Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > idunop | Structured version Visualization version GIF version |
Description: The identity function (restricted to Hilbert space) is a unitary operator. (Contributed by NM, 21-Jan-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
idunop | ⊢ ( I ↾ ℋ) ∈ UniOp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1oi 6809 | . . 3 ⊢ ( I ↾ ℋ): ℋ–1-1-onto→ ℋ | |
2 | f1ofo 6778 | . . 3 ⊢ (( I ↾ ℋ): ℋ–1-1-onto→ ℋ → ( I ↾ ℋ): ℋ–onto→ ℋ) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ( I ↾ ℋ): ℋ–onto→ ℋ |
4 | fvresi 7105 | . . . 4 ⊢ (𝑥 ∈ ℋ → (( I ↾ ℋ)‘𝑥) = 𝑥) | |
5 | fvresi 7105 | . . . 4 ⊢ (𝑦 ∈ ℋ → (( I ↾ ℋ)‘𝑦) = 𝑦) | |
6 | 4, 5 | oveqan12d 7360 | . . 3 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((( I ↾ ℋ)‘𝑥) ·ih (( I ↾ ℋ)‘𝑦)) = (𝑥 ·ih 𝑦)) |
7 | 6 | rgen2 3191 | . 2 ⊢ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((( I ↾ ℋ)‘𝑥) ·ih (( I ↾ ℋ)‘𝑦)) = (𝑥 ·ih 𝑦) |
8 | elunop 30521 | . 2 ⊢ (( I ↾ ℋ) ∈ UniOp ↔ (( I ↾ ℋ): ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((( I ↾ ℋ)‘𝑥) ·ih (( I ↾ ℋ)‘𝑦)) = (𝑥 ·ih 𝑦))) | |
9 | 3, 7, 8 | mpbir2an 709 | 1 ⊢ ( I ↾ ℋ) ∈ UniOp |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∈ wcel 2106 ∀wral 3062 I cid 5521 ↾ cres 5626 –onto→wfo 6481 –1-1-onto→wf1o 6482 ‘cfv 6483 (class class class)co 7341 ℋchba 29568 ·ih csp 29571 UniOpcuo 29598 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5233 ax-sep 5247 ax-nul 5254 ax-pr 5376 ax-hilex 29648 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3731 df-csb 3847 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-nul 4274 df-if 4478 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4857 df-iun 4947 df-br 5097 df-opab 5159 df-mpt 5180 df-id 5522 df-xp 5630 df-rel 5631 df-cnv 5632 df-co 5633 df-dm 5634 df-rn 5635 df-res 5636 df-ima 5637 df-iota 6435 df-fun 6485 df-fn 6486 df-f 6487 df-f1 6488 df-fo 6489 df-f1o 6490 df-fv 6491 df-ov 7344 df-unop 30492 |
This theorem is referenced by: idlnop 30641 |
Copyright terms: Public domain | W3C validator |