Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmap1val0 Structured version   Visualization version   GIF version

Theorem hdmap1val0 37869
Description: Value of preliminary map from vectors to functionals at zero. (Restated mapdhval0 37795.) (Contributed by NM, 17-May-2015.)
Hypotheses
Ref Expression
hdmap1val0.h 𝐻 = (LHyp‘𝐾)
hdmap1val0.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmap1val0.v 𝑉 = (Base‘𝑈)
hdmap1val0.o 0 = (0g𝑈)
hdmap1val0.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hdmap1val0.d 𝐷 = (Base‘𝐶)
hdmap1val0.q 𝑄 = (0g𝐶)
hdmap1val0.s 𝐼 = ((HDMap1‘𝐾)‘𝑊)
hdmap1val0.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hdmap1val0.f (𝜑𝐹𝐷)
hdmap1val0.x (𝜑𝑋𝑉)
Assertion
Ref Expression
hdmap1val0 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 0 ⟩) = 𝑄)

Proof of Theorem hdmap1val0
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 hdmap1val0.h . . 3 𝐻 = (LHyp‘𝐾)
2 hdmap1val0.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 hdmap1val0.v . . 3 𝑉 = (Base‘𝑈)
4 eqid 2825 . . 3 (-g𝑈) = (-g𝑈)
5 hdmap1val0.o . . 3 0 = (0g𝑈)
6 eqid 2825 . . 3 (LSpan‘𝑈) = (LSpan‘𝑈)
7 hdmap1val0.c . . 3 𝐶 = ((LCDual‘𝐾)‘𝑊)
8 hdmap1val0.d . . 3 𝐷 = (Base‘𝐶)
9 eqid 2825 . . 3 (-g𝐶) = (-g𝐶)
10 hdmap1val0.q . . 3 𝑄 = (0g𝐶)
11 eqid 2825 . . 3 (LSpan‘𝐶) = (LSpan‘𝐶)
12 eqid 2825 . . 3 ((mapd‘𝐾)‘𝑊) = ((mapd‘𝐾)‘𝑊)
13 hdmap1val0.s . . 3 𝐼 = ((HDMap1‘𝐾)‘𝑊)
14 hdmap1val0.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
15 hdmap1val0.x . . 3 (𝜑𝑋𝑉)
16 hdmap1val0.f . . 3 (𝜑𝐹𝐷)
171, 2, 14dvhlmod 37180 . . . 4 (𝜑𝑈 ∈ LMod)
183, 5lmod0vcl 19255 . . . 4 (𝑈 ∈ LMod → 0𝑉)
1917, 18syl 17 . . 3 (𝜑0𝑉)
201, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 19hdmap1val 37868 . 2 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 0 ⟩) = if( 0 = 0 , 𝑄, (𝐷 ((((mapd‘𝐾)‘𝑊)‘((LSpan‘𝑈)‘{ 0 })) = ((LSpan‘𝐶)‘{}) ∧ (((mapd‘𝐾)‘𝑊)‘((LSpan‘𝑈)‘{(𝑋(-g𝑈) 0 )})) = ((LSpan‘𝐶)‘{(𝐹(-g𝐶))})))))
21 eqid 2825 . . 3 0 = 0
2221iftruei 4315 . 2 if( 0 = 0 , 𝑄, (𝐷 ((((mapd‘𝐾)‘𝑊)‘((LSpan‘𝑈)‘{ 0 })) = ((LSpan‘𝐶)‘{}) ∧ (((mapd‘𝐾)‘𝑊)‘((LSpan‘𝑈)‘{(𝑋(-g𝑈) 0 )})) = ((LSpan‘𝐶)‘{(𝐹(-g𝐶))})))) = 𝑄
2320, 22syl6eq 2877 1 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 0 ⟩) = 𝑄)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1656  wcel 2164  ifcif 4308  {csn 4399  cotp 4407  cfv 6127  crio 6870  (class class class)co 6910  Basecbs 16229  0gc0g 16460  -gcsg 17785  LModclmod 19226  LSpanclspn 19337  HLchlt 35420  LHypclh 36054  DVecHcdvh 37148  LCDualclcd 37656  mapdcmpd 37694  HDMap1chdma1 37861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336  ax-riotaBAD 35023
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-fal 1670  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-ot 4408  df-uni 4661  df-int 4700  df-iun 4744  df-iin 4745  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-om 7332  df-1st 7433  df-2nd 7434  df-tpos 7622  df-undef 7669  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-1o 7831  df-oadd 7835  df-er 8014  df-map 8129  df-en 8229  df-dom 8230  df-sdom 8231  df-fin 8232  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-nn 11358  df-2 11421  df-3 11422  df-4 11423  df-5 11424  df-6 11425  df-n0 11626  df-z 11712  df-uz 11976  df-fz 12627  df-struct 16231  df-ndx 16232  df-slot 16233  df-base 16235  df-sets 16236  df-ress 16237  df-plusg 16325  df-mulr 16326  df-sca 16328  df-vsca 16329  df-0g 16462  df-proset 17288  df-poset 17306  df-plt 17318  df-lub 17334  df-glb 17335  df-join 17336  df-meet 17337  df-p0 17399  df-p1 17400  df-lat 17406  df-clat 17468  df-mgm 17602  df-sgrp 17644  df-mnd 17655  df-grp 17786  df-minusg 17787  df-mgp 18851  df-ur 18863  df-ring 18910  df-oppr 18984  df-dvdsr 19002  df-unit 19003  df-invr 19033  df-dvr 19044  df-drng 19112  df-lmod 19228  df-lvec 19469  df-oposet 35246  df-ol 35248  df-oml 35249  df-covers 35336  df-ats 35337  df-atl 35368  df-cvlat 35392  df-hlat 35421  df-llines 35568  df-lplanes 35569  df-lvols 35570  df-lines 35571  df-psubsp 35573  df-pmap 35574  df-padd 35866  df-lhyp 36058  df-laut 36059  df-ldil 36174  df-ltrn 36175  df-trl 36229  df-tendo 36825  df-edring 36827  df-dvech 37149  df-hdmap1 37863
This theorem is referenced by:  hdmap1l6b  37881  hdmap1l6c  37882  hdmap1l6d  37883  hdmapval0  37903  hdmapval3N  37908
  Copyright terms: Public domain W3C validator