![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmap1val0 | Structured version Visualization version GIF version |
Description: Value of preliminary map from vectors to functionals at zero. (Restated mapdhval0 37795.) (Contributed by NM, 17-May-2015.) |
Ref | Expression |
---|---|
hdmap1val0.h | ⊢ 𝐻 = (LHyp‘𝐾) |
hdmap1val0.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
hdmap1val0.v | ⊢ 𝑉 = (Base‘𝑈) |
hdmap1val0.o | ⊢ 0 = (0g‘𝑈) |
hdmap1val0.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
hdmap1val0.d | ⊢ 𝐷 = (Base‘𝐶) |
hdmap1val0.q | ⊢ 𝑄 = (0g‘𝐶) |
hdmap1val0.s | ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) |
hdmap1val0.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
hdmap1val0.f | ⊢ (𝜑 → 𝐹 ∈ 𝐷) |
hdmap1val0.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
Ref | Expression |
---|---|
hdmap1val0 | ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 0 〉) = 𝑄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hdmap1val0.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | hdmap1val0.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
3 | hdmap1val0.v | . . 3 ⊢ 𝑉 = (Base‘𝑈) | |
4 | eqid 2825 | . . 3 ⊢ (-g‘𝑈) = (-g‘𝑈) | |
5 | hdmap1val0.o | . . 3 ⊢ 0 = (0g‘𝑈) | |
6 | eqid 2825 | . . 3 ⊢ (LSpan‘𝑈) = (LSpan‘𝑈) | |
7 | hdmap1val0.c | . . 3 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
8 | hdmap1val0.d | . . 3 ⊢ 𝐷 = (Base‘𝐶) | |
9 | eqid 2825 | . . 3 ⊢ (-g‘𝐶) = (-g‘𝐶) | |
10 | hdmap1val0.q | . . 3 ⊢ 𝑄 = (0g‘𝐶) | |
11 | eqid 2825 | . . 3 ⊢ (LSpan‘𝐶) = (LSpan‘𝐶) | |
12 | eqid 2825 | . . 3 ⊢ ((mapd‘𝐾)‘𝑊) = ((mapd‘𝐾)‘𝑊) | |
13 | hdmap1val0.s | . . 3 ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) | |
14 | hdmap1val0.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
15 | hdmap1val0.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
16 | hdmap1val0.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐷) | |
17 | 1, 2, 14 | dvhlmod 37180 | . . . 4 ⊢ (𝜑 → 𝑈 ∈ LMod) |
18 | 3, 5 | lmod0vcl 19255 | . . . 4 ⊢ (𝑈 ∈ LMod → 0 ∈ 𝑉) |
19 | 17, 18 | syl 17 | . . 3 ⊢ (𝜑 → 0 ∈ 𝑉) |
20 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 19 | hdmap1val 37868 | . 2 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 0 〉) = if( 0 = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((((mapd‘𝐾)‘𝑊)‘((LSpan‘𝑈)‘{ 0 })) = ((LSpan‘𝐶)‘{ℎ}) ∧ (((mapd‘𝐾)‘𝑊)‘((LSpan‘𝑈)‘{(𝑋(-g‘𝑈) 0 )})) = ((LSpan‘𝐶)‘{(𝐹(-g‘𝐶)ℎ)}))))) |
21 | eqid 2825 | . . 3 ⊢ 0 = 0 | |
22 | 21 | iftruei 4315 | . 2 ⊢ if( 0 = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((((mapd‘𝐾)‘𝑊)‘((LSpan‘𝑈)‘{ 0 })) = ((LSpan‘𝐶)‘{ℎ}) ∧ (((mapd‘𝐾)‘𝑊)‘((LSpan‘𝑈)‘{(𝑋(-g‘𝑈) 0 )})) = ((LSpan‘𝐶)‘{(𝐹(-g‘𝐶)ℎ)})))) = 𝑄 |
23 | 20, 22 | syl6eq 2877 | 1 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 0 〉) = 𝑄) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1656 ∈ wcel 2164 ifcif 4308 {csn 4399 〈cotp 4407 ‘cfv 6127 ℩crio 6870 (class class class)co 6910 Basecbs 16229 0gc0g 16460 -gcsg 17785 LModclmod 19226 LSpanclspn 19337 HLchlt 35420 LHypclh 36054 DVecHcdvh 37148 LCDualclcd 37656 mapdcmpd 37694 HDMap1chdma1 37861 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4996 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 ax-cnex 10315 ax-resscn 10316 ax-1cn 10317 ax-icn 10318 ax-addcl 10319 ax-addrcl 10320 ax-mulcl 10321 ax-mulrcl 10322 ax-mulcom 10323 ax-addass 10324 ax-mulass 10325 ax-distr 10326 ax-i2m1 10327 ax-1ne0 10328 ax-1rid 10329 ax-rnegex 10330 ax-rrecex 10331 ax-cnre 10332 ax-pre-lttri 10333 ax-pre-lttrn 10334 ax-pre-ltadd 10335 ax-pre-mulgt0 10336 ax-riotaBAD 35023 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-fal 1670 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-tp 4404 df-op 4406 df-ot 4408 df-uni 4661 df-int 4700 df-iun 4744 df-iin 4745 df-br 4876 df-opab 4938 df-mpt 4955 df-tr 4978 df-id 5252 df-eprel 5257 df-po 5265 df-so 5266 df-fr 5305 df-we 5307 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-pred 5924 df-ord 5970 df-on 5971 df-lim 5972 df-suc 5973 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-riota 6871 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-om 7332 df-1st 7433 df-2nd 7434 df-tpos 7622 df-undef 7669 df-wrecs 7677 df-recs 7739 df-rdg 7777 df-1o 7831 df-oadd 7835 df-er 8014 df-map 8129 df-en 8229 df-dom 8230 df-sdom 8231 df-fin 8232 df-pnf 10400 df-mnf 10401 df-xr 10402 df-ltxr 10403 df-le 10404 df-sub 10594 df-neg 10595 df-nn 11358 df-2 11421 df-3 11422 df-4 11423 df-5 11424 df-6 11425 df-n0 11626 df-z 11712 df-uz 11976 df-fz 12627 df-struct 16231 df-ndx 16232 df-slot 16233 df-base 16235 df-sets 16236 df-ress 16237 df-plusg 16325 df-mulr 16326 df-sca 16328 df-vsca 16329 df-0g 16462 df-proset 17288 df-poset 17306 df-plt 17318 df-lub 17334 df-glb 17335 df-join 17336 df-meet 17337 df-p0 17399 df-p1 17400 df-lat 17406 df-clat 17468 df-mgm 17602 df-sgrp 17644 df-mnd 17655 df-grp 17786 df-minusg 17787 df-mgp 18851 df-ur 18863 df-ring 18910 df-oppr 18984 df-dvdsr 19002 df-unit 19003 df-invr 19033 df-dvr 19044 df-drng 19112 df-lmod 19228 df-lvec 19469 df-oposet 35246 df-ol 35248 df-oml 35249 df-covers 35336 df-ats 35337 df-atl 35368 df-cvlat 35392 df-hlat 35421 df-llines 35568 df-lplanes 35569 df-lvols 35570 df-lines 35571 df-psubsp 35573 df-pmap 35574 df-padd 35866 df-lhyp 36058 df-laut 36059 df-ldil 36174 df-ltrn 36175 df-trl 36229 df-tendo 36825 df-edring 36827 df-dvech 37149 df-hdmap1 37863 |
This theorem is referenced by: hdmap1l6b 37881 hdmap1l6c 37882 hdmap1l6d 37883 hdmapval0 37903 hdmapval3N 37908 |
Copyright terms: Public domain | W3C validator |