Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eliccelioc Structured version   Visualization version   GIF version

Theorem eliccelioc 43059
Description: Membership in a closed interval and in a left-open right-closed interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
eliccelioc.a (𝜑𝐴 ∈ ℝ)
eliccelioc.b (𝜑𝐵 ∈ ℝ)
eliccelioc.c (𝜑𝐶 ∈ ℝ*)
Assertion
Ref Expression
eliccelioc (𝜑 → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐶𝐴)))

Proof of Theorem eliccelioc
StepHypRef Expression
1 iocssicc 13169 . . . . 5 (𝐴(,]𝐵) ⊆ (𝐴[,]𝐵)
21sseli 3917 . . . 4 (𝐶 ∈ (𝐴(,]𝐵) → 𝐶 ∈ (𝐴[,]𝐵))
32adantl 482 . . 3 ((𝜑𝐶 ∈ (𝐴(,]𝐵)) → 𝐶 ∈ (𝐴[,]𝐵))
4 eliccelioc.a . . . . 5 (𝜑𝐴 ∈ ℝ)
54adantr 481 . . . 4 ((𝜑𝐶 ∈ (𝐴(,]𝐵)) → 𝐴 ∈ ℝ)
64rexrd 11025 . . . . . 6 (𝜑𝐴 ∈ ℝ*)
76adantr 481 . . . . 5 ((𝜑𝐶 ∈ (𝐴(,]𝐵)) → 𝐴 ∈ ℝ*)
8 eliccelioc.b . . . . . . 7 (𝜑𝐵 ∈ ℝ)
98adantr 481 . . . . . 6 ((𝜑𝐶 ∈ (𝐴(,]𝐵)) → 𝐵 ∈ ℝ)
109rexrd 11025 . . . . 5 ((𝜑𝐶 ∈ (𝐴(,]𝐵)) → 𝐵 ∈ ℝ*)
11 simpr 485 . . . . 5 ((𝜑𝐶 ∈ (𝐴(,]𝐵)) → 𝐶 ∈ (𝐴(,]𝐵))
12 iocgtlb 43040 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ (𝐴(,]𝐵)) → 𝐴 < 𝐶)
137, 10, 11, 12syl3anc 1370 . . . 4 ((𝜑𝐶 ∈ (𝐴(,]𝐵)) → 𝐴 < 𝐶)
145, 13gtned 11110 . . 3 ((𝜑𝐶 ∈ (𝐴(,]𝐵)) → 𝐶𝐴)
153, 14jca 512 . 2 ((𝜑𝐶 ∈ (𝐴(,]𝐵)) → (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐶𝐴))
166adantr 481 . . 3 ((𝜑 ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐶𝐴)) → 𝐴 ∈ ℝ*)
178rexrd 11025 . . . 4 (𝜑𝐵 ∈ ℝ*)
1817adantr 481 . . 3 ((𝜑 ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐶𝐴)) → 𝐵 ∈ ℝ*)
19 eliccelioc.c . . . 4 (𝜑𝐶 ∈ ℝ*)
2019adantr 481 . . 3 ((𝜑 ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐶𝐴)) → 𝐶 ∈ ℝ*)
214adantr 481 . . . 4 ((𝜑 ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐶𝐴)) → 𝐴 ∈ ℝ)
224, 8iccssred 13166 . . . . . 6 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
2322sselda 3921 . . . . 5 ((𝜑𝐶 ∈ (𝐴[,]𝐵)) → 𝐶 ∈ ℝ)
2423adantrr 714 . . . 4 ((𝜑 ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐶𝐴)) → 𝐶 ∈ ℝ)
256adantr 481 . . . . . 6 ((𝜑𝐶 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ*)
2617adantr 481 . . . . . 6 ((𝜑𝐶 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ*)
27 simpr 485 . . . . . 6 ((𝜑𝐶 ∈ (𝐴[,]𝐵)) → 𝐶 ∈ (𝐴[,]𝐵))
28 iccgelb 13135 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ (𝐴[,]𝐵)) → 𝐴𝐶)
2925, 26, 27, 28syl3anc 1370 . . . . 5 ((𝜑𝐶 ∈ (𝐴[,]𝐵)) → 𝐴𝐶)
3029adantrr 714 . . . 4 ((𝜑 ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐶𝐴)) → 𝐴𝐶)
31 simprr 770 . . . 4 ((𝜑 ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐶𝐴)) → 𝐶𝐴)
3221, 24, 30, 31leneltd 11129 . . 3 ((𝜑 ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐶𝐴)) → 𝐴 < 𝐶)
33 iccleub 13134 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ (𝐴[,]𝐵)) → 𝐶𝐵)
3425, 26, 27, 33syl3anc 1370 . . . 4 ((𝜑𝐶 ∈ (𝐴[,]𝐵)) → 𝐶𝐵)
3534adantrr 714 . . 3 ((𝜑 ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐶𝐴)) → 𝐶𝐵)
3616, 18, 20, 32, 35eliocd 43045 . 2 ((𝜑 ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐶𝐴)) → 𝐶 ∈ (𝐴(,]𝐵))
3715, 36impbida 798 1 (𝜑 → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐶𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wcel 2106  wne 2943   class class class wbr 5074  (class class class)co 7275  cr 10870  *cxr 11008   < clt 11009  cle 11010  (,]cioc 13080  [,]cicc 13082
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-pre-lttri 10945  ax-pre-lttrn 10946
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-ioc 13084  df-icc 13086
This theorem is referenced by:  fourierdlem51  43698
  Copyright terms: Public domain W3C validator