MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmeoco Structured version   Visualization version   GIF version

Theorem hmeoco 23596
Description: The composite of two homeomorphisms is a homeomorphism. (Contributed by FL, 9-Mar-2007.) (Proof shortened by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
hmeoco ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐺 ∈ (𝐾Homeo𝐿)) → (𝐺𝐹) ∈ (𝐽Homeo𝐿))

Proof of Theorem hmeoco
StepHypRef Expression
1 hmeocn 23584 . . 3 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾))
2 hmeocn 23584 . . 3 (𝐺 ∈ (𝐾Homeo𝐿) → 𝐺 ∈ (𝐾 Cn 𝐿))
3 cnco 23090 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) → (𝐺𝐹) ∈ (𝐽 Cn 𝐿))
41, 2, 3syl2an 595 . 2 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐺 ∈ (𝐾Homeo𝐿)) → (𝐺𝐹) ∈ (𝐽 Cn 𝐿))
5 cnvco 5885 . . 3 (𝐺𝐹) = (𝐹𝐺)
6 hmeocnvcn 23585 . . . 4 (𝐺 ∈ (𝐾Homeo𝐿) → 𝐺 ∈ (𝐿 Cn 𝐾))
7 hmeocnvcn 23585 . . . 4 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐾 Cn 𝐽))
8 cnco 23090 . . . 4 ((𝐺 ∈ (𝐿 Cn 𝐾) ∧ 𝐹 ∈ (𝐾 Cn 𝐽)) → (𝐹𝐺) ∈ (𝐿 Cn 𝐽))
96, 7, 8syl2anr 596 . . 3 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐺 ∈ (𝐾Homeo𝐿)) → (𝐹𝐺) ∈ (𝐿 Cn 𝐽))
105, 9eqeltrid 2836 . 2 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐺 ∈ (𝐾Homeo𝐿)) → (𝐺𝐹) ∈ (𝐿 Cn 𝐽))
11 ishmeo 23583 . 2 ((𝐺𝐹) ∈ (𝐽Homeo𝐿) ↔ ((𝐺𝐹) ∈ (𝐽 Cn 𝐿) ∧ (𝐺𝐹) ∈ (𝐿 Cn 𝐽)))
124, 10, 11sylanbrc 582 1 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐺 ∈ (𝐾Homeo𝐿)) → (𝐺𝐹) ∈ (𝐽Homeo𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2105  ccnv 5675  ccom 5680  (class class class)co 7412   Cn ccn 23048  Homeochmeo 23577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-map 8828  df-top 22716  df-topon 22733  df-cn 23051  df-hmeo 23579
This theorem is referenced by:  hmphtr  23607  xpstopnlem1  23633  tgpconncomp  23937  tsmsxplem1  23977
  Copyright terms: Public domain W3C validator