Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hof2 | Structured version Visualization version GIF version |
Description: The morphism part of the Hom functor, for morphisms 〈𝑓, 𝑔〉:〈𝑋, 𝑌〉⟶〈𝑍, 𝑊〉 (which since the first argument is contravariant means morphisms 𝑓:𝑍⟶𝑋 and 𝑔:𝑌⟶𝑊), yields a function (a morphism of SetCat) mapping ℎ:𝑋⟶𝑌 to 𝑔 ∘ ℎ ∘ 𝑓:𝑍⟶𝑊. (Contributed by Mario Carneiro, 15-Jan-2017.) |
Ref | Expression |
---|---|
hofval.m | ⊢ 𝑀 = (HomF‘𝐶) |
hofval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
hof1.b | ⊢ 𝐵 = (Base‘𝐶) |
hof1.h | ⊢ 𝐻 = (Hom ‘𝐶) |
hof1.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
hof1.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
hof2.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
hof2.w | ⊢ (𝜑 → 𝑊 ∈ 𝐵) |
hof2.o | ⊢ · = (comp‘𝐶) |
hof2.f | ⊢ (𝜑 → 𝐹 ∈ (𝑍𝐻𝑋)) |
hof2.g | ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑊)) |
hof2.k | ⊢ (𝜑 → 𝐾 ∈ (𝑋𝐻𝑌)) |
Ref | Expression |
---|---|
hof2 | ⊢ (𝜑 → ((𝐹(〈𝑋, 𝑌〉(2nd ‘𝑀)〈𝑍, 𝑊〉)𝐺)‘𝐾) = ((𝐺(〈𝑋, 𝑌〉 · 𝑊)𝐾)(〈𝑍, 𝑋〉 · 𝑊)𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hofval.m | . . 3 ⊢ 𝑀 = (HomF‘𝐶) | |
2 | hofval.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
3 | hof1.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
4 | hof1.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
5 | hof1.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
6 | hof1.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
7 | hof2.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
8 | hof2.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ 𝐵) | |
9 | hof2.o | . . 3 ⊢ · = (comp‘𝐶) | |
10 | hof2.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝑍𝐻𝑋)) | |
11 | hof2.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑊)) | |
12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | hof2val 17974 | . 2 ⊢ (𝜑 → (𝐹(〈𝑋, 𝑌〉(2nd ‘𝑀)〈𝑍, 𝑊〉)𝐺) = (ℎ ∈ (𝑋𝐻𝑌) ↦ ((𝐺(〈𝑋, 𝑌〉 · 𝑊)ℎ)(〈𝑍, 𝑋〉 · 𝑊)𝐹))) |
13 | simpr 485 | . . . 4 ⊢ ((𝜑 ∧ ℎ = 𝐾) → ℎ = 𝐾) | |
14 | 13 | oveq2d 7291 | . . 3 ⊢ ((𝜑 ∧ ℎ = 𝐾) → (𝐺(〈𝑋, 𝑌〉 · 𝑊)ℎ) = (𝐺(〈𝑋, 𝑌〉 · 𝑊)𝐾)) |
15 | 14 | oveq1d 7290 | . 2 ⊢ ((𝜑 ∧ ℎ = 𝐾) → ((𝐺(〈𝑋, 𝑌〉 · 𝑊)ℎ)(〈𝑍, 𝑋〉 · 𝑊)𝐹) = ((𝐺(〈𝑋, 𝑌〉 · 𝑊)𝐾)(〈𝑍, 𝑋〉 · 𝑊)𝐹)) |
16 | hof2.k | . 2 ⊢ (𝜑 → 𝐾 ∈ (𝑋𝐻𝑌)) | |
17 | ovexd 7310 | . 2 ⊢ (𝜑 → ((𝐺(〈𝑋, 𝑌〉 · 𝑊)𝐾)(〈𝑍, 𝑋〉 · 𝑊)𝐹) ∈ V) | |
18 | 12, 15, 16, 17 | fvmptd 6882 | 1 ⊢ (𝜑 → ((𝐹(〈𝑋, 𝑌〉(2nd ‘𝑀)〈𝑍, 𝑊〉)𝐺)‘𝐾) = ((𝐺(〈𝑋, 𝑌〉 · 𝑊)𝐾)(〈𝑍, 𝑋〉 · 𝑊)𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Vcvv 3432 〈cop 4567 ‘cfv 6433 (class class class)co 7275 2nd c2nd 7830 Basecbs 16912 Hom chom 16973 compcco 16974 Catccat 17373 HomFchof 17966 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-hof 17968 |
This theorem is referenced by: yon12 17983 yon2 17984 |
Copyright terms: Public domain | W3C validator |