Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eliccelioc Structured version   Visualization version   GIF version

Theorem eliccelioc 45534
Description: Membership in a closed interval and in a left-open right-closed interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
eliccelioc.a (𝜑𝐴 ∈ ℝ)
eliccelioc.b (𝜑𝐵 ∈ ℝ)
eliccelioc.c (𝜑𝐶 ∈ ℝ*)
Assertion
Ref Expression
eliccelioc (𝜑 → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐶𝐴)))

Proof of Theorem eliccelioc
StepHypRef Expression
1 iocssicc 13477 . . . . 5 (𝐴(,]𝐵) ⊆ (𝐴[,]𝐵)
21sseli 3979 . . . 4 (𝐶 ∈ (𝐴(,]𝐵) → 𝐶 ∈ (𝐴[,]𝐵))
32adantl 481 . . 3 ((𝜑𝐶 ∈ (𝐴(,]𝐵)) → 𝐶 ∈ (𝐴[,]𝐵))
4 eliccelioc.a . . . . 5 (𝜑𝐴 ∈ ℝ)
54adantr 480 . . . 4 ((𝜑𝐶 ∈ (𝐴(,]𝐵)) → 𝐴 ∈ ℝ)
64rexrd 11311 . . . . . 6 (𝜑𝐴 ∈ ℝ*)
76adantr 480 . . . . 5 ((𝜑𝐶 ∈ (𝐴(,]𝐵)) → 𝐴 ∈ ℝ*)
8 eliccelioc.b . . . . . . 7 (𝜑𝐵 ∈ ℝ)
98adantr 480 . . . . . 6 ((𝜑𝐶 ∈ (𝐴(,]𝐵)) → 𝐵 ∈ ℝ)
109rexrd 11311 . . . . 5 ((𝜑𝐶 ∈ (𝐴(,]𝐵)) → 𝐵 ∈ ℝ*)
11 simpr 484 . . . . 5 ((𝜑𝐶 ∈ (𝐴(,]𝐵)) → 𝐶 ∈ (𝐴(,]𝐵))
12 iocgtlb 45515 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ (𝐴(,]𝐵)) → 𝐴 < 𝐶)
137, 10, 11, 12syl3anc 1373 . . . 4 ((𝜑𝐶 ∈ (𝐴(,]𝐵)) → 𝐴 < 𝐶)
145, 13gtned 11396 . . 3 ((𝜑𝐶 ∈ (𝐴(,]𝐵)) → 𝐶𝐴)
153, 14jca 511 . 2 ((𝜑𝐶 ∈ (𝐴(,]𝐵)) → (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐶𝐴))
166adantr 480 . . 3 ((𝜑 ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐶𝐴)) → 𝐴 ∈ ℝ*)
178rexrd 11311 . . . 4 (𝜑𝐵 ∈ ℝ*)
1817adantr 480 . . 3 ((𝜑 ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐶𝐴)) → 𝐵 ∈ ℝ*)
19 eliccelioc.c . . . 4 (𝜑𝐶 ∈ ℝ*)
2019adantr 480 . . 3 ((𝜑 ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐶𝐴)) → 𝐶 ∈ ℝ*)
214adantr 480 . . . 4 ((𝜑 ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐶𝐴)) → 𝐴 ∈ ℝ)
224, 8iccssred 13474 . . . . . 6 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
2322sselda 3983 . . . . 5 ((𝜑𝐶 ∈ (𝐴[,]𝐵)) → 𝐶 ∈ ℝ)
2423adantrr 717 . . . 4 ((𝜑 ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐶𝐴)) → 𝐶 ∈ ℝ)
256adantr 480 . . . . . 6 ((𝜑𝐶 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ*)
2617adantr 480 . . . . . 6 ((𝜑𝐶 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ*)
27 simpr 484 . . . . . 6 ((𝜑𝐶 ∈ (𝐴[,]𝐵)) → 𝐶 ∈ (𝐴[,]𝐵))
28 iccgelb 13443 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ (𝐴[,]𝐵)) → 𝐴𝐶)
2925, 26, 27, 28syl3anc 1373 . . . . 5 ((𝜑𝐶 ∈ (𝐴[,]𝐵)) → 𝐴𝐶)
3029adantrr 717 . . . 4 ((𝜑 ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐶𝐴)) → 𝐴𝐶)
31 simprr 773 . . . 4 ((𝜑 ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐶𝐴)) → 𝐶𝐴)
3221, 24, 30, 31leneltd 11415 . . 3 ((𝜑 ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐶𝐴)) → 𝐴 < 𝐶)
33 iccleub 13442 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ (𝐴[,]𝐵)) → 𝐶𝐵)
3425, 26, 27, 33syl3anc 1373 . . . 4 ((𝜑𝐶 ∈ (𝐴[,]𝐵)) → 𝐶𝐵)
3534adantrr 717 . . 3 ((𝜑 ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐶𝐴)) → 𝐶𝐵)
3616, 18, 20, 32, 35eliocd 45520 . 2 ((𝜑 ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐶𝐴)) → 𝐶 ∈ (𝐴(,]𝐵))
3715, 36impbida 801 1 (𝜑 → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐶𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2108  wne 2940   class class class wbr 5143  (class class class)co 7431  cr 11154  *cxr 11294   < clt 11295  cle 11296  (,]cioc 13388  [,]cicc 13390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-pre-lttri 11229  ax-pre-lttrn 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-ioc 13392  df-icc 13394
This theorem is referenced by:  fourierdlem51  46172
  Copyright terms: Public domain W3C validator