| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > idunop | Structured version Visualization version GIF version | ||
| Description: The identity function (restricted to Hilbert space) is a unitary operator. (Contributed by NM, 21-Jan-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| idunop | ⊢ ( I ↾ ℋ) ∈ UniOp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1oi 6802 | . . 3 ⊢ ( I ↾ ℋ): ℋ–1-1-onto→ ℋ | |
| 2 | f1ofo 6771 | . . 3 ⊢ (( I ↾ ℋ): ℋ–1-1-onto→ ℋ → ( I ↾ ℋ): ℋ–onto→ ℋ) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ ( I ↾ ℋ): ℋ–onto→ ℋ |
| 4 | fvresi 7109 | . . . 4 ⊢ (𝑥 ∈ ℋ → (( I ↾ ℋ)‘𝑥) = 𝑥) | |
| 5 | fvresi 7109 | . . . 4 ⊢ (𝑦 ∈ ℋ → (( I ↾ ℋ)‘𝑦) = 𝑦) | |
| 6 | 4, 5 | oveqan12d 7368 | . . 3 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((( I ↾ ℋ)‘𝑥) ·ih (( I ↾ ℋ)‘𝑦)) = (𝑥 ·ih 𝑦)) |
| 7 | 6 | rgen2 3169 | . 2 ⊢ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((( I ↾ ℋ)‘𝑥) ·ih (( I ↾ ℋ)‘𝑦)) = (𝑥 ·ih 𝑦) |
| 8 | elunop 31816 | . 2 ⊢ (( I ↾ ℋ) ∈ UniOp ↔ (( I ↾ ℋ): ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((( I ↾ ℋ)‘𝑥) ·ih (( I ↾ ℋ)‘𝑦)) = (𝑥 ·ih 𝑦))) | |
| 9 | 3, 7, 8 | mpbir2an 711 | 1 ⊢ ( I ↾ ℋ) ∈ UniOp |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ∀wral 3044 I cid 5513 ↾ cres 5621 –onto→wfo 6480 –1-1-onto→wf1o 6481 ‘cfv 6482 (class class class)co 7349 ℋchba 30863 ·ih csp 30866 UniOpcuo 30893 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-hilex 30943 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-unop 31787 |
| This theorem is referenced by: idlnop 31936 |
| Copyright terms: Public domain | W3C validator |