Step | Hyp | Ref
| Expression |
1 | | grpdivf.1 |
. . . 4
β’ π = ran πΊ |
2 | | eqid 2731 |
. . . 4
β’
(invβπΊ) =
(invβπΊ) |
3 | | grpdivf.3 |
. . . 4
β’ π· = ( /π
βπΊ) |
4 | 1, 2, 3 | grpodivval 30052 |
. . 3
β’ ((πΊ β GrpOp β§ π΄ β π β§ π΅ β π) β (π΄π·π΅) = (π΄πΊ((invβπΊ)βπ΅))) |
5 | 4 | oveq1d 7427 |
. 2
β’ ((πΊ β GrpOp β§ π΄ β π β§ π΅ β π) β ((π΄π·π΅)πΊπ΅) = ((π΄πΊ((invβπΊ)βπ΅))πΊπ΅)) |
6 | | simp1 1135 |
. . . 4
β’ ((πΊ β GrpOp β§ π΄ β π β§ π΅ β π) β πΊ β GrpOp) |
7 | | simp2 1136 |
. . . 4
β’ ((πΊ β GrpOp β§ π΄ β π β§ π΅ β π) β π΄ β π) |
8 | 1, 2 | grpoinvcl 30041 |
. . . . 5
β’ ((πΊ β GrpOp β§ π΅ β π) β ((invβπΊ)βπ΅) β π) |
9 | 8 | 3adant2 1130 |
. . . 4
β’ ((πΊ β GrpOp β§ π΄ β π β§ π΅ β π) β ((invβπΊ)βπ΅) β π) |
10 | | simp3 1137 |
. . . 4
β’ ((πΊ β GrpOp β§ π΄ β π β§ π΅ β π) β π΅ β π) |
11 | 1 | grpoass 30020 |
. . . 4
β’ ((πΊ β GrpOp β§ (π΄ β π β§ ((invβπΊ)βπ΅) β π β§ π΅ β π)) β ((π΄πΊ((invβπΊ)βπ΅))πΊπ΅) = (π΄πΊ(((invβπΊ)βπ΅)πΊπ΅))) |
12 | 6, 7, 9, 10, 11 | syl13anc 1371 |
. . 3
β’ ((πΊ β GrpOp β§ π΄ β π β§ π΅ β π) β ((π΄πΊ((invβπΊ)βπ΅))πΊπ΅) = (π΄πΊ(((invβπΊ)βπ΅)πΊπ΅))) |
13 | | eqid 2731 |
. . . . . . 7
β’
(GIdβπΊ) =
(GIdβπΊ) |
14 | 1, 13, 2 | grpolinv 30043 |
. . . . . 6
β’ ((πΊ β GrpOp β§ π΅ β π) β (((invβπΊ)βπ΅)πΊπ΅) = (GIdβπΊ)) |
15 | 14 | oveq2d 7428 |
. . . . 5
β’ ((πΊ β GrpOp β§ π΅ β π) β (π΄πΊ(((invβπΊ)βπ΅)πΊπ΅)) = (π΄πΊ(GIdβπΊ))) |
16 | 15 | 3adant2 1130 |
. . . 4
β’ ((πΊ β GrpOp β§ π΄ β π β§ π΅ β π) β (π΄πΊ(((invβπΊ)βπ΅)πΊπ΅)) = (π΄πΊ(GIdβπΊ))) |
17 | 1, 13 | grporid 30034 |
. . . . 5
β’ ((πΊ β GrpOp β§ π΄ β π) β (π΄πΊ(GIdβπΊ)) = π΄) |
18 | 17 | 3adant3 1131 |
. . . 4
β’ ((πΊ β GrpOp β§ π΄ β π β§ π΅ β π) β (π΄πΊ(GIdβπΊ)) = π΄) |
19 | 16, 18 | eqtrd 2771 |
. . 3
β’ ((πΊ β GrpOp β§ π΄ β π β§ π΅ β π) β (π΄πΊ(((invβπΊ)βπ΅)πΊπ΅)) = π΄) |
20 | 12, 19 | eqtrd 2771 |
. 2
β’ ((πΊ β GrpOp β§ π΄ β π β§ π΅ β π) β ((π΄πΊ((invβπΊ)βπ΅))πΊπ΅) = π΄) |
21 | 5, 20 | eqtrd 2771 |
1
β’ ((πΊ β GrpOp β§ π΄ β π β§ π΅ β π) β ((π΄π·π΅)πΊπ΅) = π΄) |