Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eliccelioc Structured version   Visualization version   GIF version

Theorem eliccelioc 42158
Description: Membership in a closed interval and in a left-open right-closed interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
eliccelioc.a (𝜑𝐴 ∈ ℝ)
eliccelioc.b (𝜑𝐵 ∈ ℝ)
eliccelioc.c (𝜑𝐶 ∈ ℝ*)
Assertion
Ref Expression
eliccelioc (𝜑 → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐶𝐴)))

Proof of Theorem eliccelioc
StepHypRef Expression
1 iocssicc 12815 . . . . 5 (𝐴(,]𝐵) ⊆ (𝐴[,]𝐵)
21sseli 3911 . . . 4 (𝐶 ∈ (𝐴(,]𝐵) → 𝐶 ∈ (𝐴[,]𝐵))
32adantl 485 . . 3 ((𝜑𝐶 ∈ (𝐴(,]𝐵)) → 𝐶 ∈ (𝐴[,]𝐵))
4 eliccelioc.a . . . . 5 (𝜑𝐴 ∈ ℝ)
54adantr 484 . . . 4 ((𝜑𝐶 ∈ (𝐴(,]𝐵)) → 𝐴 ∈ ℝ)
64rexrd 10680 . . . . . 6 (𝜑𝐴 ∈ ℝ*)
76adantr 484 . . . . 5 ((𝜑𝐶 ∈ (𝐴(,]𝐵)) → 𝐴 ∈ ℝ*)
8 eliccelioc.b . . . . . . 7 (𝜑𝐵 ∈ ℝ)
98adantr 484 . . . . . 6 ((𝜑𝐶 ∈ (𝐴(,]𝐵)) → 𝐵 ∈ ℝ)
109rexrd 10680 . . . . 5 ((𝜑𝐶 ∈ (𝐴(,]𝐵)) → 𝐵 ∈ ℝ*)
11 simpr 488 . . . . 5 ((𝜑𝐶 ∈ (𝐴(,]𝐵)) → 𝐶 ∈ (𝐴(,]𝐵))
12 iocgtlb 42139 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ (𝐴(,]𝐵)) → 𝐴 < 𝐶)
137, 10, 11, 12syl3anc 1368 . . . 4 ((𝜑𝐶 ∈ (𝐴(,]𝐵)) → 𝐴 < 𝐶)
145, 13gtned 10764 . . 3 ((𝜑𝐶 ∈ (𝐴(,]𝐵)) → 𝐶𝐴)
153, 14jca 515 . 2 ((𝜑𝐶 ∈ (𝐴(,]𝐵)) → (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐶𝐴))
166adantr 484 . . 3 ((𝜑 ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐶𝐴)) → 𝐴 ∈ ℝ*)
178rexrd 10680 . . . 4 (𝜑𝐵 ∈ ℝ*)
1817adantr 484 . . 3 ((𝜑 ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐶𝐴)) → 𝐵 ∈ ℝ*)
19 eliccelioc.c . . . 4 (𝜑𝐶 ∈ ℝ*)
2019adantr 484 . . 3 ((𝜑 ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐶𝐴)) → 𝐶 ∈ ℝ*)
214adantr 484 . . . 4 ((𝜑 ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐶𝐴)) → 𝐴 ∈ ℝ)
224, 8iccssred 12812 . . . . . 6 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
2322sselda 3915 . . . . 5 ((𝜑𝐶 ∈ (𝐴[,]𝐵)) → 𝐶 ∈ ℝ)
2423adantrr 716 . . . 4 ((𝜑 ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐶𝐴)) → 𝐶 ∈ ℝ)
256adantr 484 . . . . . 6 ((𝜑𝐶 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ*)
2617adantr 484 . . . . . 6 ((𝜑𝐶 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ*)
27 simpr 488 . . . . . 6 ((𝜑𝐶 ∈ (𝐴[,]𝐵)) → 𝐶 ∈ (𝐴[,]𝐵))
28 iccgelb 12781 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ (𝐴[,]𝐵)) → 𝐴𝐶)
2925, 26, 27, 28syl3anc 1368 . . . . 5 ((𝜑𝐶 ∈ (𝐴[,]𝐵)) → 𝐴𝐶)
3029adantrr 716 . . . 4 ((𝜑 ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐶𝐴)) → 𝐴𝐶)
31 simprr 772 . . . 4 ((𝜑 ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐶𝐴)) → 𝐶𝐴)
3221, 24, 30, 31leneltd 10783 . . 3 ((𝜑 ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐶𝐴)) → 𝐴 < 𝐶)
33 iccleub 12780 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ (𝐴[,]𝐵)) → 𝐶𝐵)
3425, 26, 27, 33syl3anc 1368 . . . 4 ((𝜑𝐶 ∈ (𝐴[,]𝐵)) → 𝐶𝐵)
3534adantrr 716 . . 3 ((𝜑 ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐶𝐴)) → 𝐶𝐵)
3616, 18, 20, 32, 35eliocd 42144 . 2 ((𝜑 ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐶𝐴)) → 𝐶 ∈ (𝐴(,]𝐵))
3715, 36impbida 800 1 (𝜑 → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐶𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wcel 2111  wne 2987   class class class wbr 5030  (class class class)co 7135  cr 10525  *cxr 10663   < clt 10664  cle 10665  (,]cioc 12727  [,]cicc 12729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-pre-lttri 10600  ax-pre-lttrn 10601
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-po 5438  df-so 5439  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-ioc 12731  df-icc 12733
This theorem is referenced by:  fourierdlem51  42799
  Copyright terms: Public domain W3C validator