![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dochcl | Structured version Visualization version GIF version |
Description: Closure of subspace orthocomplement for DVecH vector space. (Contributed by NM, 9-Mar-2014.) |
Ref | Expression |
---|---|
dochcl.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dochcl.i | ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
dochcl.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
dochcl.v | ⊢ 𝑉 = (Base‘𝑈) |
dochcl.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
dochcl | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → ( ⊥ ‘𝑋) ∈ ran 𝐼) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2735 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
2 | eqid 2735 | . . 3 ⊢ (glb‘𝐾) = (glb‘𝐾) | |
3 | eqid 2735 | . . 3 ⊢ (oc‘𝐾) = (oc‘𝐾) | |
4 | dochcl.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
5 | dochcl.i | . . 3 ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) | |
6 | dochcl.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
7 | dochcl.v | . . 3 ⊢ 𝑉 = (Base‘𝑈) | |
8 | dochcl.o | . . 3 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | dochval 41334 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → ( ⊥ ‘𝑋) = (𝐼‘((oc‘𝐾)‘((glb‘𝐾)‘{𝑦 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (𝐼‘𝑦)})))) |
10 | hlop 39344 | . . . . 5 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) | |
11 | 10 | ad2antrr 726 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → 𝐾 ∈ OP) |
12 | hlclat 39340 | . . . . . 6 ⊢ (𝐾 ∈ HL → 𝐾 ∈ CLat) | |
13 | 12 | ad2antrr 726 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → 𝐾 ∈ CLat) |
14 | ssrab2 4090 | . . . . 5 ⊢ {𝑦 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (𝐼‘𝑦)} ⊆ (Base‘𝐾) | |
15 | 1, 2 | clatglbcl 18563 | . . . . 5 ⊢ ((𝐾 ∈ CLat ∧ {𝑦 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (𝐼‘𝑦)} ⊆ (Base‘𝐾)) → ((glb‘𝐾)‘{𝑦 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (𝐼‘𝑦)}) ∈ (Base‘𝐾)) |
16 | 13, 14, 15 | sylancl 586 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → ((glb‘𝐾)‘{𝑦 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (𝐼‘𝑦)}) ∈ (Base‘𝐾)) |
17 | 1, 3 | opoccl 39176 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ ((glb‘𝐾)‘{𝑦 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (𝐼‘𝑦)}) ∈ (Base‘𝐾)) → ((oc‘𝐾)‘((glb‘𝐾)‘{𝑦 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (𝐼‘𝑦)})) ∈ (Base‘𝐾)) |
18 | 11, 16, 17 | syl2anc 584 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → ((oc‘𝐾)‘((glb‘𝐾)‘{𝑦 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (𝐼‘𝑦)})) ∈ (Base‘𝐾)) |
19 | 1, 4, 5 | dihcl 41253 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((oc‘𝐾)‘((glb‘𝐾)‘{𝑦 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (𝐼‘𝑦)})) ∈ (Base‘𝐾)) → (𝐼‘((oc‘𝐾)‘((glb‘𝐾)‘{𝑦 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (𝐼‘𝑦)}))) ∈ ran 𝐼) |
20 | 18, 19 | syldan 591 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → (𝐼‘((oc‘𝐾)‘((glb‘𝐾)‘{𝑦 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (𝐼‘𝑦)}))) ∈ ran 𝐼) |
21 | 9, 20 | eqeltrd 2839 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → ( ⊥ ‘𝑋) ∈ ran 𝐼) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 {crab 3433 ⊆ wss 3963 ran crn 5690 ‘cfv 6563 Basecbs 17245 occoc 17306 glbcglb 18368 CLatccla 18556 OPcops 39154 HLchlt 39332 LHypclh 39967 DVecHcdvh 41061 DIsoHcdih 41211 ocHcoch 41330 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-riotaBAD 38935 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-tpos 8250 df-undef 8297 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-map 8867 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-n0 12525 df-z 12612 df-uz 12877 df-fz 13545 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-sca 17314 df-vsca 17315 df-0g 17488 df-proset 18352 df-poset 18371 df-plt 18388 df-lub 18404 df-glb 18405 df-join 18406 df-meet 18407 df-p0 18483 df-p1 18484 df-lat 18490 df-clat 18557 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-submnd 18810 df-grp 18967 df-minusg 18968 df-sbg 18969 df-subg 19154 df-cntz 19348 df-lsm 19669 df-cmn 19815 df-abl 19816 df-mgp 20153 df-rng 20171 df-ur 20200 df-ring 20253 df-oppr 20351 df-dvdsr 20374 df-unit 20375 df-invr 20405 df-dvr 20418 df-drng 20748 df-lmod 20877 df-lss 20948 df-lsp 20988 df-lvec 21120 df-oposet 39158 df-ol 39160 df-oml 39161 df-covers 39248 df-ats 39249 df-atl 39280 df-cvlat 39304 df-hlat 39333 df-llines 39481 df-lplanes 39482 df-lvols 39483 df-lines 39484 df-psubsp 39486 df-pmap 39487 df-padd 39779 df-lhyp 39971 df-laut 39972 df-ldil 40087 df-ltrn 40088 df-trl 40142 df-tendo 40738 df-edring 40740 df-disoa 41012 df-dvech 41062 df-dib 41122 df-dic 41156 df-dih 41212 df-doch 41331 |
This theorem is referenced by: dochlss 41337 dochssv 41338 dochfN 41339 dochvalr3 41346 dochocss 41349 dochoccl 41352 dochord 41353 dochord2N 41354 dochord3 41355 dochn0nv 41358 dihoml4c 41359 dihoml4 41360 dochocsp 41362 dochdmj1 41373 dochnoncon 41374 djhcl 41383 dochsatshp 41434 dochsatshpb 41435 dochshpsat 41437 dochexmidlem6 41448 lcfl6 41483 lcfl8 41485 lcfl9a 41488 lclkrlem2c 41492 lclkrlem2d 41493 lclkrlem2e 41494 lclkrlem2j 41499 lclkrlem2s 41508 lclkrslem2 41521 lcfrlem23 41548 mapdordlem2 41620 hdmapoc 41914 |
Copyright terms: Public domain | W3C validator |