MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hof2val Structured version   Visualization version   GIF version

Theorem hof2val 18150
Description: The morphism part of the Hom functor, for morphisms βŸ¨π‘“, π‘”βŸ©:βŸ¨π‘‹, π‘ŒβŸ©βŸΆβŸ¨π‘, π‘ŠβŸ© (which since the first argument is contravariant means morphisms 𝑓:π‘βŸΆπ‘‹ and 𝑔:π‘ŒβŸΆπ‘Š), yields a function (a morphism of SetCat) mapping β„Ž:π‘‹βŸΆπ‘Œ to 𝑔 ∘ β„Ž ∘ 𝑓:π‘βŸΆπ‘Š. (Contributed by Mario Carneiro, 15-Jan-2017.)
Hypotheses
Ref Expression
hofval.m 𝑀 = (HomFβ€˜πΆ)
hofval.c (πœ‘ β†’ 𝐢 ∈ Cat)
hof1.b 𝐡 = (Baseβ€˜πΆ)
hof1.h 𝐻 = (Hom β€˜πΆ)
hof1.x (πœ‘ β†’ 𝑋 ∈ 𝐡)
hof1.y (πœ‘ β†’ π‘Œ ∈ 𝐡)
hof2.z (πœ‘ β†’ 𝑍 ∈ 𝐡)
hof2.w (πœ‘ β†’ π‘Š ∈ 𝐡)
hof2.o Β· = (compβ€˜πΆ)
hof2.f (πœ‘ β†’ 𝐹 ∈ (𝑍𝐻𝑋))
hof2.g (πœ‘ β†’ 𝐺 ∈ (π‘Œπ»π‘Š))
Assertion
Ref Expression
hof2val (πœ‘ β†’ (𝐹(βŸ¨π‘‹, π‘ŒβŸ©(2nd β€˜π‘€)βŸ¨π‘, π‘ŠβŸ©)𝐺) = (β„Ž ∈ (π‘‹π»π‘Œ) ↦ ((𝐺(βŸ¨π‘‹, π‘ŒβŸ© Β· π‘Š)β„Ž)(βŸ¨π‘, π‘‹βŸ© Β· π‘Š)𝐹)))
Distinct variable groups:   𝐡,β„Ž   β„Ž,𝐹   β„Ž,𝐺   πœ‘,β„Ž   𝐢,β„Ž   β„Ž,𝐻   β„Ž,π‘Š   Β· ,β„Ž   β„Ž,𝑋   β„Ž,π‘Œ   β„Ž,𝑍
Allowed substitution hint:   𝑀(β„Ž)

Proof of Theorem hof2val
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hofval.m . . 3 𝑀 = (HomFβ€˜πΆ)
2 hofval.c . . 3 (πœ‘ β†’ 𝐢 ∈ Cat)
3 hof1.b . . 3 𝐡 = (Baseβ€˜πΆ)
4 hof1.h . . 3 𝐻 = (Hom β€˜πΆ)
5 hof1.x . . 3 (πœ‘ β†’ 𝑋 ∈ 𝐡)
6 hof1.y . . 3 (πœ‘ β†’ π‘Œ ∈ 𝐡)
7 hof2.z . . 3 (πœ‘ β†’ 𝑍 ∈ 𝐡)
8 hof2.w . . 3 (πœ‘ β†’ π‘Š ∈ 𝐡)
9 hof2.o . . 3 Β· = (compβ€˜πΆ)
101, 2, 3, 4, 5, 6, 7, 8, 9hof2fval 18149 . 2 (πœ‘ β†’ (βŸ¨π‘‹, π‘ŒβŸ©(2nd β€˜π‘€)βŸ¨π‘, π‘ŠβŸ©) = (𝑓 ∈ (𝑍𝐻𝑋), 𝑔 ∈ (π‘Œπ»π‘Š) ↦ (β„Ž ∈ (π‘‹π»π‘Œ) ↦ ((𝑔(βŸ¨π‘‹, π‘ŒβŸ© Β· π‘Š)β„Ž)(βŸ¨π‘, π‘‹βŸ© Β· π‘Š)𝑓))))
11 simplrr 777 . . . . 5 (((πœ‘ ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) ∧ β„Ž ∈ (π‘‹π»π‘Œ)) β†’ 𝑔 = 𝐺)
1211oveq1d 7373 . . . 4 (((πœ‘ ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) ∧ β„Ž ∈ (π‘‹π»π‘Œ)) β†’ (𝑔(βŸ¨π‘‹, π‘ŒβŸ© Β· π‘Š)β„Ž) = (𝐺(βŸ¨π‘‹, π‘ŒβŸ© Β· π‘Š)β„Ž))
13 simplrl 776 . . . 4 (((πœ‘ ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) ∧ β„Ž ∈ (π‘‹π»π‘Œ)) β†’ 𝑓 = 𝐹)
1412, 13oveq12d 7376 . . 3 (((πœ‘ ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) ∧ β„Ž ∈ (π‘‹π»π‘Œ)) β†’ ((𝑔(βŸ¨π‘‹, π‘ŒβŸ© Β· π‘Š)β„Ž)(βŸ¨π‘, π‘‹βŸ© Β· π‘Š)𝑓) = ((𝐺(βŸ¨π‘‹, π‘ŒβŸ© Β· π‘Š)β„Ž)(βŸ¨π‘, π‘‹βŸ© Β· π‘Š)𝐹))
1514mpteq2dva 5206 . 2 ((πœ‘ ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) β†’ (β„Ž ∈ (π‘‹π»π‘Œ) ↦ ((𝑔(βŸ¨π‘‹, π‘ŒβŸ© Β· π‘Š)β„Ž)(βŸ¨π‘, π‘‹βŸ© Β· π‘Š)𝑓)) = (β„Ž ∈ (π‘‹π»π‘Œ) ↦ ((𝐺(βŸ¨π‘‹, π‘ŒβŸ© Β· π‘Š)β„Ž)(βŸ¨π‘, π‘‹βŸ© Β· π‘Š)𝐹)))
16 hof2.f . 2 (πœ‘ β†’ 𝐹 ∈ (𝑍𝐻𝑋))
17 hof2.g . 2 (πœ‘ β†’ 𝐺 ∈ (π‘Œπ»π‘Š))
18 ovex 7391 . . . 4 (π‘‹π»π‘Œ) ∈ V
1918mptex 7174 . . 3 (β„Ž ∈ (π‘‹π»π‘Œ) ↦ ((𝐺(βŸ¨π‘‹, π‘ŒβŸ© Β· π‘Š)β„Ž)(βŸ¨π‘, π‘‹βŸ© Β· π‘Š)𝐹)) ∈ V
2019a1i 11 . 2 (πœ‘ β†’ (β„Ž ∈ (π‘‹π»π‘Œ) ↦ ((𝐺(βŸ¨π‘‹, π‘ŒβŸ© Β· π‘Š)β„Ž)(βŸ¨π‘, π‘‹βŸ© Β· π‘Š)𝐹)) ∈ V)
2110, 15, 16, 17, 20ovmpod 7508 1 (πœ‘ β†’ (𝐹(βŸ¨π‘‹, π‘ŒβŸ©(2nd β€˜π‘€)βŸ¨π‘, π‘ŠβŸ©)𝐺) = (β„Ž ∈ (π‘‹π»π‘Œ) ↦ ((𝐺(βŸ¨π‘‹, π‘ŒβŸ© Β· π‘Š)β„Ž)(βŸ¨π‘, π‘‹βŸ© Β· π‘Š)𝐹)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   = wceq 1542   ∈ wcel 2107  Vcvv 3444  βŸ¨cop 4593   ↦ cmpt 5189  β€˜cfv 6497  (class class class)co 7358  2nd c2nd 7921  Basecbs 17088  Hom chom 17149  compcco 17150  Catccat 17549  HomFchof 18142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-ov 7361  df-oprab 7362  df-mpo 7363  df-1st 7922  df-2nd 7923  df-hof 18144
This theorem is referenced by:  hof2  18151  hofcllem  18152  hofcl  18153  yonedalem3b  18173
  Copyright terms: Public domain W3C validator