Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eliccelioc Structured version   Visualization version   GIF version

Theorem eliccelioc 45620
Description: Membership in a closed interval and in a left-open right-closed interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
eliccelioc.a (𝜑𝐴 ∈ ℝ)
eliccelioc.b (𝜑𝐵 ∈ ℝ)
eliccelioc.c (𝜑𝐶 ∈ ℝ*)
Assertion
Ref Expression
eliccelioc (𝜑 → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐶𝐴)))

Proof of Theorem eliccelioc
StepHypRef Expression
1 iocssicc 13337 . . . . 5 (𝐴(,]𝐵) ⊆ (𝐴[,]𝐵)
21sseli 3925 . . . 4 (𝐶 ∈ (𝐴(,]𝐵) → 𝐶 ∈ (𝐴[,]𝐵))
32adantl 481 . . 3 ((𝜑𝐶 ∈ (𝐴(,]𝐵)) → 𝐶 ∈ (𝐴[,]𝐵))
4 eliccelioc.a . . . . 5 (𝜑𝐴 ∈ ℝ)
54adantr 480 . . . 4 ((𝜑𝐶 ∈ (𝐴(,]𝐵)) → 𝐴 ∈ ℝ)
64rexrd 11162 . . . . . 6 (𝜑𝐴 ∈ ℝ*)
76adantr 480 . . . . 5 ((𝜑𝐶 ∈ (𝐴(,]𝐵)) → 𝐴 ∈ ℝ*)
8 eliccelioc.b . . . . . . 7 (𝜑𝐵 ∈ ℝ)
98adantr 480 . . . . . 6 ((𝜑𝐶 ∈ (𝐴(,]𝐵)) → 𝐵 ∈ ℝ)
109rexrd 11162 . . . . 5 ((𝜑𝐶 ∈ (𝐴(,]𝐵)) → 𝐵 ∈ ℝ*)
11 simpr 484 . . . . 5 ((𝜑𝐶 ∈ (𝐴(,]𝐵)) → 𝐶 ∈ (𝐴(,]𝐵))
12 iocgtlb 45601 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ (𝐴(,]𝐵)) → 𝐴 < 𝐶)
137, 10, 11, 12syl3anc 1373 . . . 4 ((𝜑𝐶 ∈ (𝐴(,]𝐵)) → 𝐴 < 𝐶)
145, 13gtned 11248 . . 3 ((𝜑𝐶 ∈ (𝐴(,]𝐵)) → 𝐶𝐴)
153, 14jca 511 . 2 ((𝜑𝐶 ∈ (𝐴(,]𝐵)) → (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐶𝐴))
166adantr 480 . . 3 ((𝜑 ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐶𝐴)) → 𝐴 ∈ ℝ*)
178rexrd 11162 . . . 4 (𝜑𝐵 ∈ ℝ*)
1817adantr 480 . . 3 ((𝜑 ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐶𝐴)) → 𝐵 ∈ ℝ*)
19 eliccelioc.c . . . 4 (𝜑𝐶 ∈ ℝ*)
2019adantr 480 . . 3 ((𝜑 ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐶𝐴)) → 𝐶 ∈ ℝ*)
214adantr 480 . . . 4 ((𝜑 ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐶𝐴)) → 𝐴 ∈ ℝ)
224, 8iccssred 13334 . . . . . 6 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
2322sselda 3929 . . . . 5 ((𝜑𝐶 ∈ (𝐴[,]𝐵)) → 𝐶 ∈ ℝ)
2423adantrr 717 . . . 4 ((𝜑 ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐶𝐴)) → 𝐶 ∈ ℝ)
256adantr 480 . . . . . 6 ((𝜑𝐶 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ*)
2617adantr 480 . . . . . 6 ((𝜑𝐶 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ*)
27 simpr 484 . . . . . 6 ((𝜑𝐶 ∈ (𝐴[,]𝐵)) → 𝐶 ∈ (𝐴[,]𝐵))
28 iccgelb 13302 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ (𝐴[,]𝐵)) → 𝐴𝐶)
2925, 26, 27, 28syl3anc 1373 . . . . 5 ((𝜑𝐶 ∈ (𝐴[,]𝐵)) → 𝐴𝐶)
3029adantrr 717 . . . 4 ((𝜑 ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐶𝐴)) → 𝐴𝐶)
31 simprr 772 . . . 4 ((𝜑 ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐶𝐴)) → 𝐶𝐴)
3221, 24, 30, 31leneltd 11267 . . 3 ((𝜑 ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐶𝐴)) → 𝐴 < 𝐶)
33 iccleub 13301 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ (𝐴[,]𝐵)) → 𝐶𝐵)
3425, 26, 27, 33syl3anc 1373 . . . 4 ((𝜑𝐶 ∈ (𝐴[,]𝐵)) → 𝐶𝐵)
3534adantrr 717 . . 3 ((𝜑 ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐶𝐴)) → 𝐶𝐵)
3616, 18, 20, 32, 35eliocd 45606 . 2 ((𝜑 ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐶𝐴)) → 𝐶 ∈ (𝐴(,]𝐵))
3715, 36impbida 800 1 (𝜑 → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐶𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2111  wne 2928   class class class wbr 5089  (class class class)co 7346  cr 11005  *cxr 11145   < clt 11146  cle 11147  (,]cioc 13246  [,]cicc 13248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-pre-lttri 11080  ax-pre-lttrn 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-po 5522  df-so 5523  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-ioc 13250  df-icc 13252
This theorem is referenced by:  fourierdlem51  46254
  Copyright terms: Public domain W3C validator