![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmap1val2 | Structured version Visualization version GIF version |
Description: Value of preliminary map from vectors to functionals in the closed kernel dual space, for nonzero π. (Contributed by NM, 16-May-2015.) |
Ref | Expression |
---|---|
hdmap1val2.h | β’ π» = (LHypβπΎ) |
hdmap1val2.u | β’ π = ((DVecHβπΎ)βπ) |
hdmap1val2.v | β’ π = (Baseβπ) |
hdmap1val2.s | β’ β = (-gβπ) |
hdmap1val2.o | β’ 0 = (0gβπ) |
hdmap1val2.n | β’ π = (LSpanβπ) |
hdmap1val2.c | β’ πΆ = ((LCDualβπΎ)βπ) |
hdmap1val2.d | β’ π· = (BaseβπΆ) |
hdmap1val2.r | β’ π = (-gβπΆ) |
hdmap1val2.l | β’ πΏ = (LSpanβπΆ) |
hdmap1val2.m | β’ π = ((mapdβπΎ)βπ) |
hdmap1val2.i | β’ πΌ = ((HDMap1βπΎ)βπ) |
hdmap1val2.k | β’ (π β (πΎ β HL β§ π β π»)) |
hdmap1val2.x | β’ (π β π β π) |
hdmap1val2.f | β’ (π β πΉ β π·) |
hdmap1val2.y | β’ (π β π β (π β { 0 })) |
Ref | Expression |
---|---|
hdmap1val2 | β’ (π β (πΌββ¨π, πΉ, πβ©) = (β©β β π· ((πβ(πβ{π})) = (πΏβ{β}) β§ (πβ(πβ{(π β π)})) = (πΏβ{(πΉπ β)})))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hdmap1val2.h | . . 3 β’ π» = (LHypβπΎ) | |
2 | hdmap1val2.u | . . 3 β’ π = ((DVecHβπΎ)βπ) | |
3 | hdmap1val2.v | . . 3 β’ π = (Baseβπ) | |
4 | hdmap1val2.s | . . 3 β’ β = (-gβπ) | |
5 | hdmap1val2.o | . . 3 β’ 0 = (0gβπ) | |
6 | hdmap1val2.n | . . 3 β’ π = (LSpanβπ) | |
7 | hdmap1val2.c | . . 3 β’ πΆ = ((LCDualβπΎ)βπ) | |
8 | hdmap1val2.d | . . 3 β’ π· = (BaseβπΆ) | |
9 | hdmap1val2.r | . . 3 β’ π = (-gβπΆ) | |
10 | eqid 2731 | . . 3 β’ (0gβπΆ) = (0gβπΆ) | |
11 | hdmap1val2.l | . . 3 β’ πΏ = (LSpanβπΆ) | |
12 | hdmap1val2.m | . . 3 β’ π = ((mapdβπΎ)βπ) | |
13 | hdmap1val2.i | . . 3 β’ πΌ = ((HDMap1βπΎ)βπ) | |
14 | hdmap1val2.k | . . 3 β’ (π β (πΎ β HL β§ π β π»)) | |
15 | hdmap1val2.x | . . 3 β’ (π β π β π) | |
16 | hdmap1val2.f | . . 3 β’ (π β πΉ β π·) | |
17 | hdmap1val2.y | . . . 4 β’ (π β π β (π β { 0 })) | |
18 | 17 | eldifad 3961 | . . 3 β’ (π β π β π) |
19 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18 | hdmap1val 40973 | . 2 β’ (π β (πΌββ¨π, πΉ, πβ©) = if(π = 0 , (0gβπΆ), (β©β β π· ((πβ(πβ{π})) = (πΏβ{β}) β§ (πβ(πβ{(π β π)})) = (πΏβ{(πΉπ β)}))))) |
20 | eldifsni 4794 | . . . 4 β’ (π β (π β { 0 }) β π β 0 ) | |
21 | 20 | neneqd 2944 | . . 3 β’ (π β (π β { 0 }) β Β¬ π = 0 ) |
22 | iffalse 4538 | . . 3 β’ (Β¬ π = 0 β if(π = 0 , (0gβπΆ), (β©β β π· ((πβ(πβ{π})) = (πΏβ{β}) β§ (πβ(πβ{(π β π)})) = (πΏβ{(πΉπ β)})))) = (β©β β π· ((πβ(πβ{π})) = (πΏβ{β}) β§ (πβ(πβ{(π β π)})) = (πΏβ{(πΉπ β)})))) | |
23 | 17, 21, 22 | 3syl 18 | . 2 β’ (π β if(π = 0 , (0gβπΆ), (β©β β π· ((πβ(πβ{π})) = (πΏβ{β}) β§ (πβ(πβ{(π β π)})) = (πΏβ{(πΉπ β)})))) = (β©β β π· ((πβ(πβ{π})) = (πΏβ{β}) β§ (πβ(πβ{(π β π)})) = (πΏβ{(πΉπ β)})))) |
24 | 19, 23 | eqtrd 2771 | 1 β’ (π β (πΌββ¨π, πΉ, πβ©) = (β©β β π· ((πβ(πβ{π})) = (πΏβ{β}) β§ (πβ(πβ{(π β π)})) = (πΏβ{(πΉπ β)})))) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 395 = wceq 1540 β wcel 2105 β cdif 3946 ifcif 4529 {csn 4629 β¨cotp 4637 βcfv 6544 β©crio 7367 (class class class)co 7412 Basecbs 17149 0gc0g 17390 -gcsg 18858 LSpanclspn 20727 HLchlt 38524 LHypclh 39159 DVecHcdvh 40253 LCDualclcd 40761 mapdcmpd 40799 HDMap1chdma1 40966 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-ot 4638 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7368 df-ov 7415 df-1st 7978 df-2nd 7979 df-hdmap1 40968 |
This theorem is referenced by: hdmap1eq 40976 |
Copyright terms: Public domain | W3C validator |