MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hof2val Structured version   Visualization version   GIF version

Theorem hof2val 18208
Description: The morphism part of the Hom functor, for morphisms βŸ¨π‘“, π‘”βŸ©:βŸ¨π‘‹, π‘ŒβŸ©βŸΆβŸ¨π‘, π‘ŠβŸ© (which since the first argument is contravariant means morphisms 𝑓:π‘βŸΆπ‘‹ and 𝑔:π‘ŒβŸΆπ‘Š), yields a function (a morphism of SetCat) mapping β„Ž:π‘‹βŸΆπ‘Œ to 𝑔 ∘ β„Ž ∘ 𝑓:π‘βŸΆπ‘Š. (Contributed by Mario Carneiro, 15-Jan-2017.)
Hypotheses
Ref Expression
hofval.m 𝑀 = (HomFβ€˜πΆ)
hofval.c (πœ‘ β†’ 𝐢 ∈ Cat)
hof1.b 𝐡 = (Baseβ€˜πΆ)
hof1.h 𝐻 = (Hom β€˜πΆ)
hof1.x (πœ‘ β†’ 𝑋 ∈ 𝐡)
hof1.y (πœ‘ β†’ π‘Œ ∈ 𝐡)
hof2.z (πœ‘ β†’ 𝑍 ∈ 𝐡)
hof2.w (πœ‘ β†’ π‘Š ∈ 𝐡)
hof2.o Β· = (compβ€˜πΆ)
hof2.f (πœ‘ β†’ 𝐹 ∈ (𝑍𝐻𝑋))
hof2.g (πœ‘ β†’ 𝐺 ∈ (π‘Œπ»π‘Š))
Assertion
Ref Expression
hof2val (πœ‘ β†’ (𝐹(βŸ¨π‘‹, π‘ŒβŸ©(2nd β€˜π‘€)βŸ¨π‘, π‘ŠβŸ©)𝐺) = (β„Ž ∈ (π‘‹π»π‘Œ) ↦ ((𝐺(βŸ¨π‘‹, π‘ŒβŸ© Β· π‘Š)β„Ž)(βŸ¨π‘, π‘‹βŸ© Β· π‘Š)𝐹)))
Distinct variable groups:   𝐡,β„Ž   β„Ž,𝐹   β„Ž,𝐺   πœ‘,β„Ž   𝐢,β„Ž   β„Ž,𝐻   β„Ž,π‘Š   Β· ,β„Ž   β„Ž,𝑋   β„Ž,π‘Œ   β„Ž,𝑍
Allowed substitution hint:   𝑀(β„Ž)

Proof of Theorem hof2val
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hofval.m . . 3 𝑀 = (HomFβ€˜πΆ)
2 hofval.c . . 3 (πœ‘ β†’ 𝐢 ∈ Cat)
3 hof1.b . . 3 𝐡 = (Baseβ€˜πΆ)
4 hof1.h . . 3 𝐻 = (Hom β€˜πΆ)
5 hof1.x . . 3 (πœ‘ β†’ 𝑋 ∈ 𝐡)
6 hof1.y . . 3 (πœ‘ β†’ π‘Œ ∈ 𝐡)
7 hof2.z . . 3 (πœ‘ β†’ 𝑍 ∈ 𝐡)
8 hof2.w . . 3 (πœ‘ β†’ π‘Š ∈ 𝐡)
9 hof2.o . . 3 Β· = (compβ€˜πΆ)
101, 2, 3, 4, 5, 6, 7, 8, 9hof2fval 18207 . 2 (πœ‘ β†’ (βŸ¨π‘‹, π‘ŒβŸ©(2nd β€˜π‘€)βŸ¨π‘, π‘ŠβŸ©) = (𝑓 ∈ (𝑍𝐻𝑋), 𝑔 ∈ (π‘Œπ»π‘Š) ↦ (β„Ž ∈ (π‘‹π»π‘Œ) ↦ ((𝑔(βŸ¨π‘‹, π‘ŒβŸ© Β· π‘Š)β„Ž)(βŸ¨π‘, π‘‹βŸ© Β· π‘Š)𝑓))))
11 simplrr 776 . . . . 5 (((πœ‘ ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) ∧ β„Ž ∈ (π‘‹π»π‘Œ)) β†’ 𝑔 = 𝐺)
1211oveq1d 7423 . . . 4 (((πœ‘ ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) ∧ β„Ž ∈ (π‘‹π»π‘Œ)) β†’ (𝑔(βŸ¨π‘‹, π‘ŒβŸ© Β· π‘Š)β„Ž) = (𝐺(βŸ¨π‘‹, π‘ŒβŸ© Β· π‘Š)β„Ž))
13 simplrl 775 . . . 4 (((πœ‘ ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) ∧ β„Ž ∈ (π‘‹π»π‘Œ)) β†’ 𝑓 = 𝐹)
1412, 13oveq12d 7426 . . 3 (((πœ‘ ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) ∧ β„Ž ∈ (π‘‹π»π‘Œ)) β†’ ((𝑔(βŸ¨π‘‹, π‘ŒβŸ© Β· π‘Š)β„Ž)(βŸ¨π‘, π‘‹βŸ© Β· π‘Š)𝑓) = ((𝐺(βŸ¨π‘‹, π‘ŒβŸ© Β· π‘Š)β„Ž)(βŸ¨π‘, π‘‹βŸ© Β· π‘Š)𝐹))
1514mpteq2dva 5248 . 2 ((πœ‘ ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) β†’ (β„Ž ∈ (π‘‹π»π‘Œ) ↦ ((𝑔(βŸ¨π‘‹, π‘ŒβŸ© Β· π‘Š)β„Ž)(βŸ¨π‘, π‘‹βŸ© Β· π‘Š)𝑓)) = (β„Ž ∈ (π‘‹π»π‘Œ) ↦ ((𝐺(βŸ¨π‘‹, π‘ŒβŸ© Β· π‘Š)β„Ž)(βŸ¨π‘, π‘‹βŸ© Β· π‘Š)𝐹)))
16 hof2.f . 2 (πœ‘ β†’ 𝐹 ∈ (𝑍𝐻𝑋))
17 hof2.g . 2 (πœ‘ β†’ 𝐺 ∈ (π‘Œπ»π‘Š))
18 ovex 7441 . . . 4 (π‘‹π»π‘Œ) ∈ V
1918mptex 7224 . . 3 (β„Ž ∈ (π‘‹π»π‘Œ) ↦ ((𝐺(βŸ¨π‘‹, π‘ŒβŸ© Β· π‘Š)β„Ž)(βŸ¨π‘, π‘‹βŸ© Β· π‘Š)𝐹)) ∈ V
2019a1i 11 . 2 (πœ‘ β†’ (β„Ž ∈ (π‘‹π»π‘Œ) ↦ ((𝐺(βŸ¨π‘‹, π‘ŒβŸ© Β· π‘Š)β„Ž)(βŸ¨π‘, π‘‹βŸ© Β· π‘Š)𝐹)) ∈ V)
2110, 15, 16, 17, 20ovmpod 7559 1 (πœ‘ β†’ (𝐹(βŸ¨π‘‹, π‘ŒβŸ©(2nd β€˜π‘€)βŸ¨π‘, π‘ŠβŸ©)𝐺) = (β„Ž ∈ (π‘‹π»π‘Œ) ↦ ((𝐺(βŸ¨π‘‹, π‘ŒβŸ© Β· π‘Š)β„Ž)(βŸ¨π‘, π‘‹βŸ© Β· π‘Š)𝐹)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  Vcvv 3474  βŸ¨cop 4634   ↦ cmpt 5231  β€˜cfv 6543  (class class class)co 7408  2nd c2nd 7973  Basecbs 17143  Hom chom 17207  compcco 17208  Catccat 17607  HomFchof 18200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7411  df-oprab 7412  df-mpo 7413  df-1st 7974  df-2nd 7975  df-hof 18202
This theorem is referenced by:  hof2  18209  hofcllem  18210  hofcl  18211  yonedalem3b  18231
  Copyright terms: Public domain W3C validator