MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmeoco Structured version   Visualization version   GIF version

Theorem hmeoco 23801
Description: The composite of two homeomorphisms is a homeomorphism. (Contributed by FL, 9-Mar-2007.) (Proof shortened by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
hmeoco ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐺 ∈ (𝐾Homeo𝐿)) → (𝐺𝐹) ∈ (𝐽Homeo𝐿))

Proof of Theorem hmeoco
StepHypRef Expression
1 hmeocn 23789 . . 3 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾))
2 hmeocn 23789 . . 3 (𝐺 ∈ (𝐾Homeo𝐿) → 𝐺 ∈ (𝐾 Cn 𝐿))
3 cnco 23295 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) → (𝐺𝐹) ∈ (𝐽 Cn 𝐿))
41, 2, 3syl2an 595 . 2 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐺 ∈ (𝐾Homeo𝐿)) → (𝐺𝐹) ∈ (𝐽 Cn 𝐿))
5 cnvco 5910 . . 3 (𝐺𝐹) = (𝐹𝐺)
6 hmeocnvcn 23790 . . . 4 (𝐺 ∈ (𝐾Homeo𝐿) → 𝐺 ∈ (𝐿 Cn 𝐾))
7 hmeocnvcn 23790 . . . 4 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐾 Cn 𝐽))
8 cnco 23295 . . . 4 ((𝐺 ∈ (𝐿 Cn 𝐾) ∧ 𝐹 ∈ (𝐾 Cn 𝐽)) → (𝐹𝐺) ∈ (𝐿 Cn 𝐽))
96, 7, 8syl2anr 596 . . 3 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐺 ∈ (𝐾Homeo𝐿)) → (𝐹𝐺) ∈ (𝐿 Cn 𝐽))
105, 9eqeltrid 2848 . 2 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐺 ∈ (𝐾Homeo𝐿)) → (𝐺𝐹) ∈ (𝐿 Cn 𝐽))
11 ishmeo 23788 . 2 ((𝐺𝐹) ∈ (𝐽Homeo𝐿) ↔ ((𝐺𝐹) ∈ (𝐽 Cn 𝐿) ∧ (𝐺𝐹) ∈ (𝐿 Cn 𝐽)))
124, 10, 11sylanbrc 582 1 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐺 ∈ (𝐾Homeo𝐿)) → (𝐺𝐹) ∈ (𝐽Homeo𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  ccnv 5699  ccom 5704  (class class class)co 7448   Cn ccn 23253  Homeochmeo 23782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-map 8886  df-top 22921  df-topon 22938  df-cn 23256  df-hmeo 23784
This theorem is referenced by:  hmphtr  23812  xpstopnlem1  23838  tgpconncomp  24142  tsmsxplem1  24182
  Copyright terms: Public domain W3C validator