Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dochcl | Structured version Visualization version GIF version |
Description: Closure of subspace orthocomplement for DVecH vector space. (Contributed by NM, 9-Mar-2014.) |
Ref | Expression |
---|---|
dochcl.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dochcl.i | ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
dochcl.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
dochcl.v | ⊢ 𝑉 = (Base‘𝑈) |
dochcl.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
dochcl | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → ( ⊥ ‘𝑋) ∈ ran 𝐼) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2739 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
2 | eqid 2739 | . . 3 ⊢ (glb‘𝐾) = (glb‘𝐾) | |
3 | eqid 2739 | . . 3 ⊢ (oc‘𝐾) = (oc‘𝐾) | |
4 | dochcl.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
5 | dochcl.i | . . 3 ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) | |
6 | dochcl.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
7 | dochcl.v | . . 3 ⊢ 𝑉 = (Base‘𝑈) | |
8 | dochcl.o | . . 3 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | dochval 39134 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → ( ⊥ ‘𝑋) = (𝐼‘((oc‘𝐾)‘((glb‘𝐾)‘{𝑦 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (𝐼‘𝑦)})))) |
10 | hlop 37145 | . . . . 5 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) | |
11 | 10 | ad2antrr 726 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → 𝐾 ∈ OP) |
12 | hlclat 37141 | . . . . . 6 ⊢ (𝐾 ∈ HL → 𝐾 ∈ CLat) | |
13 | 12 | ad2antrr 726 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → 𝐾 ∈ CLat) |
14 | ssrab2 4009 | . . . . 5 ⊢ {𝑦 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (𝐼‘𝑦)} ⊆ (Base‘𝐾) | |
15 | 1, 2 | clatglbcl 18041 | . . . . 5 ⊢ ((𝐾 ∈ CLat ∧ {𝑦 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (𝐼‘𝑦)} ⊆ (Base‘𝐾)) → ((glb‘𝐾)‘{𝑦 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (𝐼‘𝑦)}) ∈ (Base‘𝐾)) |
16 | 13, 14, 15 | sylancl 589 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → ((glb‘𝐾)‘{𝑦 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (𝐼‘𝑦)}) ∈ (Base‘𝐾)) |
17 | 1, 3 | opoccl 36977 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ ((glb‘𝐾)‘{𝑦 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (𝐼‘𝑦)}) ∈ (Base‘𝐾)) → ((oc‘𝐾)‘((glb‘𝐾)‘{𝑦 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (𝐼‘𝑦)})) ∈ (Base‘𝐾)) |
18 | 11, 16, 17 | syl2anc 587 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → ((oc‘𝐾)‘((glb‘𝐾)‘{𝑦 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (𝐼‘𝑦)})) ∈ (Base‘𝐾)) |
19 | 1, 4, 5 | dihcl 39053 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((oc‘𝐾)‘((glb‘𝐾)‘{𝑦 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (𝐼‘𝑦)})) ∈ (Base‘𝐾)) → (𝐼‘((oc‘𝐾)‘((glb‘𝐾)‘{𝑦 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (𝐼‘𝑦)}))) ∈ ran 𝐼) |
20 | 18, 19 | syldan 594 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → (𝐼‘((oc‘𝐾)‘((glb‘𝐾)‘{𝑦 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (𝐼‘𝑦)}))) ∈ ran 𝐼) |
21 | 9, 20 | eqeltrd 2840 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → ( ⊥ ‘𝑋) ∈ ran 𝐼) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2112 {crab 3067 ⊆ wss 3882 ran crn 5569 ‘cfv 6400 Basecbs 16790 occoc 16840 glbcglb 17847 CLatccla 18034 OPcops 36955 HLchlt 37133 LHypclh 37767 DVecHcdvh 38861 DIsoHcdih 39011 ocHcoch 39130 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-rep 5195 ax-sep 5208 ax-nul 5215 ax-pow 5274 ax-pr 5338 ax-un 7544 ax-cnex 10812 ax-resscn 10813 ax-1cn 10814 ax-icn 10815 ax-addcl 10816 ax-addrcl 10817 ax-mulcl 10818 ax-mulrcl 10819 ax-mulcom 10820 ax-addass 10821 ax-mulass 10822 ax-distr 10823 ax-i2m1 10824 ax-1ne0 10825 ax-1rid 10826 ax-rnegex 10827 ax-rrecex 10828 ax-cnre 10829 ax-pre-lttri 10830 ax-pre-lttrn 10831 ax-pre-ltadd 10832 ax-pre-mulgt0 10833 ax-riotaBAD 36736 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3711 df-csb 3828 df-dif 3885 df-un 3887 df-in 3889 df-ss 3899 df-pss 3901 df-nul 4254 df-if 4456 df-pw 4531 df-sn 4558 df-pr 4560 df-tp 4562 df-op 4564 df-uni 4836 df-int 4876 df-iun 4922 df-iin 4923 df-br 5070 df-opab 5132 df-mpt 5152 df-tr 5178 df-id 5471 df-eprel 5477 df-po 5485 df-so 5486 df-fr 5526 df-we 5528 df-xp 5574 df-rel 5575 df-cnv 5576 df-co 5577 df-dm 5578 df-rn 5579 df-res 5580 df-ima 5581 df-pred 6178 df-ord 6236 df-on 6237 df-lim 6238 df-suc 6239 df-iota 6358 df-fun 6402 df-fn 6403 df-f 6404 df-f1 6405 df-fo 6406 df-f1o 6407 df-fv 6408 df-riota 7191 df-ov 7237 df-oprab 7238 df-mpo 7239 df-om 7666 df-1st 7782 df-2nd 7783 df-tpos 7991 df-undef 8038 df-wrecs 8070 df-recs 8131 df-rdg 8169 df-1o 8225 df-er 8414 df-map 8533 df-en 8650 df-dom 8651 df-sdom 8652 df-fin 8653 df-pnf 10896 df-mnf 10897 df-xr 10898 df-ltxr 10899 df-le 10900 df-sub 11091 df-neg 11092 df-nn 11858 df-2 11920 df-3 11921 df-4 11922 df-5 11923 df-6 11924 df-n0 12118 df-z 12204 df-uz 12466 df-fz 13123 df-struct 16730 df-sets 16747 df-slot 16765 df-ndx 16775 df-base 16791 df-ress 16815 df-plusg 16845 df-mulr 16846 df-sca 16848 df-vsca 16849 df-0g 16976 df-proset 17832 df-poset 17850 df-plt 17866 df-lub 17882 df-glb 17883 df-join 17884 df-meet 17885 df-p0 17961 df-p1 17962 df-lat 17968 df-clat 18035 df-mgm 18144 df-sgrp 18193 df-mnd 18204 df-submnd 18249 df-grp 18398 df-minusg 18399 df-sbg 18400 df-subg 18570 df-cntz 18741 df-lsm 19055 df-cmn 19202 df-abl 19203 df-mgp 19535 df-ur 19547 df-ring 19594 df-oppr 19671 df-dvdsr 19689 df-unit 19690 df-invr 19720 df-dvr 19731 df-drng 19799 df-lmod 19931 df-lss 19999 df-lsp 20039 df-lvec 20170 df-oposet 36959 df-ol 36961 df-oml 36962 df-covers 37049 df-ats 37050 df-atl 37081 df-cvlat 37105 df-hlat 37134 df-llines 37281 df-lplanes 37282 df-lvols 37283 df-lines 37284 df-psubsp 37286 df-pmap 37287 df-padd 37579 df-lhyp 37771 df-laut 37772 df-ldil 37887 df-ltrn 37888 df-trl 37942 df-tendo 38538 df-edring 38540 df-disoa 38812 df-dvech 38862 df-dib 38922 df-dic 38956 df-dih 39012 df-doch 39131 |
This theorem is referenced by: dochlss 39137 dochssv 39138 dochfN 39139 dochvalr3 39146 dochocss 39149 dochoccl 39152 dochord 39153 dochord2N 39154 dochord3 39155 dochn0nv 39158 dihoml4c 39159 dihoml4 39160 dochocsp 39162 dochdmj1 39173 dochnoncon 39174 djhcl 39183 dochsatshp 39234 dochsatshpb 39235 dochshpsat 39237 dochexmidlem6 39248 lcfl6 39283 lcfl8 39285 lcfl9a 39288 lclkrlem2c 39292 lclkrlem2d 39293 lclkrlem2e 39294 lclkrlem2j 39299 lclkrlem2s 39308 lclkrslem2 39321 lcfrlem23 39348 mapdordlem2 39420 hdmapoc 39714 |
Copyright terms: Public domain | W3C validator |