MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hof2 Structured version   Visualization version   GIF version

Theorem hof2 18210
Description: The morphism part of the Hom functor, for morphisms βŸ¨π‘“, π‘”βŸ©:βŸ¨π‘‹, π‘ŒβŸ©βŸΆβŸ¨π‘, π‘ŠβŸ© (which since the first argument is contravariant means morphisms 𝑓:π‘βŸΆπ‘‹ and 𝑔:π‘ŒβŸΆπ‘Š), yields a function (a morphism of SetCat) mapping β„Ž:π‘‹βŸΆπ‘Œ to 𝑔 ∘ β„Ž ∘ 𝑓:π‘βŸΆπ‘Š. (Contributed by Mario Carneiro, 15-Jan-2017.)
Hypotheses
Ref Expression
hofval.m 𝑀 = (HomFβ€˜πΆ)
hofval.c (πœ‘ β†’ 𝐢 ∈ Cat)
hof1.b 𝐡 = (Baseβ€˜πΆ)
hof1.h 𝐻 = (Hom β€˜πΆ)
hof1.x (πœ‘ β†’ 𝑋 ∈ 𝐡)
hof1.y (πœ‘ β†’ π‘Œ ∈ 𝐡)
hof2.z (πœ‘ β†’ 𝑍 ∈ 𝐡)
hof2.w (πœ‘ β†’ π‘Š ∈ 𝐡)
hof2.o Β· = (compβ€˜πΆ)
hof2.f (πœ‘ β†’ 𝐹 ∈ (𝑍𝐻𝑋))
hof2.g (πœ‘ β†’ 𝐺 ∈ (π‘Œπ»π‘Š))
hof2.k (πœ‘ β†’ 𝐾 ∈ (π‘‹π»π‘Œ))
Assertion
Ref Expression
hof2 (πœ‘ β†’ ((𝐹(βŸ¨π‘‹, π‘ŒβŸ©(2nd β€˜π‘€)βŸ¨π‘, π‘ŠβŸ©)𝐺)β€˜πΎ) = ((𝐺(βŸ¨π‘‹, π‘ŒβŸ© Β· π‘Š)𝐾)(βŸ¨π‘, π‘‹βŸ© Β· π‘Š)𝐹))

Proof of Theorem hof2
Dummy variable β„Ž is distinct from all other variables.
StepHypRef Expression
1 hofval.m . . 3 𝑀 = (HomFβ€˜πΆ)
2 hofval.c . . 3 (πœ‘ β†’ 𝐢 ∈ Cat)
3 hof1.b . . 3 𝐡 = (Baseβ€˜πΆ)
4 hof1.h . . 3 𝐻 = (Hom β€˜πΆ)
5 hof1.x . . 3 (πœ‘ β†’ 𝑋 ∈ 𝐡)
6 hof1.y . . 3 (πœ‘ β†’ π‘Œ ∈ 𝐡)
7 hof2.z . . 3 (πœ‘ β†’ 𝑍 ∈ 𝐡)
8 hof2.w . . 3 (πœ‘ β†’ π‘Š ∈ 𝐡)
9 hof2.o . . 3 Β· = (compβ€˜πΆ)
10 hof2.f . . 3 (πœ‘ β†’ 𝐹 ∈ (𝑍𝐻𝑋))
11 hof2.g . . 3 (πœ‘ β†’ 𝐺 ∈ (π‘Œπ»π‘Š))
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11hof2val 18209 . 2 (πœ‘ β†’ (𝐹(βŸ¨π‘‹, π‘ŒβŸ©(2nd β€˜π‘€)βŸ¨π‘, π‘ŠβŸ©)𝐺) = (β„Ž ∈ (π‘‹π»π‘Œ) ↦ ((𝐺(βŸ¨π‘‹, π‘ŒβŸ© Β· π‘Š)β„Ž)(βŸ¨π‘, π‘‹βŸ© Β· π‘Š)𝐹)))
13 simpr 486 . . . 4 ((πœ‘ ∧ β„Ž = 𝐾) β†’ β„Ž = 𝐾)
1413oveq2d 7425 . . 3 ((πœ‘ ∧ β„Ž = 𝐾) β†’ (𝐺(βŸ¨π‘‹, π‘ŒβŸ© Β· π‘Š)β„Ž) = (𝐺(βŸ¨π‘‹, π‘ŒβŸ© Β· π‘Š)𝐾))
1514oveq1d 7424 . 2 ((πœ‘ ∧ β„Ž = 𝐾) β†’ ((𝐺(βŸ¨π‘‹, π‘ŒβŸ© Β· π‘Š)β„Ž)(βŸ¨π‘, π‘‹βŸ© Β· π‘Š)𝐹) = ((𝐺(βŸ¨π‘‹, π‘ŒβŸ© Β· π‘Š)𝐾)(βŸ¨π‘, π‘‹βŸ© Β· π‘Š)𝐹))
16 hof2.k . 2 (πœ‘ β†’ 𝐾 ∈ (π‘‹π»π‘Œ))
17 ovexd 7444 . 2 (πœ‘ β†’ ((𝐺(βŸ¨π‘‹, π‘ŒβŸ© Β· π‘Š)𝐾)(βŸ¨π‘, π‘‹βŸ© Β· π‘Š)𝐹) ∈ V)
1812, 15, 16, 17fvmptd 7006 1 (πœ‘ β†’ ((𝐹(βŸ¨π‘‹, π‘ŒβŸ©(2nd β€˜π‘€)βŸ¨π‘, π‘ŠβŸ©)𝐺)β€˜πΎ) = ((𝐺(βŸ¨π‘‹, π‘ŒβŸ© Β· π‘Š)𝐾)(βŸ¨π‘, π‘‹βŸ© Β· π‘Š)𝐹))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   = wceq 1542   ∈ wcel 2107  Vcvv 3475  βŸ¨cop 4635  β€˜cfv 6544  (class class class)co 7409  2nd c2nd 7974  Basecbs 17144  Hom chom 17208  compcco 17209  Catccat 17608  HomFchof 18201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-1st 7975  df-2nd 7976  df-hof 18203
This theorem is referenced by:  yon12  18218  yon2  18219
  Copyright terms: Public domain W3C validator