Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hmeoco | Structured version Visualization version GIF version |
Description: The composite of two homeomorphisms is a homeomorphism. (Contributed by FL, 9-Mar-2007.) (Proof shortened by Mario Carneiro, 23-Aug-2015.) |
Ref | Expression |
---|---|
hmeoco | ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐺 ∈ (𝐾Homeo𝐿)) → (𝐺 ∘ 𝐹) ∈ (𝐽Homeo𝐿)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hmeocn 22461 | . . 3 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾)) | |
2 | hmeocn 22461 | . . 3 ⊢ (𝐺 ∈ (𝐾Homeo𝐿) → 𝐺 ∈ (𝐾 Cn 𝐿)) | |
3 | cnco 21967 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) → (𝐺 ∘ 𝐹) ∈ (𝐽 Cn 𝐿)) | |
4 | 1, 2, 3 | syl2an 599 | . 2 ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐺 ∈ (𝐾Homeo𝐿)) → (𝐺 ∘ 𝐹) ∈ (𝐽 Cn 𝐿)) |
5 | cnvco 5726 | . . 3 ⊢ ◡(𝐺 ∘ 𝐹) = (◡𝐹 ∘ ◡𝐺) | |
6 | hmeocnvcn 22462 | . . . 4 ⊢ (𝐺 ∈ (𝐾Homeo𝐿) → ◡𝐺 ∈ (𝐿 Cn 𝐾)) | |
7 | hmeocnvcn 22462 | . . . 4 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → ◡𝐹 ∈ (𝐾 Cn 𝐽)) | |
8 | cnco 21967 | . . . 4 ⊢ ((◡𝐺 ∈ (𝐿 Cn 𝐾) ∧ ◡𝐹 ∈ (𝐾 Cn 𝐽)) → (◡𝐹 ∘ ◡𝐺) ∈ (𝐿 Cn 𝐽)) | |
9 | 6, 7, 8 | syl2anr 600 | . . 3 ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐺 ∈ (𝐾Homeo𝐿)) → (◡𝐹 ∘ ◡𝐺) ∈ (𝐿 Cn 𝐽)) |
10 | 5, 9 | eqeltrid 2857 | . 2 ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐺 ∈ (𝐾Homeo𝐿)) → ◡(𝐺 ∘ 𝐹) ∈ (𝐿 Cn 𝐽)) |
11 | ishmeo 22460 | . 2 ⊢ ((𝐺 ∘ 𝐹) ∈ (𝐽Homeo𝐿) ↔ ((𝐺 ∘ 𝐹) ∈ (𝐽 Cn 𝐿) ∧ ◡(𝐺 ∘ 𝐹) ∈ (𝐿 Cn 𝐽))) | |
12 | 4, 10, 11 | sylanbrc 587 | 1 ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐺 ∈ (𝐾Homeo𝐿)) → (𝐺 ∘ 𝐹) ∈ (𝐽Homeo𝐿)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 400 ∈ wcel 2112 ◡ccnv 5524 ∘ ccom 5529 (class class class)co 7151 Cn ccn 21925 Homeochmeo 22454 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-ral 3076 df-rex 3077 df-rab 3080 df-v 3412 df-sbc 3698 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-op 4530 df-uni 4800 df-br 5034 df-opab 5096 df-mpt 5114 df-id 5431 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-fv 6344 df-ov 7154 df-oprab 7155 df-mpo 7156 df-map 8419 df-top 21595 df-topon 21612 df-cn 21928 df-hmeo 22456 |
This theorem is referenced by: hmphtr 22484 xpstopnlem1 22510 tgpconncomp 22814 tsmsxplem1 22854 |
Copyright terms: Public domain | W3C validator |