Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmap1val2 Structured version   Visualization version   GIF version

Theorem hdmap1val2 40975
Description: Value of preliminary map from vectors to functionals in the closed kernel dual space, for nonzero π‘Œ. (Contributed by NM, 16-May-2015.)
Hypotheses
Ref Expression
hdmap1val2.h 𝐻 = (LHypβ€˜πΎ)
hdmap1val2.u π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)
hdmap1val2.v 𝑉 = (Baseβ€˜π‘ˆ)
hdmap1val2.s βˆ’ = (-gβ€˜π‘ˆ)
hdmap1val2.o 0 = (0gβ€˜π‘ˆ)
hdmap1val2.n 𝑁 = (LSpanβ€˜π‘ˆ)
hdmap1val2.c 𝐢 = ((LCDualβ€˜πΎ)β€˜π‘Š)
hdmap1val2.d 𝐷 = (Baseβ€˜πΆ)
hdmap1val2.r 𝑅 = (-gβ€˜πΆ)
hdmap1val2.l 𝐿 = (LSpanβ€˜πΆ)
hdmap1val2.m 𝑀 = ((mapdβ€˜πΎ)β€˜π‘Š)
hdmap1val2.i 𝐼 = ((HDMap1β€˜πΎ)β€˜π‘Š)
hdmap1val2.k (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
hdmap1val2.x (πœ‘ β†’ 𝑋 ∈ 𝑉)
hdmap1val2.f (πœ‘ β†’ 𝐹 ∈ 𝐷)
hdmap1val2.y (πœ‘ β†’ π‘Œ ∈ (𝑉 βˆ– { 0 }))
Assertion
Ref Expression
hdmap1val2 (πœ‘ β†’ (πΌβ€˜βŸ¨π‘‹, 𝐹, π‘ŒβŸ©) = (β„©β„Ž ∈ 𝐷 ((π‘€β€˜(π‘β€˜{π‘Œ})) = (πΏβ€˜{β„Ž}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (πΏβ€˜{(πΉπ‘…β„Ž)}))))
Distinct variable groups:   𝐢,β„Ž   𝐷,β„Ž   β„Ž,𝐹   β„Ž,𝐿   β„Ž,𝑀   β„Ž,𝑁   π‘ˆ,β„Ž   β„Ž,𝑉   β„Ž,𝑋   β„Ž,π‘Œ   πœ‘,β„Ž
Allowed substitution hints:   𝑅(β„Ž)   𝐻(β„Ž)   𝐼(β„Ž)   𝐾(β„Ž)   βˆ’ (β„Ž)   π‘Š(β„Ž)   0 (β„Ž)

Proof of Theorem hdmap1val2
StepHypRef Expression
1 hdmap1val2.h . . 3 𝐻 = (LHypβ€˜πΎ)
2 hdmap1val2.u . . 3 π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)
3 hdmap1val2.v . . 3 𝑉 = (Baseβ€˜π‘ˆ)
4 hdmap1val2.s . . 3 βˆ’ = (-gβ€˜π‘ˆ)
5 hdmap1val2.o . . 3 0 = (0gβ€˜π‘ˆ)
6 hdmap1val2.n . . 3 𝑁 = (LSpanβ€˜π‘ˆ)
7 hdmap1val2.c . . 3 𝐢 = ((LCDualβ€˜πΎ)β€˜π‘Š)
8 hdmap1val2.d . . 3 𝐷 = (Baseβ€˜πΆ)
9 hdmap1val2.r . . 3 𝑅 = (-gβ€˜πΆ)
10 eqid 2731 . . 3 (0gβ€˜πΆ) = (0gβ€˜πΆ)
11 hdmap1val2.l . . 3 𝐿 = (LSpanβ€˜πΆ)
12 hdmap1val2.m . . 3 𝑀 = ((mapdβ€˜πΎ)β€˜π‘Š)
13 hdmap1val2.i . . 3 𝐼 = ((HDMap1β€˜πΎ)β€˜π‘Š)
14 hdmap1val2.k . . 3 (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
15 hdmap1val2.x . . 3 (πœ‘ β†’ 𝑋 ∈ 𝑉)
16 hdmap1val2.f . . 3 (πœ‘ β†’ 𝐹 ∈ 𝐷)
17 hdmap1val2.y . . . 4 (πœ‘ β†’ π‘Œ ∈ (𝑉 βˆ– { 0 }))
1817eldifad 3961 . . 3 (πœ‘ β†’ π‘Œ ∈ 𝑉)
191, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18hdmap1val 40973 . 2 (πœ‘ β†’ (πΌβ€˜βŸ¨π‘‹, 𝐹, π‘ŒβŸ©) = if(π‘Œ = 0 , (0gβ€˜πΆ), (β„©β„Ž ∈ 𝐷 ((π‘€β€˜(π‘β€˜{π‘Œ})) = (πΏβ€˜{β„Ž}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (πΏβ€˜{(πΉπ‘…β„Ž)})))))
20 eldifsni 4794 . . . 4 (π‘Œ ∈ (𝑉 βˆ– { 0 }) β†’ π‘Œ β‰  0 )
2120neneqd 2944 . . 3 (π‘Œ ∈ (𝑉 βˆ– { 0 }) β†’ Β¬ π‘Œ = 0 )
22 iffalse 4538 . . 3 (Β¬ π‘Œ = 0 β†’ if(π‘Œ = 0 , (0gβ€˜πΆ), (β„©β„Ž ∈ 𝐷 ((π‘€β€˜(π‘β€˜{π‘Œ})) = (πΏβ€˜{β„Ž}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (πΏβ€˜{(πΉπ‘…β„Ž)})))) = (β„©β„Ž ∈ 𝐷 ((π‘€β€˜(π‘β€˜{π‘Œ})) = (πΏβ€˜{β„Ž}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (πΏβ€˜{(πΉπ‘…β„Ž)}))))
2317, 21, 223syl 18 . 2 (πœ‘ β†’ if(π‘Œ = 0 , (0gβ€˜πΆ), (β„©β„Ž ∈ 𝐷 ((π‘€β€˜(π‘β€˜{π‘Œ})) = (πΏβ€˜{β„Ž}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (πΏβ€˜{(πΉπ‘…β„Ž)})))) = (β„©β„Ž ∈ 𝐷 ((π‘€β€˜(π‘β€˜{π‘Œ})) = (πΏβ€˜{β„Ž}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (πΏβ€˜{(πΉπ‘…β„Ž)}))))
2419, 23eqtrd 2771 1 (πœ‘ β†’ (πΌβ€˜βŸ¨π‘‹, 𝐹, π‘ŒβŸ©) = (β„©β„Ž ∈ 𝐷 ((π‘€β€˜(π‘β€˜{π‘Œ})) = (πΏβ€˜{β„Ž}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (πΏβ€˜{(πΉπ‘…β„Ž)}))))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 395   = wceq 1540   ∈ wcel 2105   βˆ– cdif 3946  ifcif 4529  {csn 4629  βŸ¨cotp 4637  β€˜cfv 6544  β„©crio 7367  (class class class)co 7412  Basecbs 17149  0gc0g 17390  -gcsg 18858  LSpanclspn 20727  HLchlt 38524  LHypclh 39159  DVecHcdvh 40253  LCDualclcd 40761  mapdcmpd 40799  HDMap1chdma1 40966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7728
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-ot 4638  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7368  df-ov 7415  df-1st 7978  df-2nd 7979  df-hdmap1 40968
This theorem is referenced by:  hdmap1eq  40976
  Copyright terms: Public domain W3C validator