MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hof1 Structured version   Visualization version   GIF version

Theorem hof1 18000
Description: The object part of the Hom functor maps 𝑋, 𝑌 to the set of morphisms from 𝑋 to 𝑌. (Contributed by Mario Carneiro, 15-Jan-2017.)
Hypotheses
Ref Expression
hofval.m 𝑀 = (HomF𝐶)
hofval.c (𝜑𝐶 ∈ Cat)
hof1.b 𝐵 = (Base‘𝐶)
hof1.h 𝐻 = (Hom ‘𝐶)
hof1.x (𝜑𝑋𝐵)
hof1.y (𝜑𝑌𝐵)
Assertion
Ref Expression
hof1 (𝜑 → (𝑋(1st𝑀)𝑌) = (𝑋𝐻𝑌))

Proof of Theorem hof1
StepHypRef Expression
1 hofval.m . . . 4 𝑀 = (HomF𝐶)
2 hofval.c . . . 4 (𝜑𝐶 ∈ Cat)
31, 2hof1fval 17999 . . 3 (𝜑 → (1st𝑀) = (Homf𝐶))
43oveqd 7312 . 2 (𝜑 → (𝑋(1st𝑀)𝑌) = (𝑋(Homf𝐶)𝑌))
5 eqid 2733 . . 3 (Homf𝐶) = (Homf𝐶)
6 hof1.b . . 3 𝐵 = (Base‘𝐶)
7 hof1.h . . 3 𝐻 = (Hom ‘𝐶)
8 hof1.x . . 3 (𝜑𝑋𝐵)
9 hof1.y . . 3 (𝜑𝑌𝐵)
105, 6, 7, 8, 9homfval 17429 . 2 (𝜑 → (𝑋(Homf𝐶)𝑌) = (𝑋𝐻𝑌))
114, 10eqtrd 2773 1 (𝜑 → (𝑋(1st𝑀)𝑌) = (𝑋𝐻𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2101  cfv 6447  (class class class)co 7295  1st c1st 7849  Basecbs 16940  Hom chom 17001  Catccat 17401  Homf chomf 17403  HomFchof 17994
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-10 2132  ax-11 2149  ax-12 2166  ax-ext 2704  ax-rep 5212  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7608
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2063  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2884  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3223  df-rab 3224  df-v 3436  df-sbc 3719  df-csb 3835  df-dif 3892  df-un 3894  df-in 3896  df-ss 3906  df-nul 4260  df-if 4463  df-pw 4538  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4842  df-iun 4929  df-br 5078  df-opab 5140  df-mpt 5161  df-id 5491  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-iota 6399  df-fun 6449  df-fn 6450  df-f 6451  df-f1 6452  df-fo 6453  df-f1o 6454  df-fv 6455  df-ov 7298  df-oprab 7299  df-mpo 7300  df-1st 7851  df-2nd 7852  df-homf 17407  df-hof 17996
This theorem is referenced by:  yon11  18010  yonedalem21  18019
  Copyright terms: Public domain W3C validator