Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  indconst1 Structured version   Visualization version   GIF version

Theorem indconst1 32847
Description: Indicator of the whole set. (Contributed by Thierry Arnoux, 25-Jan-2026.)
Assertion
Ref Expression
indconst1 (𝑂𝑉 → ((𝟭‘𝑂)‘𝑂) = (𝑂 × {1}))

Proof of Theorem indconst1
StepHypRef Expression
1 ssid 3953 . . 3 𝑂𝑂
2 indval2 32840 . . 3 ((𝑂𝑉𝑂𝑂) → ((𝟭‘𝑂)‘𝑂) = ((𝑂 × {1}) ∪ ((𝑂𝑂) × {0})))
31, 2mpan2 691 . 2 (𝑂𝑉 → ((𝟭‘𝑂)‘𝑂) = ((𝑂 × {1}) ∪ ((𝑂𝑂) × {0})))
4 difid 4325 . . . . . 6 (𝑂𝑂) = ∅
54xpeq1i 5645 . . . . 5 ((𝑂𝑂) × {0}) = (∅ × {0})
6 0xp 5718 . . . . 5 (∅ × {0}) = ∅
75, 6eqtri 2756 . . . 4 ((𝑂𝑂) × {0}) = ∅
87a1i 11 . . 3 (𝑂𝑉 → ((𝑂𝑂) × {0}) = ∅)
98uneq2d 4117 . 2 (𝑂𝑉 → ((𝑂 × {1}) ∪ ((𝑂𝑂) × {0})) = ((𝑂 × {1}) ∪ ∅))
10 un0 4343 . . 3 ((𝑂 × {1}) ∪ ∅) = (𝑂 × {1})
1110a1i 11 . 2 (𝑂𝑉 → ((𝑂 × {1}) ∪ ∅) = (𝑂 × {1}))
123, 9, 113eqtrd 2772 1 (𝑂𝑉 → ((𝟭‘𝑂)‘𝑂) = (𝑂 × {1}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  cdif 3895  cun 3896  wss 3898  c0 4282  {csn 4575   × cxp 5617  cfv 6486  0cc0 11013  1c1 11014  𝟭cind 32836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ind 32837
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator