MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ishmeo Structured version   Visualization version   GIF version

Theorem ishmeo 22898
Description: The predicate F is a homeomorphism between topology 𝐽 and topology 𝐾. Criterion of [BourbakiTop1] p. I.2. (Contributed by FL, 14-Feb-2007.) (Revised by Mario Carneiro, 22-Aug-2015.)
Assertion
Ref Expression
ishmeo (𝐹 ∈ (𝐽Homeo𝐾) ↔ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐹 ∈ (𝐾 Cn 𝐽)))

Proof of Theorem ishmeo
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 cnveq 5776 . . 3 (𝑓 = 𝐹𝑓 = 𝐹)
21eleq1d 2823 . 2 (𝑓 = 𝐹 → (𝑓 ∈ (𝐾 Cn 𝐽) ↔ 𝐹 ∈ (𝐾 Cn 𝐽)))
3 hmeofval 22897 . 2 (𝐽Homeo𝐾) = {𝑓 ∈ (𝐽 Cn 𝐾) ∣ 𝑓 ∈ (𝐾 Cn 𝐽)}
42, 3elrab2 3627 1 (𝐹 ∈ (𝐽Homeo𝐾) ↔ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐹 ∈ (𝐾 Cn 𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1539  wcel 2106  ccnv 5584  (class class class)co 7268   Cn ccn 22363  Homeochmeo 22892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5222  ax-nul 5229  ax-pow 5287  ax-pr 5351  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3432  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5485  df-xp 5591  df-rel 5592  df-cnv 5593  df-co 5594  df-dm 5595  df-rn 5596  df-res 5597  df-ima 5598  df-iota 6385  df-fun 6429  df-fn 6430  df-f 6431  df-fv 6435  df-ov 7271  df-oprab 7272  df-mpo 7273  df-map 8605  df-top 22031  df-topon 22048  df-cn 22366  df-hmeo 22894
This theorem is referenced by:  hmeocn  22899  hmeocnvcn  22900  hmeocnv  22901  hmeores  22910  hmeoco  22911  idhmeo  22912  indishmph  22937  cmphaushmeo  22939  ordthmeo  22941  txhmeo  22942  txswaphmeo  22944  pt1hmeo  22945  ptunhmeo  22947  xkohmeo  22954  qtopf1  22955  qtophmeo  22956  grpinvhmeo  23225  tgplacthmeo  23242  cncfcnvcn  24076  icchmeo  24092  cnrehmeo  24104  cnheiborlem  24105  ismtyhmeo  35949
  Copyright terms: Public domain W3C validator