| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmap1val0 | Structured version Visualization version GIF version | ||
| Description: Value of preliminary map from vectors to functionals at zero. (Restated mapdhval0 41844.) (Contributed by NM, 17-May-2015.) |
| Ref | Expression |
|---|---|
| hdmap1val0.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| hdmap1val0.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| hdmap1val0.v | ⊢ 𝑉 = (Base‘𝑈) |
| hdmap1val0.o | ⊢ 0 = (0g‘𝑈) |
| hdmap1val0.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
| hdmap1val0.d | ⊢ 𝐷 = (Base‘𝐶) |
| hdmap1val0.q | ⊢ 𝑄 = (0g‘𝐶) |
| hdmap1val0.s | ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) |
| hdmap1val0.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| hdmap1val0.f | ⊢ (𝜑 → 𝐹 ∈ 𝐷) |
| hdmap1val0.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| hdmap1val0 | ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 0 〉) = 𝑄) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hdmap1val0.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | hdmap1val0.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 3 | hdmap1val0.v | . . 3 ⊢ 𝑉 = (Base‘𝑈) | |
| 4 | eqid 2733 | . . 3 ⊢ (-g‘𝑈) = (-g‘𝑈) | |
| 5 | hdmap1val0.o | . . 3 ⊢ 0 = (0g‘𝑈) | |
| 6 | eqid 2733 | . . 3 ⊢ (LSpan‘𝑈) = (LSpan‘𝑈) | |
| 7 | hdmap1val0.c | . . 3 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
| 8 | hdmap1val0.d | . . 3 ⊢ 𝐷 = (Base‘𝐶) | |
| 9 | eqid 2733 | . . 3 ⊢ (-g‘𝐶) = (-g‘𝐶) | |
| 10 | hdmap1val0.q | . . 3 ⊢ 𝑄 = (0g‘𝐶) | |
| 11 | eqid 2733 | . . 3 ⊢ (LSpan‘𝐶) = (LSpan‘𝐶) | |
| 12 | eqid 2733 | . . 3 ⊢ ((mapd‘𝐾)‘𝑊) = ((mapd‘𝐾)‘𝑊) | |
| 13 | hdmap1val0.s | . . 3 ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) | |
| 14 | hdmap1val0.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 15 | hdmap1val0.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 16 | hdmap1val0.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐷) | |
| 17 | 1, 2, 14 | dvhlmod 41229 | . . . 4 ⊢ (𝜑 → 𝑈 ∈ LMod) |
| 18 | 3, 5 | lmod0vcl 20826 | . . . 4 ⊢ (𝑈 ∈ LMod → 0 ∈ 𝑉) |
| 19 | 17, 18 | syl 17 | . . 3 ⊢ (𝜑 → 0 ∈ 𝑉) |
| 20 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 19 | hdmap1val 41917 | . 2 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 0 〉) = if( 0 = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((((mapd‘𝐾)‘𝑊)‘((LSpan‘𝑈)‘{ 0 })) = ((LSpan‘𝐶)‘{ℎ}) ∧ (((mapd‘𝐾)‘𝑊)‘((LSpan‘𝑈)‘{(𝑋(-g‘𝑈) 0 )})) = ((LSpan‘𝐶)‘{(𝐹(-g‘𝐶)ℎ)}))))) |
| 21 | eqid 2733 | . . 3 ⊢ 0 = 0 | |
| 22 | 21 | iftruei 4481 | . 2 ⊢ if( 0 = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((((mapd‘𝐾)‘𝑊)‘((LSpan‘𝑈)‘{ 0 })) = ((LSpan‘𝐶)‘{ℎ}) ∧ (((mapd‘𝐾)‘𝑊)‘((LSpan‘𝑈)‘{(𝑋(-g‘𝑈) 0 )})) = ((LSpan‘𝐶)‘{(𝐹(-g‘𝐶)ℎ)})))) = 𝑄 |
| 23 | 20, 22 | eqtrdi 2784 | 1 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 0 〉) = 𝑄) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ifcif 4474 {csn 4575 〈cotp 4583 ‘cfv 6486 ℩crio 7308 (class class class)co 7352 Basecbs 17122 0gc0g 17345 -gcsg 18850 LModclmod 20795 LSpanclspn 20906 HLchlt 39469 LHypclh 40103 DVecHcdvh 41197 LCDualclcd 41705 mapdcmpd 41743 HDMap1chdma1 41910 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-riotaBAD 39072 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-ot 4584 df-uni 4859 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-tpos 8162 df-undef 8209 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-map 8758 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-n0 12389 df-z 12476 df-uz 12739 df-fz 13410 df-struct 17060 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-ress 17144 df-plusg 17176 df-mulr 17177 df-sca 17179 df-vsca 17180 df-0g 17347 df-proset 18202 df-poset 18221 df-plt 18236 df-lub 18252 df-glb 18253 df-join 18254 df-meet 18255 df-p0 18331 df-p1 18332 df-lat 18340 df-clat 18407 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-grp 18851 df-minusg 18852 df-cmn 19696 df-abl 19697 df-mgp 20061 df-rng 20073 df-ur 20102 df-ring 20155 df-oppr 20257 df-dvdsr 20277 df-unit 20278 df-invr 20308 df-dvr 20321 df-drng 20648 df-lmod 20797 df-lvec 21039 df-oposet 39295 df-ol 39297 df-oml 39298 df-covers 39385 df-ats 39386 df-atl 39417 df-cvlat 39441 df-hlat 39470 df-llines 39617 df-lplanes 39618 df-lvols 39619 df-lines 39620 df-psubsp 39622 df-pmap 39623 df-padd 39915 df-lhyp 40107 df-laut 40108 df-ldil 40223 df-ltrn 40224 df-trl 40278 df-tendo 40874 df-edring 40876 df-dvech 41198 df-hdmap1 41912 |
| This theorem is referenced by: hdmap1l6b 41930 hdmap1l6c 41931 hdmap1l6d 41932 hdmapval0 41952 hdmapval3N 41957 |
| Copyright terms: Public domain | W3C validator |