| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > indconst1 | Structured version Visualization version GIF version | ||
| Description: Indicator of the whole set. (Contributed by Thierry Arnoux, 25-Jan-2026.) |
| Ref | Expression |
|---|---|
| indconst1 | ⊢ (𝑂 ∈ 𝑉 → ((𝟭‘𝑂)‘𝑂) = (𝑂 × {1})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3953 | . . 3 ⊢ 𝑂 ⊆ 𝑂 | |
| 2 | indval2 32840 | . . 3 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝑂 ⊆ 𝑂) → ((𝟭‘𝑂)‘𝑂) = ((𝑂 × {1}) ∪ ((𝑂 ∖ 𝑂) × {0}))) | |
| 3 | 1, 2 | mpan2 691 | . 2 ⊢ (𝑂 ∈ 𝑉 → ((𝟭‘𝑂)‘𝑂) = ((𝑂 × {1}) ∪ ((𝑂 ∖ 𝑂) × {0}))) |
| 4 | difid 4325 | . . . . . 6 ⊢ (𝑂 ∖ 𝑂) = ∅ | |
| 5 | 4 | xpeq1i 5645 | . . . . 5 ⊢ ((𝑂 ∖ 𝑂) × {0}) = (∅ × {0}) |
| 6 | 0xp 5718 | . . . . 5 ⊢ (∅ × {0}) = ∅ | |
| 7 | 5, 6 | eqtri 2756 | . . . 4 ⊢ ((𝑂 ∖ 𝑂) × {0}) = ∅ |
| 8 | 7 | a1i 11 | . . 3 ⊢ (𝑂 ∈ 𝑉 → ((𝑂 ∖ 𝑂) × {0}) = ∅) |
| 9 | 8 | uneq2d 4117 | . 2 ⊢ (𝑂 ∈ 𝑉 → ((𝑂 × {1}) ∪ ((𝑂 ∖ 𝑂) × {0})) = ((𝑂 × {1}) ∪ ∅)) |
| 10 | un0 4343 | . . 3 ⊢ ((𝑂 × {1}) ∪ ∅) = (𝑂 × {1}) | |
| 11 | 10 | a1i 11 | . 2 ⊢ (𝑂 ∈ 𝑉 → ((𝑂 × {1}) ∪ ∅) = (𝑂 × {1})) |
| 12 | 3, 9, 11 | 3eqtrd 2772 | 1 ⊢ (𝑂 ∈ 𝑉 → ((𝟭‘𝑂)‘𝑂) = (𝑂 × {1})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ∖ cdif 3895 ∪ cun 3896 ⊆ wss 3898 ∅c0 4282 {csn 4575 × cxp 5617 ‘cfv 6486 0cc0 11013 1c1 11014 𝟭cind 32836 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ind 32837 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |