Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hof1 | Structured version Visualization version GIF version |
Description: The object part of the Hom functor maps 𝑋, 𝑌 to the set of morphisms from 𝑋 to 𝑌. (Contributed by Mario Carneiro, 15-Jan-2017.) |
Ref | Expression |
---|---|
hofval.m | ⊢ 𝑀 = (HomF‘𝐶) |
hofval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
hof1.b | ⊢ 𝐵 = (Base‘𝐶) |
hof1.h | ⊢ 𝐻 = (Hom ‘𝐶) |
hof1.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
hof1.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
hof1 | ⊢ (𝜑 → (𝑋(1st ‘𝑀)𝑌) = (𝑋𝐻𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hofval.m | . . . 4 ⊢ 𝑀 = (HomF‘𝐶) | |
2 | hofval.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
3 | 1, 2 | hof1fval 17999 | . . 3 ⊢ (𝜑 → (1st ‘𝑀) = (Homf ‘𝐶)) |
4 | 3 | oveqd 7312 | . 2 ⊢ (𝜑 → (𝑋(1st ‘𝑀)𝑌) = (𝑋(Homf ‘𝐶)𝑌)) |
5 | eqid 2733 | . . 3 ⊢ (Homf ‘𝐶) = (Homf ‘𝐶) | |
6 | hof1.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
7 | hof1.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
8 | hof1.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
9 | hof1.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
10 | 5, 6, 7, 8, 9 | homfval 17429 | . 2 ⊢ (𝜑 → (𝑋(Homf ‘𝐶)𝑌) = (𝑋𝐻𝑌)) |
11 | 4, 10 | eqtrd 2773 | 1 ⊢ (𝜑 → (𝑋(1st ‘𝑀)𝑌) = (𝑋𝐻𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2101 ‘cfv 6447 (class class class)co 7295 1st c1st 7849 Basecbs 16940 Hom chom 17001 Catccat 17401 Homf chomf 17403 HomFchof 17994 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-rep 5212 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7608 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3223 df-rab 3224 df-v 3436 df-sbc 3719 df-csb 3835 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-iun 4929 df-br 5078 df-opab 5140 df-mpt 5161 df-id 5491 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-iota 6399 df-fun 6449 df-fn 6450 df-f 6451 df-f1 6452 df-fo 6453 df-f1o 6454 df-fv 6455 df-ov 7298 df-oprab 7299 df-mpo 7300 df-1st 7851 df-2nd 7852 df-homf 17407 df-hof 17996 |
This theorem is referenced by: yon11 18010 yonedalem21 18019 |
Copyright terms: Public domain | W3C validator |