![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hof2val | Structured version Visualization version GIF version |
Description: The morphism part of the Hom functor, for morphisms β¨π, πβ©:β¨π, πβ©βΆβ¨π, πβ© (which since the first argument is contravariant means morphisms π:πβΆπ and π:πβΆπ), yields a function (a morphism of SetCat) mapping β:πβΆπ to π β β β π:πβΆπ. (Contributed by Mario Carneiro, 15-Jan-2017.) |
Ref | Expression |
---|---|
hofval.m | β’ π = (HomFβπΆ) |
hofval.c | β’ (π β πΆ β Cat) |
hof1.b | β’ π΅ = (BaseβπΆ) |
hof1.h | β’ π» = (Hom βπΆ) |
hof1.x | β’ (π β π β π΅) |
hof1.y | β’ (π β π β π΅) |
hof2.z | β’ (π β π β π΅) |
hof2.w | β’ (π β π β π΅) |
hof2.o | β’ Β· = (compβπΆ) |
hof2.f | β’ (π β πΉ β (ππ»π)) |
hof2.g | β’ (π β πΊ β (ππ»π)) |
Ref | Expression |
---|---|
hof2val | β’ (π β (πΉ(β¨π, πβ©(2nd βπ)β¨π, πβ©)πΊ) = (β β (ππ»π) β¦ ((πΊ(β¨π, πβ© Β· π)β)(β¨π, πβ© Β· π)πΉ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hofval.m | . . 3 β’ π = (HomFβπΆ) | |
2 | hofval.c | . . 3 β’ (π β πΆ β Cat) | |
3 | hof1.b | . . 3 β’ π΅ = (BaseβπΆ) | |
4 | hof1.h | . . 3 β’ π» = (Hom βπΆ) | |
5 | hof1.x | . . 3 β’ (π β π β π΅) | |
6 | hof1.y | . . 3 β’ (π β π β π΅) | |
7 | hof2.z | . . 3 β’ (π β π β π΅) | |
8 | hof2.w | . . 3 β’ (π β π β π΅) | |
9 | hof2.o | . . 3 β’ Β· = (compβπΆ) | |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | hof2fval 18207 | . 2 β’ (π β (β¨π, πβ©(2nd βπ)β¨π, πβ©) = (π β (ππ»π), π β (ππ»π) β¦ (β β (ππ»π) β¦ ((π(β¨π, πβ© Β· π)β)(β¨π, πβ© Β· π)π)))) |
11 | simplrr 776 | . . . . 5 β’ (((π β§ (π = πΉ β§ π = πΊ)) β§ β β (ππ»π)) β π = πΊ) | |
12 | 11 | oveq1d 7423 | . . . 4 β’ (((π β§ (π = πΉ β§ π = πΊ)) β§ β β (ππ»π)) β (π(β¨π, πβ© Β· π)β) = (πΊ(β¨π, πβ© Β· π)β)) |
13 | simplrl 775 | . . . 4 β’ (((π β§ (π = πΉ β§ π = πΊ)) β§ β β (ππ»π)) β π = πΉ) | |
14 | 12, 13 | oveq12d 7426 | . . 3 β’ (((π β§ (π = πΉ β§ π = πΊ)) β§ β β (ππ»π)) β ((π(β¨π, πβ© Β· π)β)(β¨π, πβ© Β· π)π) = ((πΊ(β¨π, πβ© Β· π)β)(β¨π, πβ© Β· π)πΉ)) |
15 | 14 | mpteq2dva 5248 | . 2 β’ ((π β§ (π = πΉ β§ π = πΊ)) β (β β (ππ»π) β¦ ((π(β¨π, πβ© Β· π)β)(β¨π, πβ© Β· π)π)) = (β β (ππ»π) β¦ ((πΊ(β¨π, πβ© Β· π)β)(β¨π, πβ© Β· π)πΉ))) |
16 | hof2.f | . 2 β’ (π β πΉ β (ππ»π)) | |
17 | hof2.g | . 2 β’ (π β πΊ β (ππ»π)) | |
18 | ovex 7441 | . . . 4 β’ (ππ»π) β V | |
19 | 18 | mptex 7224 | . . 3 β’ (β β (ππ»π) β¦ ((πΊ(β¨π, πβ© Β· π)β)(β¨π, πβ© Β· π)πΉ)) β V |
20 | 19 | a1i 11 | . 2 β’ (π β (β β (ππ»π) β¦ ((πΊ(β¨π, πβ© Β· π)β)(β¨π, πβ© Β· π)πΉ)) β V) |
21 | 10, 15, 16, 17, 20 | ovmpod 7559 | 1 β’ (π β (πΉ(β¨π, πβ©(2nd βπ)β¨π, πβ©)πΊ) = (β β (ππ»π) β¦ ((πΊ(β¨π, πβ© Β· π)β)(β¨π, πβ© Β· π)πΉ))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 Vcvv 3474 β¨cop 4634 β¦ cmpt 5231 βcfv 6543 (class class class)co 7408 2nd c2nd 7973 Basecbs 17143 Hom chom 17207 compcco 17208 Catccat 17607 HomFchof 18200 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-1st 7974 df-2nd 7975 df-hof 18202 |
This theorem is referenced by: hof2 18209 hofcllem 18210 hofcl 18211 yonedalem3b 18231 |
Copyright terms: Public domain | W3C validator |