Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  hof1 Structured version   Visualization version   GIF version

Theorem hof1 17570
 Description: The object part of the Hom functor maps 𝑋, 𝑌 to the set of morphisms from 𝑋 to 𝑌. (Contributed by Mario Carneiro, 15-Jan-2017.)
Hypotheses
Ref Expression
hofval.m 𝑀 = (HomF𝐶)
hofval.c (𝜑𝐶 ∈ Cat)
hof1.b 𝐵 = (Base‘𝐶)
hof1.h 𝐻 = (Hom ‘𝐶)
hof1.x (𝜑𝑋𝐵)
hof1.y (𝜑𝑌𝐵)
Assertion
Ref Expression
hof1 (𝜑 → (𝑋(1st𝑀)𝑌) = (𝑋𝐻𝑌))

Proof of Theorem hof1
StepHypRef Expression
1 hofval.m . . . 4 𝑀 = (HomF𝐶)
2 hofval.c . . . 4 (𝜑𝐶 ∈ Cat)
31, 2hof1fval 17569 . . 3 (𝜑 → (1st𝑀) = (Homf𝐶))
43oveqd 7167 . 2 (𝜑 → (𝑋(1st𝑀)𝑌) = (𝑋(Homf𝐶)𝑌))
5 eqid 2758 . . 3 (Homf𝐶) = (Homf𝐶)
6 hof1.b . . 3 𝐵 = (Base‘𝐶)
7 hof1.h . . 3 𝐻 = (Hom ‘𝐶)
8 hof1.x . . 3 (𝜑𝑋𝐵)
9 hof1.y . . 3 (𝜑𝑌𝐵)
105, 6, 7, 8, 9homfval 17020 . 2 (𝜑 → (𝑋(Homf𝐶)𝑌) = (𝑋𝐻𝑌))
114, 10eqtrd 2793 1 (𝜑 → (𝑋(1st𝑀)𝑌) = (𝑋𝐻𝑌))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1538   ∈ wcel 2111  ‘cfv 6335  (class class class)co 7150  1st c1st 7691  Basecbs 16541  Hom chom 16634  Catccat 16993  Homf chomf 16995  HomFchof 17564 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-op 4529  df-uni 4799  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-id 5430  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-ov 7153  df-oprab 7154  df-mpo 7155  df-1st 7693  df-2nd 7694  df-homf 16999  df-hof 17566 This theorem is referenced by:  yon11  17580  yonedalem21  17589
 Copyright terms: Public domain W3C validator