![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dochval2 | Structured version Visualization version GIF version |
Description: Subspace orthocomplement for DVecH vector space. (Contributed by NM, 14-Apr-2014.) |
Ref | Expression |
---|---|
dochval2.o | ⊢ ⊥ = (oc‘𝐾) |
dochval2.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dochval2.i | ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
dochval2.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
dochval2.v | ⊢ 𝑉 = (Base‘𝑈) |
dochval2.n | ⊢ 𝑁 = ((ocH‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
dochval2 | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → (𝑁‘𝑋) = (𝐼‘( ⊥ ‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧})))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2733 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
2 | eqid 2733 | . . 3 ⊢ (glb‘𝐾) = (glb‘𝐾) | |
3 | dochval2.o | . . 3 ⊢ ⊥ = (oc‘𝐾) | |
4 | dochval2.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
5 | dochval2.i | . . 3 ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) | |
6 | dochval2.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
7 | dochval2.v | . . 3 ⊢ 𝑉 = (Base‘𝑈) | |
8 | dochval2.n | . . 3 ⊢ 𝑁 = ((ocH‘𝐾)‘𝑊) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | dochval 40128 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → (𝑁‘𝑋) = (𝐼‘( ⊥ ‘((glb‘𝐾)‘{𝑥 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (𝐼‘𝑥)})))) |
10 | hlclat 38134 | . . . . . . . 8 ⊢ (𝐾 ∈ HL → 𝐾 ∈ CLat) | |
11 | 10 | ad2antrr 725 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → 𝐾 ∈ CLat) |
12 | ssrab2 4075 | . . . . . . 7 ⊢ {𝑥 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (𝐼‘𝑥)} ⊆ (Base‘𝐾) | |
13 | 1, 2 | clatglbcl 18445 | . . . . . . 7 ⊢ ((𝐾 ∈ CLat ∧ {𝑥 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (𝐼‘𝑥)} ⊆ (Base‘𝐾)) → ((glb‘𝐾)‘{𝑥 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (𝐼‘𝑥)}) ∈ (Base‘𝐾)) |
14 | 11, 12, 13 | sylancl 587 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → ((glb‘𝐾)‘{𝑥 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (𝐼‘𝑥)}) ∈ (Base‘𝐾)) |
15 | 1, 4, 5 | dihcnvid1 40049 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((glb‘𝐾)‘{𝑥 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (𝐼‘𝑥)}) ∈ (Base‘𝐾)) → (◡𝐼‘(𝐼‘((glb‘𝐾)‘{𝑥 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (𝐼‘𝑥)}))) = ((glb‘𝐾)‘{𝑥 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (𝐼‘𝑥)})) |
16 | 14, 15 | syldan 592 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → (◡𝐼‘(𝐼‘((glb‘𝐾)‘{𝑥 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (𝐼‘𝑥)}))) = ((glb‘𝐾)‘{𝑥 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (𝐼‘𝑥)})) |
17 | 1, 2, 4, 5, 6, 7 | dihglb2 40119 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → (𝐼‘((glb‘𝐾)‘{𝑥 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (𝐼‘𝑥)})) = ∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧}) |
18 | 17 | fveq2d 6885 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → (◡𝐼‘(𝐼‘((glb‘𝐾)‘{𝑥 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (𝐼‘𝑥)}))) = (◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧})) |
19 | 16, 18 | eqtr3d 2775 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → ((glb‘𝐾)‘{𝑥 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (𝐼‘𝑥)}) = (◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧})) |
20 | 19 | fveq2d 6885 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → ( ⊥ ‘((glb‘𝐾)‘{𝑥 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (𝐼‘𝑥)})) = ( ⊥ ‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧}))) |
21 | 20 | fveq2d 6885 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → (𝐼‘( ⊥ ‘((glb‘𝐾)‘{𝑥 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (𝐼‘𝑥)}))) = (𝐼‘( ⊥ ‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧})))) |
22 | 9, 21 | eqtrd 2773 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → (𝑁‘𝑋) = (𝐼‘( ⊥ ‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧})))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 {crab 3433 ⊆ wss 3946 ∩ cint 4946 ◡ccnv 5671 ran crn 5673 ‘cfv 6535 Basecbs 17131 occoc 17192 glbcglb 18250 CLatccla 18438 HLchlt 38126 LHypclh 38761 DVecHcdvh 39855 DIsoHcdih 40005 ocHcoch 40124 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5359 ax-pr 5423 ax-un 7712 ax-cnex 11153 ax-resscn 11154 ax-1cn 11155 ax-icn 11156 ax-addcl 11157 ax-addrcl 11158 ax-mulcl 11159 ax-mulrcl 11160 ax-mulcom 11161 ax-addass 11162 ax-mulass 11163 ax-distr 11164 ax-i2m1 11165 ax-1ne0 11166 ax-1rid 11167 ax-rnegex 11168 ax-rrecex 11169 ax-cnre 11170 ax-pre-lttri 11171 ax-pre-lttrn 11172 ax-pre-ltadd 11173 ax-pre-mulgt0 11174 ax-riotaBAD 37729 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3965 df-nul 4321 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4905 df-int 4947 df-iun 4995 df-iin 4996 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6292 df-ord 6359 df-on 6360 df-lim 6361 df-suc 6362 df-iota 6487 df-fun 6537 df-fn 6538 df-f 6539 df-f1 6540 df-fo 6541 df-f1o 6542 df-fv 6543 df-riota 7352 df-ov 7399 df-oprab 7400 df-mpo 7401 df-om 7843 df-1st 7962 df-2nd 7963 df-tpos 8198 df-undef 8245 df-frecs 8253 df-wrecs 8284 df-recs 8358 df-rdg 8397 df-1o 8453 df-er 8691 df-map 8810 df-en 8928 df-dom 8929 df-sdom 8930 df-fin 8931 df-pnf 11237 df-mnf 11238 df-xr 11239 df-ltxr 11240 df-le 11241 df-sub 11433 df-neg 11434 df-nn 12200 df-2 12262 df-3 12263 df-4 12264 df-5 12265 df-6 12266 df-n0 12460 df-z 12546 df-uz 12810 df-fz 13472 df-struct 17067 df-sets 17084 df-slot 17102 df-ndx 17114 df-base 17132 df-ress 17161 df-plusg 17197 df-mulr 17198 df-sca 17200 df-vsca 17201 df-0g 17374 df-proset 18235 df-poset 18253 df-plt 18270 df-lub 18286 df-glb 18287 df-join 18288 df-meet 18289 df-p0 18365 df-p1 18366 df-lat 18372 df-clat 18439 df-mgm 18548 df-sgrp 18597 df-mnd 18613 df-submnd 18659 df-grp 18809 df-minusg 18810 df-sbg 18811 df-subg 18988 df-cntz 19166 df-lsm 19488 df-cmn 19634 df-abl 19635 df-mgp 19971 df-ur 19988 df-ring 20040 df-oppr 20128 df-dvdsr 20149 df-unit 20150 df-invr 20180 df-dvr 20193 df-drng 20295 df-lmod 20450 df-lss 20520 df-lsp 20560 df-lvec 20691 df-lsatoms 37752 df-oposet 37952 df-ol 37954 df-oml 37955 df-covers 38042 df-ats 38043 df-atl 38074 df-cvlat 38098 df-hlat 38127 df-llines 38275 df-lplanes 38276 df-lvols 38277 df-lines 38278 df-psubsp 38280 df-pmap 38281 df-padd 38573 df-lhyp 38765 df-laut 38766 df-ldil 38881 df-ltrn 38882 df-trl 38936 df-tendo 39532 df-edring 39534 df-disoa 39806 df-dvech 39856 df-dib 39916 df-dic 39950 df-dih 40006 df-doch 40125 |
This theorem is referenced by: doch2val2 40141 dochocss 40143 |
Copyright terms: Public domain | W3C validator |