Proof of Theorem eliccelioc
Step | Hyp | Ref
| Expression |
1 | | iocssicc 13098 |
. . . . 5
⊢ (𝐴(,]𝐵) ⊆ (𝐴[,]𝐵) |
2 | 1 | sseli 3913 |
. . . 4
⊢ (𝐶 ∈ (𝐴(,]𝐵) → 𝐶 ∈ (𝐴[,]𝐵)) |
3 | 2 | adantl 481 |
. . 3
⊢ ((𝜑 ∧ 𝐶 ∈ (𝐴(,]𝐵)) → 𝐶 ∈ (𝐴[,]𝐵)) |
4 | | eliccelioc.a |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ ℝ) |
5 | 4 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝐶 ∈ (𝐴(,]𝐵)) → 𝐴 ∈ ℝ) |
6 | 4 | rexrd 10956 |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈
ℝ*) |
7 | 6 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝐶 ∈ (𝐴(,]𝐵)) → 𝐴 ∈
ℝ*) |
8 | | eliccelioc.b |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ ℝ) |
9 | 8 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐶 ∈ (𝐴(,]𝐵)) → 𝐵 ∈ ℝ) |
10 | 9 | rexrd 10956 |
. . . . 5
⊢ ((𝜑 ∧ 𝐶 ∈ (𝐴(,]𝐵)) → 𝐵 ∈
ℝ*) |
11 | | simpr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝐶 ∈ (𝐴(,]𝐵)) → 𝐶 ∈ (𝐴(,]𝐵)) |
12 | | iocgtlb 42930 |
. . . . 5
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ (𝐴(,]𝐵)) → 𝐴 < 𝐶) |
13 | 7, 10, 11, 12 | syl3anc 1369 |
. . . 4
⊢ ((𝜑 ∧ 𝐶 ∈ (𝐴(,]𝐵)) → 𝐴 < 𝐶) |
14 | 5, 13 | gtned 11040 |
. . 3
⊢ ((𝜑 ∧ 𝐶 ∈ (𝐴(,]𝐵)) → 𝐶 ≠ 𝐴) |
15 | 3, 14 | jca 511 |
. 2
⊢ ((𝜑 ∧ 𝐶 ∈ (𝐴(,]𝐵)) → (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐶 ≠ 𝐴)) |
16 | 6 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐶 ≠ 𝐴)) → 𝐴 ∈
ℝ*) |
17 | 8 | rexrd 10956 |
. . . 4
⊢ (𝜑 → 𝐵 ∈
ℝ*) |
18 | 17 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐶 ≠ 𝐴)) → 𝐵 ∈
ℝ*) |
19 | | eliccelioc.c |
. . . 4
⊢ (𝜑 → 𝐶 ∈
ℝ*) |
20 | 19 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐶 ≠ 𝐴)) → 𝐶 ∈
ℝ*) |
21 | 4 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐶 ≠ 𝐴)) → 𝐴 ∈ ℝ) |
22 | 4, 8 | iccssred 13095 |
. . . . . 6
⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℝ) |
23 | 22 | sselda 3917 |
. . . . 5
⊢ ((𝜑 ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐶 ∈ ℝ) |
24 | 23 | adantrr 713 |
. . . 4
⊢ ((𝜑 ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐶 ≠ 𝐴)) → 𝐶 ∈ ℝ) |
25 | 6 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐴 ∈
ℝ*) |
26 | 17 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐵 ∈
ℝ*) |
27 | | simpr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐶 ∈ (𝐴[,]𝐵)) |
28 | | iccgelb 13064 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ (𝐴[,]𝐵)) → 𝐴 ≤ 𝐶) |
29 | 25, 26, 27, 28 | syl3anc 1369 |
. . . . 5
⊢ ((𝜑 ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐴 ≤ 𝐶) |
30 | 29 | adantrr 713 |
. . . 4
⊢ ((𝜑 ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐶 ≠ 𝐴)) → 𝐴 ≤ 𝐶) |
31 | | simprr 769 |
. . . 4
⊢ ((𝜑 ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐶 ≠ 𝐴)) → 𝐶 ≠ 𝐴) |
32 | 21, 24, 30, 31 | leneltd 11059 |
. . 3
⊢ ((𝜑 ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐶 ≠ 𝐴)) → 𝐴 < 𝐶) |
33 | | iccleub 13063 |
. . . . 5
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ (𝐴[,]𝐵)) → 𝐶 ≤ 𝐵) |
34 | 25, 26, 27, 33 | syl3anc 1369 |
. . . 4
⊢ ((𝜑 ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐶 ≤ 𝐵) |
35 | 34 | adantrr 713 |
. . 3
⊢ ((𝜑 ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐶 ≠ 𝐴)) → 𝐶 ≤ 𝐵) |
36 | 16, 18, 20, 32, 35 | eliocd 42935 |
. 2
⊢ ((𝜑 ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐶 ≠ 𝐴)) → 𝐶 ∈ (𝐴(,]𝐵)) |
37 | 15, 36 | impbida 797 |
1
⊢ (𝜑 → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐶 ≠ 𝐴))) |