁𝐴) = 𝐵) → ((𝑁𝐴)𝐺𝐴) = (𝐵𝐺𝐴))
3 grpinv.1 . . . . . 6 𝑋 = ran 𝐺
4 grpinv.2 . . . . . 6 𝑈 = (GId‘𝐺)
5 grpinv.3 . . . . . 6 𝑁 = (inv‘𝐺)
63, 4, 5grpolinv 30549 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → ((𝑁𝐴)𝐺𝐴) = 𝑈)
763adant3 1132 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → ((𝑁𝐴)𝐺𝐴) = 𝑈)
87adantr 480 . . 3 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) ∧ (𝑁𝐴) = 𝐵) → ((𝑁𝐴)𝐺𝐴) = 𝑈)
92, 8eqtr3d 2776 . 2 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) ∧ (𝑁𝐴) = 𝐵) → (𝐵𝐺𝐴) = 𝑈)
103, 5grpoinvcl 30547 . . . . . . 7 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝑁𝐴) ∈ 𝑋)
113, 4grpolid 30539 . . . . . . 7 ((𝐺 ∈ GrpOp ∧ (𝑁𝐴) ∈ 𝑋) → (𝑈𝐺(𝑁𝐴)) = (𝑁𝐴))
1210, 11syldan 590 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝑈𝐺(𝑁𝐴)) = (𝑁𝐴))
13123adant3 1132 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝑈𝐺(𝑁𝐴)) = (𝑁𝐴))
1413eqcomd 2740 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝑁𝐴) = (𝑈𝐺(𝑁𝐴)))
1514adantr 480 . . 3 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐵𝐺𝐴) = 𝑈) → (𝑁𝐴) = (𝑈𝐺(𝑁𝐴)))
16 oveq1 7452 . . . 4 ((𝐵𝐺𝐴) = 𝑈 → ((𝐵𝐺𝐴)𝐺(𝑁𝐴)) = (𝑈𝐺(𝑁𝐴)))
1716adantl 481 . . 3 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐵𝐺𝐴) = 𝑈) → ((𝐵𝐺𝐴)𝐺(𝑁𝐴)) = (𝑈𝐺(𝑁𝐴)))
18 simprr 772 . . . . . . . 8 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋)) → 𝐵𝑋)
19 simprl 770 . . . . . . . 8 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋)) → 𝐴𝑋)
2010adantrr 716 . . . . . . . 8 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋)) → (𝑁𝐴) ∈ 𝑋)
2118, 19, 203jca 1128 . . . . . . 7 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋)) → (𝐵𝑋𝐴𝑋 ∧ (𝑁𝐴) ∈ 𝑋))
223grpoass 30526 . . . . . . 7 ((𝐺 ∈ GrpOp ∧ (𝐵𝑋𝐴𝑋 ∧ (𝑁𝐴) ∈ 𝑋)) → ((𝐵𝐺𝐴)𝐺(𝑁𝐴)) = (𝐵𝐺(𝐴𝐺(𝑁𝐴))))
2321, 22syldan 590 . . . . . 6 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋)) → ((𝐵𝐺𝐴)𝐺(𝑁𝐴)) = (𝐵𝐺(𝐴𝐺(𝑁𝐴))))
24233impb 1115 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → ((𝐵𝐺𝐴)𝐺(𝑁𝐴)) = (𝐵𝐺(𝐴𝐺(𝑁𝐴))))
253, 4, 5grporinv 30550 . . . . . . 7 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝐴𝐺(𝑁𝐴)) = 𝑈)
2625oveq2d 7461 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝐵𝐺(𝐴𝐺(𝑁𝐴))) = (𝐵𝐺𝑈))
27263adant3 1132 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝐵𝐺(𝐴𝐺(𝑁𝐴))) = (𝐵𝐺𝑈))
283, 4grporid 30540 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝐵𝑋) → (𝐵𝐺𝑈) = 𝐵)
29283adant2 1131 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝐵𝐺𝑈) = 𝐵)
3024, 27, 293eqtrd 2778 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → ((𝐵𝐺𝐴)𝐺(𝑁𝐴)) = 𝐵)
3130adantr 480 . . 3 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐵𝐺𝐴) = 𝑈) → ((𝐵𝐺𝐴)𝐺(𝑁𝐴)) = 𝐵)
3215, 17, 313eqtr2d 2780 . 2 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐵𝐺𝐴) = 𝑈) → (𝑁𝐴) = 𝐵)
339, 32impbida 800 1 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → ((𝑁𝐴) = 𝐵 ↔ (𝐵𝐺𝐴) = 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2103  ran crn 5700  cfv 6572  (class class class)co 7445  GrpOpcgr 30512  GIdcgi 30513  invcgn 30514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2105  ax-9 2113  ax-10 2136  ax-11 2153  ax-12 2173  ax-ext 2705  ax-rep 5306  ax-sep 5320  ax-nul 5327  ax-pr 5450  ax-un 7766
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2890  df-ne 2943  df-ral 3064  df-rex 3073  df-reu 3384  df-rab 3439  df-v 3484  df-sbc 3799  df-csb 3916  df-dif 3973  df-un 3975  df-in 3977  df-ss 3987  df-nul 4348  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5021  df-br 5170  df-opab 5232  df-mpt 5253  df-id 5597  df-xp 5705  df-rel 5706  df-cnv 5707  df-co 5708  df-dm 5709  df-rn 5710  df-res 5711  df-ima 5712  df-iota 6524  df-fun 6574  df-fn 6575  df-f 6576  df-f1 6577  df-fo 6578  df-f1o 6579  df-fv 6580  df-riota 7401  df-ov 7448  df-grpo 30516  df-gid 30517  df-ginv 30518
This theorem is referenced by:  rngonegmn1r  37850
  Copyright terms: Public domain W3C validator