MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hof1 Structured version   Visualization version   GIF version

Theorem hof1 17570
Description: The object part of the Hom functor maps 𝑋, 𝑌 to the set of morphisms from 𝑋 to 𝑌. (Contributed by Mario Carneiro, 15-Jan-2017.)
Hypotheses
Ref Expression
hofval.m 𝑀 = (HomF𝐶)
hofval.c (𝜑𝐶 ∈ Cat)
hof1.b 𝐵 = (Base‘𝐶)
hof1.h 𝐻 = (Hom ‘𝐶)
hof1.x (𝜑𝑋𝐵)
hof1.y (𝜑𝑌𝐵)
Assertion
Ref Expression
hof1 (𝜑 → (𝑋(1st𝑀)𝑌) = (𝑋𝐻𝑌))

Proof of Theorem hof1
StepHypRef Expression
1 hofval.m . . . 4 𝑀 = (HomF𝐶)
2 hofval.c . . . 4 (𝜑𝐶 ∈ Cat)
31, 2hof1fval 17569 . . 3 (𝜑 → (1st𝑀) = (Homf𝐶))
43oveqd 7167 . 2 (𝜑 → (𝑋(1st𝑀)𝑌) = (𝑋(Homf𝐶)𝑌))
5 eqid 2758 . . 3 (Homf𝐶) = (Homf𝐶)
6 hof1.b . . 3 𝐵 = (Base‘𝐶)
7 hof1.h . . 3 𝐻 = (Hom ‘𝐶)
8 hof1.x . . 3 (𝜑𝑋𝐵)
9 hof1.y . . 3 (𝜑𝑌𝐵)
105, 6, 7, 8, 9homfval 17020 . 2 (𝜑 → (𝑋(Homf𝐶)𝑌) = (𝑋𝐻𝑌))
114, 10eqtrd 2793 1 (𝜑 → (𝑋(1st𝑀)𝑌) = (𝑋𝐻𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2111  cfv 6335  (class class class)co 7150  1st c1st 7691  Basecbs 16541  Hom chom 16634  Catccat 16993  Homf chomf 16995  HomFchof 17564
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-op 4529  df-uni 4799  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-id 5430  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-ov 7153  df-oprab 7154  df-mpo 7155  df-1st 7693  df-2nd 7694  df-homf 16999  df-hof 17566
This theorem is referenced by:  yon11  17580  yonedalem21  17589
  Copyright terms: Public domain W3C validator