MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hof2 Structured version   Visualization version   GIF version

Theorem hof2 18329
Description: The morphism part of the Hom functor, for morphisms 𝑓, 𝑔⟩:⟨𝑋, 𝑌⟩⟶⟨𝑍, 𝑊 (which since the first argument is contravariant means morphisms 𝑓:𝑍𝑋 and 𝑔:𝑌𝑊), yields a function (a morphism of SetCat) mapping :𝑋𝑌 to 𝑔𝑓:𝑍𝑊. (Contributed by Mario Carneiro, 15-Jan-2017.)
Hypotheses
Ref Expression
hofval.m 𝑀 = (HomF𝐶)
hofval.c (𝜑𝐶 ∈ Cat)
hof1.b 𝐵 = (Base‘𝐶)
hof1.h 𝐻 = (Hom ‘𝐶)
hof1.x (𝜑𝑋𝐵)
hof1.y (𝜑𝑌𝐵)
hof2.z (𝜑𝑍𝐵)
hof2.w (𝜑𝑊𝐵)
hof2.o · = (comp‘𝐶)
hof2.f (𝜑𝐹 ∈ (𝑍𝐻𝑋))
hof2.g (𝜑𝐺 ∈ (𝑌𝐻𝑊))
hof2.k (𝜑𝐾 ∈ (𝑋𝐻𝑌))
Assertion
Ref Expression
hof2 (𝜑 → ((𝐹(⟨𝑋, 𝑌⟩(2nd𝑀)⟨𝑍, 𝑊⟩)𝐺)‘𝐾) = ((𝐺(⟨𝑋, 𝑌· 𝑊)𝐾)(⟨𝑍, 𝑋· 𝑊)𝐹))

Proof of Theorem hof2
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 hofval.m . . 3 𝑀 = (HomF𝐶)
2 hofval.c . . 3 (𝜑𝐶 ∈ Cat)
3 hof1.b . . 3 𝐵 = (Base‘𝐶)
4 hof1.h . . 3 𝐻 = (Hom ‘𝐶)
5 hof1.x . . 3 (𝜑𝑋𝐵)
6 hof1.y . . 3 (𝜑𝑌𝐵)
7 hof2.z . . 3 (𝜑𝑍𝐵)
8 hof2.w . . 3 (𝜑𝑊𝐵)
9 hof2.o . . 3 · = (comp‘𝐶)
10 hof2.f . . 3 (𝜑𝐹 ∈ (𝑍𝐻𝑋))
11 hof2.g . . 3 (𝜑𝐺 ∈ (𝑌𝐻𝑊))
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11hof2val 18328 . 2 (𝜑 → (𝐹(⟨𝑋, 𝑌⟩(2nd𝑀)⟨𝑍, 𝑊⟩)𝐺) = ( ∈ (𝑋𝐻𝑌) ↦ ((𝐺(⟨𝑋, 𝑌· 𝑊))(⟨𝑍, 𝑋· 𝑊)𝐹)))
13 simpr 484 . . . 4 ((𝜑 = 𝐾) → = 𝐾)
1413oveq2d 7466 . . 3 ((𝜑 = 𝐾) → (𝐺(⟨𝑋, 𝑌· 𝑊)) = (𝐺(⟨𝑋, 𝑌· 𝑊)𝐾))
1514oveq1d 7465 . 2 ((𝜑 = 𝐾) → ((𝐺(⟨𝑋, 𝑌· 𝑊))(⟨𝑍, 𝑋· 𝑊)𝐹) = ((𝐺(⟨𝑋, 𝑌· 𝑊)𝐾)(⟨𝑍, 𝑋· 𝑊)𝐹))
16 hof2.k . 2 (𝜑𝐾 ∈ (𝑋𝐻𝑌))
17 ovexd 7485 . 2 (𝜑 → ((𝐺(⟨𝑋, 𝑌· 𝑊)𝐾)(⟨𝑍, 𝑋· 𝑊)𝐹) ∈ V)
1812, 15, 16, 17fvmptd 7038 1 (𝜑 → ((𝐹(⟨𝑋, 𝑌⟩(2nd𝑀)⟨𝑍, 𝑊⟩)𝐺)‘𝐾) = ((𝐺(⟨𝑋, 𝑌· 𝑊)𝐾)(⟨𝑍, 𝑋· 𝑊)𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  cop 4654  cfv 6575  (class class class)co 7450  2nd c2nd 8031  Basecbs 17260  Hom chom 17324  compcco 17325  Catccat 17724  HomFchof 18320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7772
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fo 6581  df-f1o 6582  df-fv 6583  df-ov 7453  df-oprab 7454  df-mpo 7455  df-1st 8032  df-2nd 8033  df-hof 18322
This theorem is referenced by:  yon12  18337  yon2  18338
  Copyright terms: Public domain W3C validator