![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hof2val | Structured version Visualization version GIF version |
Description: The morphism part of the Hom functor, for morphisms 〈𝑓, 𝑔〉:〈𝑋, 𝑌〉⟶〈𝑍, 𝑊〉 (which since the first argument is contravariant means morphisms 𝑓:𝑍⟶𝑋 and 𝑔:𝑌⟶𝑊), yields a function (a morphism of SetCat) mapping ℎ:𝑋⟶𝑌 to 𝑔 ∘ ℎ ∘ 𝑓:𝑍⟶𝑊. (Contributed by Mario Carneiro, 15-Jan-2017.) |
Ref | Expression |
---|---|
hofval.m | ⊢ 𝑀 = (HomF‘𝐶) |
hofval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
hof1.b | ⊢ 𝐵 = (Base‘𝐶) |
hof1.h | ⊢ 𝐻 = (Hom ‘𝐶) |
hof1.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
hof1.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
hof2.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
hof2.w | ⊢ (𝜑 → 𝑊 ∈ 𝐵) |
hof2.o | ⊢ · = (comp‘𝐶) |
hof2.f | ⊢ (𝜑 → 𝐹 ∈ (𝑍𝐻𝑋)) |
hof2.g | ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑊)) |
Ref | Expression |
---|---|
hof2val | ⊢ (𝜑 → (𝐹(〈𝑋, 𝑌〉(2nd ‘𝑀)〈𝑍, 𝑊〉)𝐺) = (ℎ ∈ (𝑋𝐻𝑌) ↦ ((𝐺(〈𝑋, 𝑌〉 · 𝑊)ℎ)(〈𝑍, 𝑋〉 · 𝑊)𝐹))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hofval.m | . . 3 ⊢ 𝑀 = (HomF‘𝐶) | |
2 | hofval.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
3 | hof1.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
4 | hof1.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
5 | hof1.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
6 | hof1.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
7 | hof2.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
8 | hof2.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ 𝐵) | |
9 | hof2.o | . . 3 ⊢ · = (comp‘𝐶) | |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | hof2fval 18321 | . 2 ⊢ (𝜑 → (〈𝑋, 𝑌〉(2nd ‘𝑀)〈𝑍, 𝑊〉) = (𝑓 ∈ (𝑍𝐻𝑋), 𝑔 ∈ (𝑌𝐻𝑊) ↦ (ℎ ∈ (𝑋𝐻𝑌) ↦ ((𝑔(〈𝑋, 𝑌〉 · 𝑊)ℎ)(〈𝑍, 𝑋〉 · 𝑊)𝑓)))) |
11 | simplrr 778 | . . . . 5 ⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) ∧ ℎ ∈ (𝑋𝐻𝑌)) → 𝑔 = 𝐺) | |
12 | 11 | oveq1d 7453 | . . . 4 ⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) ∧ ℎ ∈ (𝑋𝐻𝑌)) → (𝑔(〈𝑋, 𝑌〉 · 𝑊)ℎ) = (𝐺(〈𝑋, 𝑌〉 · 𝑊)ℎ)) |
13 | simplrl 777 | . . . 4 ⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) ∧ ℎ ∈ (𝑋𝐻𝑌)) → 𝑓 = 𝐹) | |
14 | 12, 13 | oveq12d 7456 | . . 3 ⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) ∧ ℎ ∈ (𝑋𝐻𝑌)) → ((𝑔(〈𝑋, 𝑌〉 · 𝑊)ℎ)(〈𝑍, 𝑋〉 · 𝑊)𝑓) = ((𝐺(〈𝑋, 𝑌〉 · 𝑊)ℎ)(〈𝑍, 𝑋〉 · 𝑊)𝐹)) |
15 | 14 | mpteq2dva 5251 | . 2 ⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) → (ℎ ∈ (𝑋𝐻𝑌) ↦ ((𝑔(〈𝑋, 𝑌〉 · 𝑊)ℎ)(〈𝑍, 𝑋〉 · 𝑊)𝑓)) = (ℎ ∈ (𝑋𝐻𝑌) ↦ ((𝐺(〈𝑋, 𝑌〉 · 𝑊)ℎ)(〈𝑍, 𝑋〉 · 𝑊)𝐹))) |
16 | hof2.f | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝑍𝐻𝑋)) | |
17 | hof2.g | . 2 ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑊)) | |
18 | ovex 7471 | . . . 4 ⊢ (𝑋𝐻𝑌) ∈ V | |
19 | 18 | mptex 7250 | . . 3 ⊢ (ℎ ∈ (𝑋𝐻𝑌) ↦ ((𝐺(〈𝑋, 𝑌〉 · 𝑊)ℎ)(〈𝑍, 𝑋〉 · 𝑊)𝐹)) ∈ V |
20 | 19 | a1i 11 | . 2 ⊢ (𝜑 → (ℎ ∈ (𝑋𝐻𝑌) ↦ ((𝐺(〈𝑋, 𝑌〉 · 𝑊)ℎ)(〈𝑍, 𝑋〉 · 𝑊)𝐹)) ∈ V) |
21 | 10, 15, 16, 17, 20 | ovmpod 7592 | 1 ⊢ (𝜑 → (𝐹(〈𝑋, 𝑌〉(2nd ‘𝑀)〈𝑍, 𝑊〉)𝐺) = (ℎ ∈ (𝑋𝐻𝑌) ↦ ((𝐺(〈𝑋, 𝑌〉 · 𝑊)ℎ)(〈𝑍, 𝑋〉 · 𝑊)𝐹))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3481 〈cop 4640 ↦ cmpt 5234 ‘cfv 6569 (class class class)co 7438 2nd c2nd 8021 Basecbs 17254 Hom chom 17318 compcco 17319 Catccat 17718 HomFchof 18314 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-ov 7441 df-oprab 7442 df-mpo 7443 df-1st 8022 df-2nd 8023 df-hof 18316 |
This theorem is referenced by: hof2 18323 hofcllem 18324 hofcl 18325 yonedalem3b 18345 |
Copyright terms: Public domain | W3C validator |