Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmap1val2 | Structured version Visualization version GIF version |
Description: Value of preliminary map from vectors to functionals in the closed kernel dual space, for nonzero 𝑌. (Contributed by NM, 16-May-2015.) |
Ref | Expression |
---|---|
hdmap1val2.h | ⊢ 𝐻 = (LHyp‘𝐾) |
hdmap1val2.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
hdmap1val2.v | ⊢ 𝑉 = (Base‘𝑈) |
hdmap1val2.s | ⊢ − = (-g‘𝑈) |
hdmap1val2.o | ⊢ 0 = (0g‘𝑈) |
hdmap1val2.n | ⊢ 𝑁 = (LSpan‘𝑈) |
hdmap1val2.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
hdmap1val2.d | ⊢ 𝐷 = (Base‘𝐶) |
hdmap1val2.r | ⊢ 𝑅 = (-g‘𝐶) |
hdmap1val2.l | ⊢ 𝐿 = (LSpan‘𝐶) |
hdmap1val2.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
hdmap1val2.i | ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) |
hdmap1val2.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
hdmap1val2.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
hdmap1val2.f | ⊢ (𝜑 → 𝐹 ∈ 𝐷) |
hdmap1val2.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
Ref | Expression |
---|---|
hdmap1val2 | ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐿‘{(𝐹𝑅ℎ)})))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hdmap1val2.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | hdmap1val2.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
3 | hdmap1val2.v | . . 3 ⊢ 𝑉 = (Base‘𝑈) | |
4 | hdmap1val2.s | . . 3 ⊢ − = (-g‘𝑈) | |
5 | hdmap1val2.o | . . 3 ⊢ 0 = (0g‘𝑈) | |
6 | hdmap1val2.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑈) | |
7 | hdmap1val2.c | . . 3 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
8 | hdmap1val2.d | . . 3 ⊢ 𝐷 = (Base‘𝐶) | |
9 | hdmap1val2.r | . . 3 ⊢ 𝑅 = (-g‘𝐶) | |
10 | eqid 2738 | . . 3 ⊢ (0g‘𝐶) = (0g‘𝐶) | |
11 | hdmap1val2.l | . . 3 ⊢ 𝐿 = (LSpan‘𝐶) | |
12 | hdmap1val2.m | . . 3 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
13 | hdmap1val2.i | . . 3 ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) | |
14 | hdmap1val2.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
15 | hdmap1val2.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
16 | hdmap1val2.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐷) | |
17 | hdmap1val2.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
18 | 17 | eldifad 3895 | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
19 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18 | hdmap1val 39739 | . 2 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = if(𝑌 = 0 , (0g‘𝐶), (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐿‘{(𝐹𝑅ℎ)}))))) |
20 | eldifsni 4720 | . . . 4 ⊢ (𝑌 ∈ (𝑉 ∖ { 0 }) → 𝑌 ≠ 0 ) | |
21 | 20 | neneqd 2947 | . . 3 ⊢ (𝑌 ∈ (𝑉 ∖ { 0 }) → ¬ 𝑌 = 0 ) |
22 | iffalse 4465 | . . 3 ⊢ (¬ 𝑌 = 0 → if(𝑌 = 0 , (0g‘𝐶), (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐿‘{(𝐹𝑅ℎ)})))) = (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐿‘{(𝐹𝑅ℎ)})))) | |
23 | 17, 21, 22 | 3syl 18 | . 2 ⊢ (𝜑 → if(𝑌 = 0 , (0g‘𝐶), (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐿‘{(𝐹𝑅ℎ)})))) = (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐿‘{(𝐹𝑅ℎ)})))) |
24 | 19, 23 | eqtrd 2778 | 1 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐿‘{(𝐹𝑅ℎ)})))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∖ cdif 3880 ifcif 4456 {csn 4558 〈cotp 4566 ‘cfv 6418 ℩crio 7211 (class class class)co 7255 Basecbs 16840 0gc0g 17067 -gcsg 18494 LSpanclspn 20148 HLchlt 37291 LHypclh 37925 DVecHcdvh 39019 LCDualclcd 39527 mapdcmpd 39565 HDMap1chdma1 39732 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-ot 4567 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-1st 7804 df-2nd 7805 df-hdmap1 39734 |
This theorem is referenced by: hdmap1eq 39742 |
Copyright terms: Public domain | W3C validator |