MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmeoco Structured version   Visualization version   GIF version

Theorem hmeoco 23675
Description: The composite of two homeomorphisms is a homeomorphism. (Contributed by FL, 9-Mar-2007.) (Proof shortened by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
hmeoco ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐺 ∈ (𝐾Homeo𝐿)) → (𝐺𝐹) ∈ (𝐽Homeo𝐿))

Proof of Theorem hmeoco
StepHypRef Expression
1 hmeocn 23663 . . 3 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾))
2 hmeocn 23663 . . 3 (𝐺 ∈ (𝐾Homeo𝐿) → 𝐺 ∈ (𝐾 Cn 𝐿))
3 cnco 23169 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) → (𝐺𝐹) ∈ (𝐽 Cn 𝐿))
41, 2, 3syl2an 596 . 2 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐺 ∈ (𝐾Homeo𝐿)) → (𝐺𝐹) ∈ (𝐽 Cn 𝐿))
5 cnvco 5832 . . 3 (𝐺𝐹) = (𝐹𝐺)
6 hmeocnvcn 23664 . . . 4 (𝐺 ∈ (𝐾Homeo𝐿) → 𝐺 ∈ (𝐿 Cn 𝐾))
7 hmeocnvcn 23664 . . . 4 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐾 Cn 𝐽))
8 cnco 23169 . . . 4 ((𝐺 ∈ (𝐿 Cn 𝐾) ∧ 𝐹 ∈ (𝐾 Cn 𝐽)) → (𝐹𝐺) ∈ (𝐿 Cn 𝐽))
96, 7, 8syl2anr 597 . . 3 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐺 ∈ (𝐾Homeo𝐿)) → (𝐹𝐺) ∈ (𝐿 Cn 𝐽))
105, 9eqeltrid 2832 . 2 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐺 ∈ (𝐾Homeo𝐿)) → (𝐺𝐹) ∈ (𝐿 Cn 𝐽))
11 ishmeo 23662 . 2 ((𝐺𝐹) ∈ (𝐽Homeo𝐿) ↔ ((𝐺𝐹) ∈ (𝐽 Cn 𝐿) ∧ (𝐺𝐹) ∈ (𝐿 Cn 𝐽)))
124, 10, 11sylanbrc 583 1 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐺 ∈ (𝐾Homeo𝐿)) → (𝐺𝐹) ∈ (𝐽Homeo𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  ccnv 5622  ccom 5627  (class class class)co 7353   Cn ccn 23127  Homeochmeo 23656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-map 8762  df-top 22797  df-topon 22814  df-cn 23130  df-hmeo 23658
This theorem is referenced by:  hmphtr  23686  xpstopnlem1  23712  tgpconncomp  24016  tsmsxplem1  24056
  Copyright terms: Public domain W3C validator