Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hof1 | Structured version Visualization version GIF version |
Description: The object part of the Hom functor maps 𝑋, 𝑌 to the set of morphisms from 𝑋 to 𝑌. (Contributed by Mario Carneiro, 15-Jan-2017.) |
Ref | Expression |
---|---|
hofval.m | ⊢ 𝑀 = (HomF‘𝐶) |
hofval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
hof1.b | ⊢ 𝐵 = (Base‘𝐶) |
hof1.h | ⊢ 𝐻 = (Hom ‘𝐶) |
hof1.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
hof1.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
hof1 | ⊢ (𝜑 → (𝑋(1st ‘𝑀)𝑌) = (𝑋𝐻𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hofval.m | . . . 4 ⊢ 𝑀 = (HomF‘𝐶) | |
2 | hofval.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
3 | 1, 2 | hof1fval 17569 | . . 3 ⊢ (𝜑 → (1st ‘𝑀) = (Homf ‘𝐶)) |
4 | 3 | oveqd 7167 | . 2 ⊢ (𝜑 → (𝑋(1st ‘𝑀)𝑌) = (𝑋(Homf ‘𝐶)𝑌)) |
5 | eqid 2758 | . . 3 ⊢ (Homf ‘𝐶) = (Homf ‘𝐶) | |
6 | hof1.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
7 | hof1.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
8 | hof1.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
9 | hof1.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
10 | 5, 6, 7, 8, 9 | homfval 17020 | . 2 ⊢ (𝜑 → (𝑋(Homf ‘𝐶)𝑌) = (𝑋𝐻𝑌)) |
11 | 4, 10 | eqtrd 2793 | 1 ⊢ (𝜑 → (𝑋(1st ‘𝑀)𝑌) = (𝑋𝐻𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∈ wcel 2111 ‘cfv 6335 (class class class)co 7150 1st c1st 7691 Basecbs 16541 Hom chom 16634 Catccat 16993 Homf chomf 16995 HomFchof 17564 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-ov 7153 df-oprab 7154 df-mpo 7155 df-1st 7693 df-2nd 7694 df-homf 16999 df-hof 17566 |
This theorem is referenced by: yon11 17580 yonedalem21 17589 |
Copyright terms: Public domain | W3C validator |