MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmphref Structured version   Visualization version   GIF version

Theorem hmphref 23697
Description: "Is homeomorphic to" is reflexive. (Contributed by FL, 25-Feb-2007.) (Proof shortened by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
hmphref (𝐽 ∈ Top → 𝐽𝐽)

Proof of Theorem hmphref
StepHypRef Expression
1 toptopon2 22834 . . 3 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
2 idhmeo 23689 . . 3 (𝐽 ∈ (TopOn‘ 𝐽) → ( I ↾ 𝐽) ∈ (𝐽Homeo𝐽))
31, 2sylbi 217 . 2 (𝐽 ∈ Top → ( I ↾ 𝐽) ∈ (𝐽Homeo𝐽))
4 hmphi 23693 . 2 (( I ↾ 𝐽) ∈ (𝐽Homeo𝐽) → 𝐽𝐽)
53, 4syl 17 1 (𝐽 ∈ Top → 𝐽𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2113   cuni 4858   class class class wbr 5093   I cid 5513  cres 5621  cfv 6486  (class class class)co 7352  Topctop 22809  TopOnctopon 22826  Homeochmeo 23669  chmph 23670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-1o 8391  df-map 8758  df-top 22810  df-topon 22827  df-cn 23143  df-hmeo 23671  df-hmph 23672
This theorem is referenced by:  hmpher  23700  hmph0  23711
  Copyright terms: Public domain W3C validator