| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > idunop | Structured version Visualization version GIF version | ||
| Description: The identity function (restricted to Hilbert space) is a unitary operator. (Contributed by NM, 21-Jan-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| idunop | ⊢ ( I ↾ ℋ) ∈ UniOp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1oi 6801 | . . 3 ⊢ ( I ↾ ℋ): ℋ–1-1-onto→ ℋ | |
| 2 | f1ofo 6770 | . . 3 ⊢ (( I ↾ ℋ): ℋ–1-1-onto→ ℋ → ( I ↾ ℋ): ℋ–onto→ ℋ) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ ( I ↾ ℋ): ℋ–onto→ ℋ |
| 4 | fvresi 7107 | . . . 4 ⊢ (𝑥 ∈ ℋ → (( I ↾ ℋ)‘𝑥) = 𝑥) | |
| 5 | fvresi 7107 | . . . 4 ⊢ (𝑦 ∈ ℋ → (( I ↾ ℋ)‘𝑦) = 𝑦) | |
| 6 | 4, 5 | oveqan12d 7365 | . . 3 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((( I ↾ ℋ)‘𝑥) ·ih (( I ↾ ℋ)‘𝑦)) = (𝑥 ·ih 𝑦)) |
| 7 | 6 | rgen2 3172 | . 2 ⊢ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((( I ↾ ℋ)‘𝑥) ·ih (( I ↾ ℋ)‘𝑦)) = (𝑥 ·ih 𝑦) |
| 8 | elunop 31852 | . 2 ⊢ (( I ↾ ℋ) ∈ UniOp ↔ (( I ↾ ℋ): ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((( I ↾ ℋ)‘𝑥) ·ih (( I ↾ ℋ)‘𝑦)) = (𝑥 ·ih 𝑦))) | |
| 9 | 3, 7, 8 | mpbir2an 711 | 1 ⊢ ( I ↾ ℋ) ∈ UniOp |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 ∀wral 3047 I cid 5508 ↾ cres 5616 –onto→wfo 6479 –1-1-onto→wf1o 6480 ‘cfv 6481 (class class class)co 7346 ℋchba 30899 ·ih csp 30902 UniOpcuo 30929 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-hilex 30979 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-unop 31823 |
| This theorem is referenced by: idlnop 31972 |
| Copyright terms: Public domain | W3C validator |