| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hof1 | Structured version Visualization version GIF version | ||
| Description: The object part of the Hom functor maps 𝑋, 𝑌 to the set of morphisms from 𝑋 to 𝑌. (Contributed by Mario Carneiro, 15-Jan-2017.) |
| Ref | Expression |
|---|---|
| hofval.m | ⊢ 𝑀 = (HomF‘𝐶) |
| hofval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| hof1.b | ⊢ 𝐵 = (Base‘𝐶) |
| hof1.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| hof1.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| hof1.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| hof1 | ⊢ (𝜑 → (𝑋(1st ‘𝑀)𝑌) = (𝑋𝐻𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hofval.m | . . . 4 ⊢ 𝑀 = (HomF‘𝐶) | |
| 2 | hofval.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 3 | 1, 2 | hof1fval 18214 | . . 3 ⊢ (𝜑 → (1st ‘𝑀) = (Homf ‘𝐶)) |
| 4 | 3 | oveqd 7404 | . 2 ⊢ (𝜑 → (𝑋(1st ‘𝑀)𝑌) = (𝑋(Homf ‘𝐶)𝑌)) |
| 5 | eqid 2729 | . . 3 ⊢ (Homf ‘𝐶) = (Homf ‘𝐶) | |
| 6 | hof1.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
| 7 | hof1.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 8 | hof1.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 9 | hof1.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 10 | 5, 6, 7, 8, 9 | homfval 17653 | . 2 ⊢ (𝜑 → (𝑋(Homf ‘𝐶)𝑌) = (𝑋𝐻𝑌)) |
| 11 | 4, 10 | eqtrd 2764 | 1 ⊢ (𝜑 → (𝑋(1st ‘𝑀)𝑌) = (𝑋𝐻𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6511 (class class class)co 7387 1st c1st 7966 Basecbs 17179 Hom chom 17231 Catccat 17625 Homf chomf 17627 HomFchof 18209 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-homf 17631 df-hof 18211 |
| This theorem is referenced by: yon11 18225 yonedalem21 18234 |
| Copyright terms: Public domain | W3C validator |