| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmap1val2 | Structured version Visualization version GIF version | ||
| Description: Value of preliminary map from vectors to functionals in the closed kernel dual space, for nonzero 𝑌. (Contributed by NM, 16-May-2015.) |
| Ref | Expression |
|---|---|
| hdmap1val2.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| hdmap1val2.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| hdmap1val2.v | ⊢ 𝑉 = (Base‘𝑈) |
| hdmap1val2.s | ⊢ − = (-g‘𝑈) |
| hdmap1val2.o | ⊢ 0 = (0g‘𝑈) |
| hdmap1val2.n | ⊢ 𝑁 = (LSpan‘𝑈) |
| hdmap1val2.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
| hdmap1val2.d | ⊢ 𝐷 = (Base‘𝐶) |
| hdmap1val2.r | ⊢ 𝑅 = (-g‘𝐶) |
| hdmap1val2.l | ⊢ 𝐿 = (LSpan‘𝐶) |
| hdmap1val2.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
| hdmap1val2.i | ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) |
| hdmap1val2.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| hdmap1val2.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| hdmap1val2.f | ⊢ (𝜑 → 𝐹 ∈ 𝐷) |
| hdmap1val2.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
| Ref | Expression |
|---|---|
| hdmap1val2 | ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐿‘{(𝐹𝑅ℎ)})))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hdmap1val2.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | hdmap1val2.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 3 | hdmap1val2.v | . . 3 ⊢ 𝑉 = (Base‘𝑈) | |
| 4 | hdmap1val2.s | . . 3 ⊢ − = (-g‘𝑈) | |
| 5 | hdmap1val2.o | . . 3 ⊢ 0 = (0g‘𝑈) | |
| 6 | hdmap1val2.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑈) | |
| 7 | hdmap1val2.c | . . 3 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
| 8 | hdmap1val2.d | . . 3 ⊢ 𝐷 = (Base‘𝐶) | |
| 9 | hdmap1val2.r | . . 3 ⊢ 𝑅 = (-g‘𝐶) | |
| 10 | eqid 2731 | . . 3 ⊢ (0g‘𝐶) = (0g‘𝐶) | |
| 11 | hdmap1val2.l | . . 3 ⊢ 𝐿 = (LSpan‘𝐶) | |
| 12 | hdmap1val2.m | . . 3 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
| 13 | hdmap1val2.i | . . 3 ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) | |
| 14 | hdmap1val2.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 15 | hdmap1val2.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 16 | hdmap1val2.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐷) | |
| 17 | hdmap1val2.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
| 18 | 17 | eldifad 3914 | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| 19 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18 | hdmap1val 41843 | . 2 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = if(𝑌 = 0 , (0g‘𝐶), (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐿‘{(𝐹𝑅ℎ)}))))) |
| 20 | eldifsni 4742 | . . . 4 ⊢ (𝑌 ∈ (𝑉 ∖ { 0 }) → 𝑌 ≠ 0 ) | |
| 21 | 20 | neneqd 2933 | . . 3 ⊢ (𝑌 ∈ (𝑉 ∖ { 0 }) → ¬ 𝑌 = 0 ) |
| 22 | iffalse 4484 | . . 3 ⊢ (¬ 𝑌 = 0 → if(𝑌 = 0 , (0g‘𝐶), (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐿‘{(𝐹𝑅ℎ)})))) = (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐿‘{(𝐹𝑅ℎ)})))) | |
| 23 | 17, 21, 22 | 3syl 18 | . 2 ⊢ (𝜑 → if(𝑌 = 0 , (0g‘𝐶), (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐿‘{(𝐹𝑅ℎ)})))) = (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐿‘{(𝐹𝑅ℎ)})))) |
| 24 | 19, 23 | eqtrd 2766 | 1 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐿‘{(𝐹𝑅ℎ)})))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∖ cdif 3899 ifcif 4475 {csn 4576 〈cotp 4584 ‘cfv 6481 ℩crio 7302 (class class class)co 7346 Basecbs 17120 0gc0g 17343 -gcsg 18848 LSpanclspn 20905 HLchlt 39395 LHypclh 40029 DVecHcdvh 41123 LCDualclcd 41631 mapdcmpd 41669 HDMap1chdma1 41836 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-ot 4585 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-1st 7921 df-2nd 7922 df-hdmap1 41838 |
| This theorem is referenced by: hdmap1eq 41846 |
| Copyright terms: Public domain | W3C validator |