MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ishmeo Structured version   Visualization version   GIF version

Theorem ishmeo 23783
Description: The predicate F is a homeomorphism between topology 𝐽 and topology 𝐾. Criterion of [BourbakiTop1] p. I.2. (Contributed by FL, 14-Feb-2007.) (Revised by Mario Carneiro, 22-Aug-2015.)
Assertion
Ref Expression
ishmeo (𝐹 ∈ (𝐽Homeo𝐾) ↔ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐹 ∈ (𝐾 Cn 𝐽)))

Proof of Theorem ishmeo
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 cnveq 5887 . . 3 (𝑓 = 𝐹𝑓 = 𝐹)
21eleq1d 2824 . 2 (𝑓 = 𝐹 → (𝑓 ∈ (𝐾 Cn 𝐽) ↔ 𝐹 ∈ (𝐾 Cn 𝐽)))
3 hmeofval 23782 . 2 (𝐽Homeo𝐾) = {𝑓 ∈ (𝐽 Cn 𝐾) ∣ 𝑓 ∈ (𝐾 Cn 𝐽)}
42, 3elrab2 3698 1 (𝐹 ∈ (𝐽Homeo𝐾) ↔ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐹 ∈ (𝐾 Cn 𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wcel 2106  ccnv 5688  (class class class)co 7431   Cn ccn 23248  Homeochmeo 23777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-map 8867  df-top 22916  df-topon 22933  df-cn 23251  df-hmeo 23779
This theorem is referenced by:  hmeocn  23784  hmeocnvcn  23785  hmeocnv  23786  hmeores  23795  hmeoco  23796  idhmeo  23797  indishmph  23822  cmphaushmeo  23824  ordthmeo  23826  txhmeo  23827  txswaphmeo  23829  pt1hmeo  23830  ptunhmeo  23832  xkohmeo  23839  qtopf1  23840  qtophmeo  23841  grpinvhmeo  24110  tgplacthmeo  24127  cncfcnvcn  24966  icchmeo  24985  icchmeoOLD  24986  cnrehmeo  24998  cnrehmeoOLD  24999  cnheiborlem  25000  ismtyhmeo  37792
  Copyright terms: Public domain W3C validator