| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hof2 | Structured version Visualization version GIF version | ||
| Description: The morphism part of the Hom functor, for morphisms 〈𝑓, 𝑔〉:〈𝑋, 𝑌〉⟶〈𝑍, 𝑊〉 (which since the first argument is contravariant means morphisms 𝑓:𝑍⟶𝑋 and 𝑔:𝑌⟶𝑊), yields a function (a morphism of SetCat) mapping ℎ:𝑋⟶𝑌 to 𝑔 ∘ ℎ ∘ 𝑓:𝑍⟶𝑊. (Contributed by Mario Carneiro, 15-Jan-2017.) |
| Ref | Expression |
|---|---|
| hofval.m | ⊢ 𝑀 = (HomF‘𝐶) |
| hofval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| hof1.b | ⊢ 𝐵 = (Base‘𝐶) |
| hof1.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| hof1.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| hof1.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| hof2.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| hof2.w | ⊢ (𝜑 → 𝑊 ∈ 𝐵) |
| hof2.o | ⊢ · = (comp‘𝐶) |
| hof2.f | ⊢ (𝜑 → 𝐹 ∈ (𝑍𝐻𝑋)) |
| hof2.g | ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑊)) |
| hof2.k | ⊢ (𝜑 → 𝐾 ∈ (𝑋𝐻𝑌)) |
| Ref | Expression |
|---|---|
| hof2 | ⊢ (𝜑 → ((𝐹(〈𝑋, 𝑌〉(2nd ‘𝑀)〈𝑍, 𝑊〉)𝐺)‘𝐾) = ((𝐺(〈𝑋, 𝑌〉 · 𝑊)𝐾)(〈𝑍, 𝑋〉 · 𝑊)𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hofval.m | . . 3 ⊢ 𝑀 = (HomF‘𝐶) | |
| 2 | hofval.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 3 | hof1.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
| 4 | hof1.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 5 | hof1.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 6 | hof1.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 7 | hof2.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 8 | hof2.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ 𝐵) | |
| 9 | hof2.o | . . 3 ⊢ · = (comp‘𝐶) | |
| 10 | hof2.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝑍𝐻𝑋)) | |
| 11 | hof2.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑊)) | |
| 12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | hof2val 18223 | . 2 ⊢ (𝜑 → (𝐹(〈𝑋, 𝑌〉(2nd ‘𝑀)〈𝑍, 𝑊〉)𝐺) = (ℎ ∈ (𝑋𝐻𝑌) ↦ ((𝐺(〈𝑋, 𝑌〉 · 𝑊)ℎ)(〈𝑍, 𝑋〉 · 𝑊)𝐹))) |
| 13 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ ℎ = 𝐾) → ℎ = 𝐾) | |
| 14 | 13 | oveq2d 7410 | . . 3 ⊢ ((𝜑 ∧ ℎ = 𝐾) → (𝐺(〈𝑋, 𝑌〉 · 𝑊)ℎ) = (𝐺(〈𝑋, 𝑌〉 · 𝑊)𝐾)) |
| 15 | 14 | oveq1d 7409 | . 2 ⊢ ((𝜑 ∧ ℎ = 𝐾) → ((𝐺(〈𝑋, 𝑌〉 · 𝑊)ℎ)(〈𝑍, 𝑋〉 · 𝑊)𝐹) = ((𝐺(〈𝑋, 𝑌〉 · 𝑊)𝐾)(〈𝑍, 𝑋〉 · 𝑊)𝐹)) |
| 16 | hof2.k | . 2 ⊢ (𝜑 → 𝐾 ∈ (𝑋𝐻𝑌)) | |
| 17 | ovexd 7429 | . 2 ⊢ (𝜑 → ((𝐺(〈𝑋, 𝑌〉 · 𝑊)𝐾)(〈𝑍, 𝑋〉 · 𝑊)𝐹) ∈ V) | |
| 18 | 12, 15, 16, 17 | fvmptd 6982 | 1 ⊢ (𝜑 → ((𝐹(〈𝑋, 𝑌〉(2nd ‘𝑀)〈𝑍, 𝑊〉)𝐺)‘𝐾) = ((𝐺(〈𝑋, 𝑌〉 · 𝑊)𝐾)(〈𝑍, 𝑋〉 · 𝑊)𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3455 〈cop 4603 ‘cfv 6519 (class class class)co 7394 2nd c2nd 7976 Basecbs 17185 Hom chom 17237 compcco 17238 Catccat 17631 HomFchof 18215 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-id 5541 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-ov 7397 df-oprab 7398 df-mpo 7399 df-1st 7977 df-2nd 7978 df-hof 18217 |
| This theorem is referenced by: yon12 18232 yon2 18233 |
| Copyright terms: Public domain | W3C validator |