MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmphref Structured version   Visualization version   GIF version

Theorem hmphref 22386
Description: "Is homeomorphic to" is reflexive. (Contributed by FL, 25-Feb-2007.) (Proof shortened by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
hmphref (𝐽 ∈ Top → 𝐽𝐽)

Proof of Theorem hmphref
StepHypRef Expression
1 toptopon2 21523 . . 3 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
2 idhmeo 22378 . . 3 (𝐽 ∈ (TopOn‘ 𝐽) → ( I ↾ 𝐽) ∈ (𝐽Homeo𝐽))
31, 2sylbi 220 . 2 (𝐽 ∈ Top → ( I ↾ 𝐽) ∈ (𝐽Homeo𝐽))
4 hmphi 22382 . 2 (( I ↾ 𝐽) ∈ (𝐽Homeo𝐽) → 𝐽𝐽)
53, 4syl 17 1 (𝐽 ∈ Top → 𝐽𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111   cuni 4800   class class class wbr 5030   I cid 5424  cres 5521  cfv 6324  (class class class)co 7135  Topctop 21498  TopOnctopon 21515  Homeochmeo 22358  chmph 22359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-1st 7671  df-2nd 7672  df-1o 8085  df-map 8391  df-top 21499  df-topon 21516  df-cn 21832  df-hmeo 22360  df-hmph 22361
This theorem is referenced by:  hmpher  22389  hmph0  22400
  Copyright terms: Public domain W3C validator