MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ishmeo Structured version   Visualization version   GIF version

Theorem ishmeo 23653
Description: The predicate F is a homeomorphism between topology 𝐽 and topology 𝐾. Criterion of [BourbakiTop1] p. I.2. (Contributed by FL, 14-Feb-2007.) (Revised by Mario Carneiro, 22-Aug-2015.)
Assertion
Ref Expression
ishmeo (𝐹 ∈ (𝐽Homeo𝐾) ↔ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐹 ∈ (𝐾 Cn 𝐽)))

Proof of Theorem ishmeo
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 cnveq 5840 . . 3 (𝑓 = 𝐹𝑓 = 𝐹)
21eleq1d 2814 . 2 (𝑓 = 𝐹 → (𝑓 ∈ (𝐾 Cn 𝐽) ↔ 𝐹 ∈ (𝐾 Cn 𝐽)))
3 hmeofval 23652 . 2 (𝐽Homeo𝐾) = {𝑓 ∈ (𝐽 Cn 𝐾) ∣ 𝑓 ∈ (𝐾 Cn 𝐽)}
42, 3elrab2 3665 1 (𝐹 ∈ (𝐽Homeo𝐾) ↔ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐹 ∈ (𝐾 Cn 𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  ccnv 5640  (class class class)co 7390   Cn ccn 23118  Homeochmeo 23647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-map 8804  df-top 22788  df-topon 22805  df-cn 23121  df-hmeo 23649
This theorem is referenced by:  hmeocn  23654  hmeocnvcn  23655  hmeocnv  23656  hmeores  23665  hmeoco  23666  idhmeo  23667  indishmph  23692  cmphaushmeo  23694  ordthmeo  23696  txhmeo  23697  txswaphmeo  23699  pt1hmeo  23700  ptunhmeo  23702  xkohmeo  23709  qtopf1  23710  qtophmeo  23711  grpinvhmeo  23980  tgplacthmeo  23997  cncfcnvcn  24826  icchmeo  24845  icchmeoOLD  24846  cnrehmeo  24858  cnrehmeoOLD  24859  cnheiborlem  24860  ismtyhmeo  37806
  Copyright terms: Public domain W3C validator