| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grponpcan | Structured version Visualization version GIF version | ||
| Description: Cancellation law for group division. (npcan 11369 analog.) (Contributed by NM, 15-Feb-2008.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| grpdivf.1 | ⊢ 𝑋 = ran 𝐺 |
| grpdivf.3 | ⊢ 𝐷 = ( /𝑔 ‘𝐺) |
| Ref | Expression |
|---|---|
| grponpcan | ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐷𝐵)𝐺𝐵) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpdivf.1 | . . . 4 ⊢ 𝑋 = ran 𝐺 | |
| 2 | eqid 2731 | . . . 4 ⊢ (inv‘𝐺) = (inv‘𝐺) | |
| 3 | grpdivf.3 | . . . 4 ⊢ 𝐷 = ( /𝑔 ‘𝐺) | |
| 4 | 1, 2, 3 | grpodivval 30515 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = (𝐴𝐺((inv‘𝐺)‘𝐵))) |
| 5 | 4 | oveq1d 7361 | . 2 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐷𝐵)𝐺𝐵) = ((𝐴𝐺((inv‘𝐺)‘𝐵))𝐺𝐵)) |
| 6 | simp1 1136 | . . . 4 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝐺 ∈ GrpOp) | |
| 7 | simp2 1137 | . . . 4 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝐴 ∈ 𝑋) | |
| 8 | 1, 2 | grpoinvcl 30504 | . . . . 5 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐵 ∈ 𝑋) → ((inv‘𝐺)‘𝐵) ∈ 𝑋) |
| 9 | 8 | 3adant2 1131 | . . . 4 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((inv‘𝐺)‘𝐵) ∈ 𝑋) |
| 10 | simp3 1138 | . . . 4 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝐵 ∈ 𝑋) | |
| 11 | 1 | grpoass 30483 | . . . 4 ⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ ((inv‘𝐺)‘𝐵) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ((𝐴𝐺((inv‘𝐺)‘𝐵))𝐺𝐵) = (𝐴𝐺(((inv‘𝐺)‘𝐵)𝐺𝐵))) |
| 12 | 6, 7, 9, 10, 11 | syl13anc 1374 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐺((inv‘𝐺)‘𝐵))𝐺𝐵) = (𝐴𝐺(((inv‘𝐺)‘𝐵)𝐺𝐵))) |
| 13 | eqid 2731 | . . . . . . 7 ⊢ (GId‘𝐺) = (GId‘𝐺) | |
| 14 | 1, 13, 2 | grpolinv 30506 | . . . . . 6 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐵 ∈ 𝑋) → (((inv‘𝐺)‘𝐵)𝐺𝐵) = (GId‘𝐺)) |
| 15 | 14 | oveq2d 7362 | . . . . 5 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺(((inv‘𝐺)‘𝐵)𝐺𝐵)) = (𝐴𝐺(GId‘𝐺))) |
| 16 | 15 | 3adant2 1131 | . . . 4 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺(((inv‘𝐺)‘𝐵)𝐺𝐵)) = (𝐴𝐺(GId‘𝐺))) |
| 17 | 1, 13 | grporid 30497 | . . . . 5 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺(GId‘𝐺)) = 𝐴) |
| 18 | 17 | 3adant3 1132 | . . . 4 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺(GId‘𝐺)) = 𝐴) |
| 19 | 16, 18 | eqtrd 2766 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺(((inv‘𝐺)‘𝐵)𝐺𝐵)) = 𝐴) |
| 20 | 12, 19 | eqtrd 2766 | . 2 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐺((inv‘𝐺)‘𝐵))𝐺𝐵) = 𝐴) |
| 21 | 5, 20 | eqtrd 2766 | 1 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐷𝐵)𝐺𝐵) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ran crn 5615 ‘cfv 6481 (class class class)co 7346 GrpOpcgr 30469 GIdcgi 30470 invcgn 30471 /𝑔 cgs 30472 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-grpo 30473 df-gid 30474 df-ginv 30475 df-gdiv 30476 |
| This theorem is referenced by: grpoeqdivid 37931 ghomdiv 37942 |
| Copyright terms: Public domain | W3C validator |