| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hmeoco | Structured version Visualization version GIF version | ||
| Description: The composite of two homeomorphisms is a homeomorphism. (Contributed by FL, 9-Mar-2007.) (Proof shortened by Mario Carneiro, 23-Aug-2015.) |
| Ref | Expression |
|---|---|
| hmeoco | ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐺 ∈ (𝐾Homeo𝐿)) → (𝐺 ∘ 𝐹) ∈ (𝐽Homeo𝐿)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hmeocn 23623 | . . 3 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾)) | |
| 2 | hmeocn 23623 | . . 3 ⊢ (𝐺 ∈ (𝐾Homeo𝐿) → 𝐺 ∈ (𝐾 Cn 𝐿)) | |
| 3 | cnco 23129 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) → (𝐺 ∘ 𝐹) ∈ (𝐽 Cn 𝐿)) | |
| 4 | 1, 2, 3 | syl2an 596 | . 2 ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐺 ∈ (𝐾Homeo𝐿)) → (𝐺 ∘ 𝐹) ∈ (𝐽 Cn 𝐿)) |
| 5 | cnvco 5839 | . . 3 ⊢ ◡(𝐺 ∘ 𝐹) = (◡𝐹 ∘ ◡𝐺) | |
| 6 | hmeocnvcn 23624 | . . . 4 ⊢ (𝐺 ∈ (𝐾Homeo𝐿) → ◡𝐺 ∈ (𝐿 Cn 𝐾)) | |
| 7 | hmeocnvcn 23624 | . . . 4 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → ◡𝐹 ∈ (𝐾 Cn 𝐽)) | |
| 8 | cnco 23129 | . . . 4 ⊢ ((◡𝐺 ∈ (𝐿 Cn 𝐾) ∧ ◡𝐹 ∈ (𝐾 Cn 𝐽)) → (◡𝐹 ∘ ◡𝐺) ∈ (𝐿 Cn 𝐽)) | |
| 9 | 6, 7, 8 | syl2anr 597 | . . 3 ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐺 ∈ (𝐾Homeo𝐿)) → (◡𝐹 ∘ ◡𝐺) ∈ (𝐿 Cn 𝐽)) |
| 10 | 5, 9 | eqeltrid 2832 | . 2 ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐺 ∈ (𝐾Homeo𝐿)) → ◡(𝐺 ∘ 𝐹) ∈ (𝐿 Cn 𝐽)) |
| 11 | ishmeo 23622 | . 2 ⊢ ((𝐺 ∘ 𝐹) ∈ (𝐽Homeo𝐿) ↔ ((𝐺 ∘ 𝐹) ∈ (𝐽 Cn 𝐿) ∧ ◡(𝐺 ∘ 𝐹) ∈ (𝐿 Cn 𝐽))) | |
| 12 | 4, 10, 11 | sylanbrc 583 | 1 ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐺 ∈ (𝐾Homeo𝐿)) → (𝐺 ∘ 𝐹) ∈ (𝐽Homeo𝐿)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ◡ccnv 5630 ∘ ccom 5635 (class class class)co 7369 Cn ccn 23087 Homeochmeo 23616 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-map 8778 df-top 22757 df-topon 22774 df-cn 23090 df-hmeo 23618 |
| This theorem is referenced by: hmphtr 23646 xpstopnlem1 23672 tgpconncomp 23976 tsmsxplem1 24016 |
| Copyright terms: Public domain | W3C validator |