![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ishmeo | Structured version Visualization version GIF version |
Description: The predicate F is a homeomorphism between topology 𝐽 and topology 𝐾. Criterion of [BourbakiTop1] p. I.2. (Contributed by FL, 14-Feb-2007.) (Revised by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
ishmeo | ⊢ (𝐹 ∈ (𝐽Homeo𝐾) ↔ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ ◡𝐹 ∈ (𝐾 Cn 𝐽))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnveq 5887 | . . 3 ⊢ (𝑓 = 𝐹 → ◡𝑓 = ◡𝐹) | |
2 | 1 | eleq1d 2824 | . 2 ⊢ (𝑓 = 𝐹 → (◡𝑓 ∈ (𝐾 Cn 𝐽) ↔ ◡𝐹 ∈ (𝐾 Cn 𝐽))) |
3 | hmeofval 23782 | . 2 ⊢ (𝐽Homeo𝐾) = {𝑓 ∈ (𝐽 Cn 𝐾) ∣ ◡𝑓 ∈ (𝐾 Cn 𝐽)} | |
4 | 2, 3 | elrab2 3698 | 1 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) ↔ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ ◡𝐹 ∈ (𝐾 Cn 𝐽))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ◡ccnv 5688 (class class class)co 7431 Cn ccn 23248 Homeochmeo 23777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-map 8867 df-top 22916 df-topon 22933 df-cn 23251 df-hmeo 23779 |
This theorem is referenced by: hmeocn 23784 hmeocnvcn 23785 hmeocnv 23786 hmeores 23795 hmeoco 23796 idhmeo 23797 indishmph 23822 cmphaushmeo 23824 ordthmeo 23826 txhmeo 23827 txswaphmeo 23829 pt1hmeo 23830 ptunhmeo 23832 xkohmeo 23839 qtopf1 23840 qtophmeo 23841 grpinvhmeo 24110 tgplacthmeo 24127 cncfcnvcn 24966 icchmeo 24985 icchmeoOLD 24986 cnrehmeo 24998 cnrehmeoOLD 24999 cnheiborlem 25000 ismtyhmeo 37792 |
Copyright terms: Public domain | W3C validator |