Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hof2val | Structured version Visualization version GIF version |
Description: The morphism part of the Hom functor, for morphisms 〈𝑓, 𝑔〉:〈𝑋, 𝑌〉⟶〈𝑍, 𝑊〉 (which since the first argument is contravariant means morphisms 𝑓:𝑍⟶𝑋 and 𝑔:𝑌⟶𝑊), yields a function (a morphism of SetCat) mapping ℎ:𝑋⟶𝑌 to 𝑔 ∘ ℎ ∘ 𝑓:𝑍⟶𝑊. (Contributed by Mario Carneiro, 15-Jan-2017.) |
Ref | Expression |
---|---|
hofval.m | ⊢ 𝑀 = (HomF‘𝐶) |
hofval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
hof1.b | ⊢ 𝐵 = (Base‘𝐶) |
hof1.h | ⊢ 𝐻 = (Hom ‘𝐶) |
hof1.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
hof1.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
hof2.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
hof2.w | ⊢ (𝜑 → 𝑊 ∈ 𝐵) |
hof2.o | ⊢ · = (comp‘𝐶) |
hof2.f | ⊢ (𝜑 → 𝐹 ∈ (𝑍𝐻𝑋)) |
hof2.g | ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑊)) |
Ref | Expression |
---|---|
hof2val | ⊢ (𝜑 → (𝐹(〈𝑋, 𝑌〉(2nd ‘𝑀)〈𝑍, 𝑊〉)𝐺) = (ℎ ∈ (𝑋𝐻𝑌) ↦ ((𝐺(〈𝑋, 𝑌〉 · 𝑊)ℎ)(〈𝑍, 𝑋〉 · 𝑊)𝐹))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hofval.m | . . 3 ⊢ 𝑀 = (HomF‘𝐶) | |
2 | hofval.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
3 | hof1.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
4 | hof1.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
5 | hof1.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
6 | hof1.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
7 | hof2.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
8 | hof2.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ 𝐵) | |
9 | hof2.o | . . 3 ⊢ · = (comp‘𝐶) | |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | hof2fval 17889 | . 2 ⊢ (𝜑 → (〈𝑋, 𝑌〉(2nd ‘𝑀)〈𝑍, 𝑊〉) = (𝑓 ∈ (𝑍𝐻𝑋), 𝑔 ∈ (𝑌𝐻𝑊) ↦ (ℎ ∈ (𝑋𝐻𝑌) ↦ ((𝑔(〈𝑋, 𝑌〉 · 𝑊)ℎ)(〈𝑍, 𝑋〉 · 𝑊)𝑓)))) |
11 | simplrr 774 | . . . . 5 ⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) ∧ ℎ ∈ (𝑋𝐻𝑌)) → 𝑔 = 𝐺) | |
12 | 11 | oveq1d 7270 | . . . 4 ⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) ∧ ℎ ∈ (𝑋𝐻𝑌)) → (𝑔(〈𝑋, 𝑌〉 · 𝑊)ℎ) = (𝐺(〈𝑋, 𝑌〉 · 𝑊)ℎ)) |
13 | simplrl 773 | . . . 4 ⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) ∧ ℎ ∈ (𝑋𝐻𝑌)) → 𝑓 = 𝐹) | |
14 | 12, 13 | oveq12d 7273 | . . 3 ⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) ∧ ℎ ∈ (𝑋𝐻𝑌)) → ((𝑔(〈𝑋, 𝑌〉 · 𝑊)ℎ)(〈𝑍, 𝑋〉 · 𝑊)𝑓) = ((𝐺(〈𝑋, 𝑌〉 · 𝑊)ℎ)(〈𝑍, 𝑋〉 · 𝑊)𝐹)) |
15 | 14 | mpteq2dva 5170 | . 2 ⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) → (ℎ ∈ (𝑋𝐻𝑌) ↦ ((𝑔(〈𝑋, 𝑌〉 · 𝑊)ℎ)(〈𝑍, 𝑋〉 · 𝑊)𝑓)) = (ℎ ∈ (𝑋𝐻𝑌) ↦ ((𝐺(〈𝑋, 𝑌〉 · 𝑊)ℎ)(〈𝑍, 𝑋〉 · 𝑊)𝐹))) |
16 | hof2.f | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝑍𝐻𝑋)) | |
17 | hof2.g | . 2 ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑊)) | |
18 | ovex 7288 | . . . 4 ⊢ (𝑋𝐻𝑌) ∈ V | |
19 | 18 | mptex 7081 | . . 3 ⊢ (ℎ ∈ (𝑋𝐻𝑌) ↦ ((𝐺(〈𝑋, 𝑌〉 · 𝑊)ℎ)(〈𝑍, 𝑋〉 · 𝑊)𝐹)) ∈ V |
20 | 19 | a1i 11 | . 2 ⊢ (𝜑 → (ℎ ∈ (𝑋𝐻𝑌) ↦ ((𝐺(〈𝑋, 𝑌〉 · 𝑊)ℎ)(〈𝑍, 𝑋〉 · 𝑊)𝐹)) ∈ V) |
21 | 10, 15, 16, 17, 20 | ovmpod 7403 | 1 ⊢ (𝜑 → (𝐹(〈𝑋, 𝑌〉(2nd ‘𝑀)〈𝑍, 𝑊〉)𝐺) = (ℎ ∈ (𝑋𝐻𝑌) ↦ ((𝐺(〈𝑋, 𝑌〉 · 𝑊)ℎ)(〈𝑍, 𝑋〉 · 𝑊)𝐹))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 〈cop 4564 ↦ cmpt 5153 ‘cfv 6418 (class class class)co 7255 2nd c2nd 7803 Basecbs 16840 Hom chom 16899 compcco 16900 Catccat 17290 HomFchof 17882 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-hof 17884 |
This theorem is referenced by: hof2 17891 hofcllem 17892 hofcl 17893 yonedalem3b 17913 |
Copyright terms: Public domain | W3C validator |