HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  idunop Structured version   Visualization version   GIF version

Theorem idunop 30013
Description: The identity function (restricted to Hilbert space) is a unitary operator. (Contributed by NM, 21-Jan-2006.) (New usage is discouraged.)
Assertion
Ref Expression
idunop ( I ↾ ℋ) ∈ UniOp

Proof of Theorem idunop
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1oi 6676 . . 3 ( I ↾ ℋ): ℋ–1-1-onto→ ℋ
2 f1ofo 6646 . . 3 (( I ↾ ℋ): ℋ–1-1-onto→ ℋ → ( I ↾ ℋ): ℋ–onto→ ℋ)
31, 2ax-mp 5 . 2 ( I ↾ ℋ): ℋ–onto→ ℋ
4 fvresi 6966 . . . 4 (𝑥 ∈ ℋ → (( I ↾ ℋ)‘𝑥) = 𝑥)
5 fvresi 6966 . . . 4 (𝑦 ∈ ℋ → (( I ↾ ℋ)‘𝑦) = 𝑦)
64, 5oveqan12d 7210 . . 3 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((( I ↾ ℋ)‘𝑥) ·ih (( I ↾ ℋ)‘𝑦)) = (𝑥 ·ih 𝑦))
76rgen2 3114 . 2 𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((( I ↾ ℋ)‘𝑥) ·ih (( I ↾ ℋ)‘𝑦)) = (𝑥 ·ih 𝑦)
8 elunop 29907 . 2 (( I ↾ ℋ) ∈ UniOp ↔ (( I ↾ ℋ): ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((( I ↾ ℋ)‘𝑥) ·ih (( I ↾ ℋ)‘𝑦)) = (𝑥 ·ih 𝑦)))
93, 7, 8mpbir2an 711 1 ( I ↾ ℋ) ∈ UniOp
Colors of variables: wff setvar class
Syntax hints:   = wceq 1543  wcel 2112  wral 3051   I cid 5439  cres 5538  ontowfo 6356  1-1-ontowf1o 6357  cfv 6358  (class class class)co 7191  chba 28954   ·ih csp 28957  UniOpcuo 28984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pr 5307  ax-hilex 29034
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-ov 7194  df-unop 29878
This theorem is referenced by:  idlnop  30027
  Copyright terms: Public domain W3C validator