Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eliccelioc Structured version   Visualization version   GIF version

Theorem eliccelioc 44533
Description: Membership in a closed interval and in a left-open right-closed interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
eliccelioc.a (𝜑𝐴 ∈ ℝ)
eliccelioc.b (𝜑𝐵 ∈ ℝ)
eliccelioc.c (𝜑𝐶 ∈ ℝ*)
Assertion
Ref Expression
eliccelioc (𝜑 → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐶𝐴)))

Proof of Theorem eliccelioc
StepHypRef Expression
1 iocssicc 13419 . . . . 5 (𝐴(,]𝐵) ⊆ (𝐴[,]𝐵)
21sseli 3978 . . . 4 (𝐶 ∈ (𝐴(,]𝐵) → 𝐶 ∈ (𝐴[,]𝐵))
32adantl 481 . . 3 ((𝜑𝐶 ∈ (𝐴(,]𝐵)) → 𝐶 ∈ (𝐴[,]𝐵))
4 eliccelioc.a . . . . 5 (𝜑𝐴 ∈ ℝ)
54adantr 480 . . . 4 ((𝜑𝐶 ∈ (𝐴(,]𝐵)) → 𝐴 ∈ ℝ)
64rexrd 11269 . . . . . 6 (𝜑𝐴 ∈ ℝ*)
76adantr 480 . . . . 5 ((𝜑𝐶 ∈ (𝐴(,]𝐵)) → 𝐴 ∈ ℝ*)
8 eliccelioc.b . . . . . . 7 (𝜑𝐵 ∈ ℝ)
98adantr 480 . . . . . 6 ((𝜑𝐶 ∈ (𝐴(,]𝐵)) → 𝐵 ∈ ℝ)
109rexrd 11269 . . . . 5 ((𝜑𝐶 ∈ (𝐴(,]𝐵)) → 𝐵 ∈ ℝ*)
11 simpr 484 . . . . 5 ((𝜑𝐶 ∈ (𝐴(,]𝐵)) → 𝐶 ∈ (𝐴(,]𝐵))
12 iocgtlb 44514 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ (𝐴(,]𝐵)) → 𝐴 < 𝐶)
137, 10, 11, 12syl3anc 1370 . . . 4 ((𝜑𝐶 ∈ (𝐴(,]𝐵)) → 𝐴 < 𝐶)
145, 13gtned 11354 . . 3 ((𝜑𝐶 ∈ (𝐴(,]𝐵)) → 𝐶𝐴)
153, 14jca 511 . 2 ((𝜑𝐶 ∈ (𝐴(,]𝐵)) → (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐶𝐴))
166adantr 480 . . 3 ((𝜑 ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐶𝐴)) → 𝐴 ∈ ℝ*)
178rexrd 11269 . . . 4 (𝜑𝐵 ∈ ℝ*)
1817adantr 480 . . 3 ((𝜑 ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐶𝐴)) → 𝐵 ∈ ℝ*)
19 eliccelioc.c . . . 4 (𝜑𝐶 ∈ ℝ*)
2019adantr 480 . . 3 ((𝜑 ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐶𝐴)) → 𝐶 ∈ ℝ*)
214adantr 480 . . . 4 ((𝜑 ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐶𝐴)) → 𝐴 ∈ ℝ)
224, 8iccssred 13416 . . . . . 6 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
2322sselda 3982 . . . . 5 ((𝜑𝐶 ∈ (𝐴[,]𝐵)) → 𝐶 ∈ ℝ)
2423adantrr 714 . . . 4 ((𝜑 ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐶𝐴)) → 𝐶 ∈ ℝ)
256adantr 480 . . . . . 6 ((𝜑𝐶 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ*)
2617adantr 480 . . . . . 6 ((𝜑𝐶 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ*)
27 simpr 484 . . . . . 6 ((𝜑𝐶 ∈ (𝐴[,]𝐵)) → 𝐶 ∈ (𝐴[,]𝐵))
28 iccgelb 13385 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ (𝐴[,]𝐵)) → 𝐴𝐶)
2925, 26, 27, 28syl3anc 1370 . . . . 5 ((𝜑𝐶 ∈ (𝐴[,]𝐵)) → 𝐴𝐶)
3029adantrr 714 . . . 4 ((𝜑 ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐶𝐴)) → 𝐴𝐶)
31 simprr 770 . . . 4 ((𝜑 ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐶𝐴)) → 𝐶𝐴)
3221, 24, 30, 31leneltd 11373 . . 3 ((𝜑 ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐶𝐴)) → 𝐴 < 𝐶)
33 iccleub 13384 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ (𝐴[,]𝐵)) → 𝐶𝐵)
3425, 26, 27, 33syl3anc 1370 . . . 4 ((𝜑𝐶 ∈ (𝐴[,]𝐵)) → 𝐶𝐵)
3534adantrr 714 . . 3 ((𝜑 ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐶𝐴)) → 𝐶𝐵)
3616, 18, 20, 32, 35eliocd 44519 . 2 ((𝜑 ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐶𝐴)) → 𝐶 ∈ (𝐴(,]𝐵))
3715, 36impbida 798 1 (𝜑 → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐶𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wcel 2105  wne 2939   class class class wbr 5148  (class class class)co 7412  cr 11113  *cxr 11252   < clt 11253  cle 11254  (,]cioc 13330  [,]cicc 13332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11170  ax-resscn 11171  ax-pre-lttri 11188  ax-pre-lttrn 11189
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-po 5588  df-so 5589  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-er 8707  df-en 8944  df-dom 8945  df-sdom 8946  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-ioc 13334  df-icc 13336
This theorem is referenced by:  fourierdlem51  45172
  Copyright terms: Public domain W3C validator