Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmap1val2 Structured version   Visualization version   GIF version

Theorem hdmap1val2 39741
Description: Value of preliminary map from vectors to functionals in the closed kernel dual space, for nonzero 𝑌. (Contributed by NM, 16-May-2015.)
Hypotheses
Ref Expression
hdmap1val2.h 𝐻 = (LHyp‘𝐾)
hdmap1val2.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmap1val2.v 𝑉 = (Base‘𝑈)
hdmap1val2.s = (-g𝑈)
hdmap1val2.o 0 = (0g𝑈)
hdmap1val2.n 𝑁 = (LSpan‘𝑈)
hdmap1val2.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hdmap1val2.d 𝐷 = (Base‘𝐶)
hdmap1val2.r 𝑅 = (-g𝐶)
hdmap1val2.l 𝐿 = (LSpan‘𝐶)
hdmap1val2.m 𝑀 = ((mapd‘𝐾)‘𝑊)
hdmap1val2.i 𝐼 = ((HDMap1‘𝐾)‘𝑊)
hdmap1val2.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hdmap1val2.x (𝜑𝑋𝑉)
hdmap1val2.f (𝜑𝐹𝐷)
hdmap1val2.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
Assertion
Ref Expression
hdmap1val2 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = (𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐿‘{(𝐹𝑅)}))))
Distinct variable groups:   𝐶,   𝐷,   ,𝐹   ,𝐿   ,𝑀   ,𝑁   𝑈,   ,𝑉   ,𝑋   ,𝑌   𝜑,
Allowed substitution hints:   𝑅()   𝐻()   𝐼()   𝐾()   ()   𝑊()   0 ()

Proof of Theorem hdmap1val2
StepHypRef Expression
1 hdmap1val2.h . . 3 𝐻 = (LHyp‘𝐾)
2 hdmap1val2.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 hdmap1val2.v . . 3 𝑉 = (Base‘𝑈)
4 hdmap1val2.s . . 3 = (-g𝑈)
5 hdmap1val2.o . . 3 0 = (0g𝑈)
6 hdmap1val2.n . . 3 𝑁 = (LSpan‘𝑈)
7 hdmap1val2.c . . 3 𝐶 = ((LCDual‘𝐾)‘𝑊)
8 hdmap1val2.d . . 3 𝐷 = (Base‘𝐶)
9 hdmap1val2.r . . 3 𝑅 = (-g𝐶)
10 eqid 2738 . . 3 (0g𝐶) = (0g𝐶)
11 hdmap1val2.l . . 3 𝐿 = (LSpan‘𝐶)
12 hdmap1val2.m . . 3 𝑀 = ((mapd‘𝐾)‘𝑊)
13 hdmap1val2.i . . 3 𝐼 = ((HDMap1‘𝐾)‘𝑊)
14 hdmap1val2.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
15 hdmap1val2.x . . 3 (𝜑𝑋𝑉)
16 hdmap1val2.f . . 3 (𝜑𝐹𝐷)
17 hdmap1val2.y . . . 4 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
1817eldifad 3895 . . 3 (𝜑𝑌𝑉)
191, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18hdmap1val 39739 . 2 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = if(𝑌 = 0 , (0g𝐶), (𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐿‘{(𝐹𝑅)})))))
20 eldifsni 4720 . . . 4 (𝑌 ∈ (𝑉 ∖ { 0 }) → 𝑌0 )
2120neneqd 2947 . . 3 (𝑌 ∈ (𝑉 ∖ { 0 }) → ¬ 𝑌 = 0 )
22 iffalse 4465 . . 3 𝑌 = 0 → if(𝑌 = 0 , (0g𝐶), (𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐿‘{(𝐹𝑅)})))) = (𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐿‘{(𝐹𝑅)}))))
2317, 21, 223syl 18 . 2 (𝜑 → if(𝑌 = 0 , (0g𝐶), (𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐿‘{(𝐹𝑅)})))) = (𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐿‘{(𝐹𝑅)}))))
2419, 23eqtrd 2778 1 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = (𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐿‘{(𝐹𝑅)}))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2108  cdif 3880  ifcif 4456  {csn 4558  cotp 4566  cfv 6418  crio 7211  (class class class)co 7255  Basecbs 16840  0gc0g 17067  -gcsg 18494  LSpanclspn 20148  HLchlt 37291  LHypclh 37925  DVecHcdvh 39019  LCDualclcd 39527  mapdcmpd 39565  HDMap1chdma1 39732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-ot 4567  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-1st 7804  df-2nd 7805  df-hdmap1 39734
This theorem is referenced by:  hdmap1eq  39742
  Copyright terms: Public domain W3C validator