| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hof2val | Structured version Visualization version GIF version | ||
| Description: The morphism part of the Hom functor, for morphisms 〈𝑓, 𝑔〉:〈𝑋, 𝑌〉⟶〈𝑍, 𝑊〉 (which since the first argument is contravariant means morphisms 𝑓:𝑍⟶𝑋 and 𝑔:𝑌⟶𝑊), yields a function (a morphism of SetCat) mapping ℎ:𝑋⟶𝑌 to 𝑔 ∘ ℎ ∘ 𝑓:𝑍⟶𝑊. (Contributed by Mario Carneiro, 15-Jan-2017.) |
| Ref | Expression |
|---|---|
| hofval.m | ⊢ 𝑀 = (HomF‘𝐶) |
| hofval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| hof1.b | ⊢ 𝐵 = (Base‘𝐶) |
| hof1.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| hof1.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| hof1.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| hof2.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| hof2.w | ⊢ (𝜑 → 𝑊 ∈ 𝐵) |
| hof2.o | ⊢ · = (comp‘𝐶) |
| hof2.f | ⊢ (𝜑 → 𝐹 ∈ (𝑍𝐻𝑋)) |
| hof2.g | ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑊)) |
| Ref | Expression |
|---|---|
| hof2val | ⊢ (𝜑 → (𝐹(〈𝑋, 𝑌〉(2nd ‘𝑀)〈𝑍, 𝑊〉)𝐺) = (ℎ ∈ (𝑋𝐻𝑌) ↦ ((𝐺(〈𝑋, 𝑌〉 · 𝑊)ℎ)(〈𝑍, 𝑋〉 · 𝑊)𝐹))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hofval.m | . . 3 ⊢ 𝑀 = (HomF‘𝐶) | |
| 2 | hofval.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 3 | hof1.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
| 4 | hof1.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 5 | hof1.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 6 | hof1.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 7 | hof2.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 8 | hof2.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ 𝐵) | |
| 9 | hof2.o | . . 3 ⊢ · = (comp‘𝐶) | |
| 10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | hof2fval 18216 | . 2 ⊢ (𝜑 → (〈𝑋, 𝑌〉(2nd ‘𝑀)〈𝑍, 𝑊〉) = (𝑓 ∈ (𝑍𝐻𝑋), 𝑔 ∈ (𝑌𝐻𝑊) ↦ (ℎ ∈ (𝑋𝐻𝑌) ↦ ((𝑔(〈𝑋, 𝑌〉 · 𝑊)ℎ)(〈𝑍, 𝑋〉 · 𝑊)𝑓)))) |
| 11 | simplrr 777 | . . . . 5 ⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) ∧ ℎ ∈ (𝑋𝐻𝑌)) → 𝑔 = 𝐺) | |
| 12 | 11 | oveq1d 7402 | . . . 4 ⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) ∧ ℎ ∈ (𝑋𝐻𝑌)) → (𝑔(〈𝑋, 𝑌〉 · 𝑊)ℎ) = (𝐺(〈𝑋, 𝑌〉 · 𝑊)ℎ)) |
| 13 | simplrl 776 | . . . 4 ⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) ∧ ℎ ∈ (𝑋𝐻𝑌)) → 𝑓 = 𝐹) | |
| 14 | 12, 13 | oveq12d 7405 | . . 3 ⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) ∧ ℎ ∈ (𝑋𝐻𝑌)) → ((𝑔(〈𝑋, 𝑌〉 · 𝑊)ℎ)(〈𝑍, 𝑋〉 · 𝑊)𝑓) = ((𝐺(〈𝑋, 𝑌〉 · 𝑊)ℎ)(〈𝑍, 𝑋〉 · 𝑊)𝐹)) |
| 15 | 14 | mpteq2dva 5200 | . 2 ⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) → (ℎ ∈ (𝑋𝐻𝑌) ↦ ((𝑔(〈𝑋, 𝑌〉 · 𝑊)ℎ)(〈𝑍, 𝑋〉 · 𝑊)𝑓)) = (ℎ ∈ (𝑋𝐻𝑌) ↦ ((𝐺(〈𝑋, 𝑌〉 · 𝑊)ℎ)(〈𝑍, 𝑋〉 · 𝑊)𝐹))) |
| 16 | hof2.f | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝑍𝐻𝑋)) | |
| 17 | hof2.g | . 2 ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑊)) | |
| 18 | ovex 7420 | . . . 4 ⊢ (𝑋𝐻𝑌) ∈ V | |
| 19 | 18 | mptex 7197 | . . 3 ⊢ (ℎ ∈ (𝑋𝐻𝑌) ↦ ((𝐺(〈𝑋, 𝑌〉 · 𝑊)ℎ)(〈𝑍, 𝑋〉 · 𝑊)𝐹)) ∈ V |
| 20 | 19 | a1i 11 | . 2 ⊢ (𝜑 → (ℎ ∈ (𝑋𝐻𝑌) ↦ ((𝐺(〈𝑋, 𝑌〉 · 𝑊)ℎ)(〈𝑍, 𝑋〉 · 𝑊)𝐹)) ∈ V) |
| 21 | 10, 15, 16, 17, 20 | ovmpod 7541 | 1 ⊢ (𝜑 → (𝐹(〈𝑋, 𝑌〉(2nd ‘𝑀)〈𝑍, 𝑊〉)𝐺) = (ℎ ∈ (𝑋𝐻𝑌) ↦ ((𝐺(〈𝑋, 𝑌〉 · 𝑊)ℎ)(〈𝑍, 𝑋〉 · 𝑊)𝐹))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 〈cop 4595 ↦ cmpt 5188 ‘cfv 6511 (class class class)co 7387 2nd c2nd 7967 Basecbs 17179 Hom chom 17231 compcco 17232 Catccat 17625 HomFchof 18209 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-hof 18211 |
| This theorem is referenced by: hof2 18218 hofcllem 18219 hofcl 18220 yonedalem3b 18240 |
| Copyright terms: Public domain | W3C validator |