Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmap1val2 Structured version   Visualization version   GIF version

Theorem hdmap1val2 41782
Description: Value of preliminary map from vectors to functionals in the closed kernel dual space, for nonzero 𝑌. (Contributed by NM, 16-May-2015.)
Hypotheses
Ref Expression
hdmap1val2.h 𝐻 = (LHyp‘𝐾)
hdmap1val2.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmap1val2.v 𝑉 = (Base‘𝑈)
hdmap1val2.s = (-g𝑈)
hdmap1val2.o 0 = (0g𝑈)
hdmap1val2.n 𝑁 = (LSpan‘𝑈)
hdmap1val2.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hdmap1val2.d 𝐷 = (Base‘𝐶)
hdmap1val2.r 𝑅 = (-g𝐶)
hdmap1val2.l 𝐿 = (LSpan‘𝐶)
hdmap1val2.m 𝑀 = ((mapd‘𝐾)‘𝑊)
hdmap1val2.i 𝐼 = ((HDMap1‘𝐾)‘𝑊)
hdmap1val2.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hdmap1val2.x (𝜑𝑋𝑉)
hdmap1val2.f (𝜑𝐹𝐷)
hdmap1val2.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
Assertion
Ref Expression
hdmap1val2 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = (𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐿‘{(𝐹𝑅)}))))
Distinct variable groups:   𝐶,   𝐷,   ,𝐹   ,𝐿   ,𝑀   ,𝑁   𝑈,   ,𝑉   ,𝑋   ,𝑌   𝜑,
Allowed substitution hints:   𝑅()   𝐻()   𝐼()   𝐾()   ()   𝑊()   0 ()

Proof of Theorem hdmap1val2
StepHypRef Expression
1 hdmap1val2.h . . 3 𝐻 = (LHyp‘𝐾)
2 hdmap1val2.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 hdmap1val2.v . . 3 𝑉 = (Base‘𝑈)
4 hdmap1val2.s . . 3 = (-g𝑈)
5 hdmap1val2.o . . 3 0 = (0g𝑈)
6 hdmap1val2.n . . 3 𝑁 = (LSpan‘𝑈)
7 hdmap1val2.c . . 3 𝐶 = ((LCDual‘𝐾)‘𝑊)
8 hdmap1val2.d . . 3 𝐷 = (Base‘𝐶)
9 hdmap1val2.r . . 3 𝑅 = (-g𝐶)
10 eqid 2729 . . 3 (0g𝐶) = (0g𝐶)
11 hdmap1val2.l . . 3 𝐿 = (LSpan‘𝐶)
12 hdmap1val2.m . . 3 𝑀 = ((mapd‘𝐾)‘𝑊)
13 hdmap1val2.i . . 3 𝐼 = ((HDMap1‘𝐾)‘𝑊)
14 hdmap1val2.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
15 hdmap1val2.x . . 3 (𝜑𝑋𝑉)
16 hdmap1val2.f . . 3 (𝜑𝐹𝐷)
17 hdmap1val2.y . . . 4 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
1817eldifad 3917 . . 3 (𝜑𝑌𝑉)
191, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18hdmap1val 41780 . 2 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = if(𝑌 = 0 , (0g𝐶), (𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐿‘{(𝐹𝑅)})))))
20 eldifsni 4744 . . . 4 (𝑌 ∈ (𝑉 ∖ { 0 }) → 𝑌0 )
2120neneqd 2930 . . 3 (𝑌 ∈ (𝑉 ∖ { 0 }) → ¬ 𝑌 = 0 )
22 iffalse 4487 . . 3 𝑌 = 0 → if(𝑌 = 0 , (0g𝐶), (𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐿‘{(𝐹𝑅)})))) = (𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐿‘{(𝐹𝑅)}))))
2317, 21, 223syl 18 . 2 (𝜑 → if(𝑌 = 0 , (0g𝐶), (𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐿‘{(𝐹𝑅)})))) = (𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐿‘{(𝐹𝑅)}))))
2419, 23eqtrd 2764 1 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = (𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐿‘{(𝐹𝑅)}))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  cdif 3902  ifcif 4478  {csn 4579  cotp 4587  cfv 6486  crio 7309  (class class class)co 7353  Basecbs 17138  0gc0g 17361  -gcsg 18832  LSpanclspn 20892  HLchlt 39331  LHypclh 39966  DVecHcdvh 41060  LCDualclcd 41568  mapdcmpd 41606  HDMap1chdma1 41773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-ot 4588  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-1st 7931  df-2nd 7932  df-hdmap1 41775
This theorem is referenced by:  hdmap1eq  41783
  Copyright terms: Public domain W3C validator