MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grponpcan Structured version   Visualization version   GIF version

Theorem grponpcan 28314
Description: Cancellation law for group division. (npcan 10889 analog.) (Contributed by NM, 15-Feb-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpdivf.1 𝑋 = ran 𝐺
grpdivf.3 𝐷 = ( /𝑔𝐺)
Assertion
Ref Expression
grponpcan ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝐷𝐵)𝐺𝐵) = 𝐴)

Proof of Theorem grponpcan
StepHypRef Expression
1 grpdivf.1 . . . 4 𝑋 = ran 𝐺
2 eqid 2821 . . . 4 (inv‘𝐺) = (inv‘𝐺)
3 grpdivf.3 . . . 4 𝐷 = ( /𝑔𝐺)
41, 2, 3grpodivval 28306 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) = (𝐴𝐺((inv‘𝐺)‘𝐵)))
54oveq1d 7165 . 2 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝐷𝐵)𝐺𝐵) = ((𝐴𝐺((inv‘𝐺)‘𝐵))𝐺𝐵))
6 simp1 1132 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → 𝐺 ∈ GrpOp)
7 simp2 1133 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → 𝐴𝑋)
81, 2grpoinvcl 28295 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐵𝑋) → ((inv‘𝐺)‘𝐵) ∈ 𝑋)
983adant2 1127 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → ((inv‘𝐺)‘𝐵) ∈ 𝑋)
10 simp3 1134 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → 𝐵𝑋)
111grpoass 28274 . . . 4 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋 ∧ ((inv‘𝐺)‘𝐵) ∈ 𝑋𝐵𝑋)) → ((𝐴𝐺((inv‘𝐺)‘𝐵))𝐺𝐵) = (𝐴𝐺(((inv‘𝐺)‘𝐵)𝐺𝐵)))
126, 7, 9, 10, 11syl13anc 1368 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝐺((inv‘𝐺)‘𝐵))𝐺𝐵) = (𝐴𝐺(((inv‘𝐺)‘𝐵)𝐺𝐵)))
13 eqid 2821 . . . . . . 7 (GId‘𝐺) = (GId‘𝐺)
141, 13, 2grpolinv 28297 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝐵𝑋) → (((inv‘𝐺)‘𝐵)𝐺𝐵) = (GId‘𝐺))
1514oveq2d 7166 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐵𝑋) → (𝐴𝐺(((inv‘𝐺)‘𝐵)𝐺𝐵)) = (𝐴𝐺(GId‘𝐺)))
16153adant2 1127 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺(((inv‘𝐺)‘𝐵)𝐺𝐵)) = (𝐴𝐺(GId‘𝐺)))
171, 13grporid 28288 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝐴𝐺(GId‘𝐺)) = 𝐴)
18173adant3 1128 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺(GId‘𝐺)) = 𝐴)
1916, 18eqtrd 2856 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺(((inv‘𝐺)‘𝐵)𝐺𝐵)) = 𝐴)
2012, 19eqtrd 2856 . 2 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝐺((inv‘𝐺)‘𝐵))𝐺𝐵) = 𝐴)
215, 20eqtrd 2856 1 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝐷𝐵)𝐺𝐵) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  ran crn 5550  cfv 6349  (class class class)co 7150  GrpOpcgr 28260  GIdcgi 28261  invcgn 28262   /𝑔 cgs 28263
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-1st 7683  df-2nd 7684  df-grpo 28264  df-gid 28265  df-ginv 28266  df-gdiv 28267
This theorem is referenced by:  grpoeqdivid  35153  ghomdiv  35164
  Copyright terms: Public domain W3C validator