HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  idunop Structured version   Visualization version   GIF version

Theorem idunop 31922
Description: The identity function (restricted to Hilbert space) is a unitary operator. (Contributed by NM, 21-Jan-2006.) (New usage is discouraged.)
Assertion
Ref Expression
idunop ( I ↾ ℋ) ∈ UniOp

Proof of Theorem idunop
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1oi 6802 . . 3 ( I ↾ ℋ): ℋ–1-1-onto→ ℋ
2 f1ofo 6771 . . 3 (( I ↾ ℋ): ℋ–1-1-onto→ ℋ → ( I ↾ ℋ): ℋ–onto→ ℋ)
31, 2ax-mp 5 . 2 ( I ↾ ℋ): ℋ–onto→ ℋ
4 fvresi 7109 . . . 4 (𝑥 ∈ ℋ → (( I ↾ ℋ)‘𝑥) = 𝑥)
5 fvresi 7109 . . . 4 (𝑦 ∈ ℋ → (( I ↾ ℋ)‘𝑦) = 𝑦)
64, 5oveqan12d 7368 . . 3 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((( I ↾ ℋ)‘𝑥) ·ih (( I ↾ ℋ)‘𝑦)) = (𝑥 ·ih 𝑦))
76rgen2 3169 . 2 𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((( I ↾ ℋ)‘𝑥) ·ih (( I ↾ ℋ)‘𝑦)) = (𝑥 ·ih 𝑦)
8 elunop 31816 . 2 (( I ↾ ℋ) ∈ UniOp ↔ (( I ↾ ℋ): ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((( I ↾ ℋ)‘𝑥) ·ih (( I ↾ ℋ)‘𝑦)) = (𝑥 ·ih 𝑦)))
93, 7, 8mpbir2an 711 1 ( I ↾ ℋ) ∈ UniOp
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  wral 3044   I cid 5513  cres 5621  ontowfo 6480  1-1-ontowf1o 6481  cfv 6482  (class class class)co 7349  chba 30863   ·ih csp 30866  UniOpcuo 30893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-hilex 30943
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-unop 31787
This theorem is referenced by:  idlnop  31936
  Copyright terms: Public domain W3C validator