Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eliccd Structured version   Visualization version   GIF version

Theorem eliccd 42566
Description: Membership in a closed real interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
eliccd.1 (𝜑𝐴 ∈ ℝ)
eliccd.2 (𝜑𝐵 ∈ ℝ)
eliccd.3 (𝜑𝐶 ∈ ℝ)
eliccd.4 (𝜑𝐴𝐶)
eliccd.5 (𝜑𝐶𝐵)
Assertion
Ref Expression
eliccd (𝜑𝐶 ∈ (𝐴[,]𝐵))

Proof of Theorem eliccd
StepHypRef Expression
1 eliccd.3 . 2 (𝜑𝐶 ∈ ℝ)
2 eliccd.4 . 2 (𝜑𝐴𝐶)
3 eliccd.5 . 2 (𝜑𝐶𝐵)
4 eliccd.1 . . 3 (𝜑𝐴 ∈ ℝ)
5 eliccd.2 . . 3 (𝜑𝐵 ∈ ℝ)
6 elicc2 12879 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵)))
74, 5, 6syl2anc 587 . 2 (𝜑 → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵)))
81, 2, 3, 7mpbir3and 1343 1 (𝜑𝐶 ∈ (𝐴[,]𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  w3a 1088  wcel 2113   class class class wbr 5027  (class class class)co 7164  cr 10607  cle 10747  [,]cicc 12817
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473  ax-cnex 10664  ax-resscn 10665  ax-pre-lttri 10682  ax-pre-lttrn 10683
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-op 4520  df-uni 4794  df-br 5028  df-opab 5090  df-mpt 5108  df-id 5425  df-po 5438  df-so 5439  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-ov 7167  df-oprab 7168  df-mpo 7169  df-er 8313  df-en 8549  df-dom 8550  df-sdom 8551  df-pnf 10748  df-mnf 10749  df-xr 10750  df-ltxr 10751  df-le 10752  df-icc 12821
This theorem is referenced by:  iccshift  42580  iooiinicc  42604  sqrlearg  42615  limciccioolb  42688  cncfiooicclem1  42960  iblspltprt  43040  itgspltprt  43046  itgiccshift  43047  itgperiod  43048  itgsbtaddcnst  43049  fourierdlem15  43189  fourierdlem17  43191  fourierdlem40  43214  fourierdlem50  43223  fourierdlem51  43224  fourierdlem62  43235  fourierdlem63  43236  fourierdlem64  43237  fourierdlem65  43238  fourierdlem73  43246  fourierdlem74  43247  fourierdlem75  43248  fourierdlem76  43249  fourierdlem78  43251  fourierdlem81  43254  fourierdlem82  43255  fourierdlem92  43265  fourierdlem93  43266  fourierdlem101  43274  fourierdlem103  43276  fourierdlem104  43277  fourierdlem107  43280  fourierdlem111  43284  rrxsnicc  43367  salgencntex  43408  hoidmv1lelem2  43656  hoidmvlelem1  43659  hoidmvlelem2  43660  iinhoiicclem  43737  smfmullem1  43848
  Copyright terms: Public domain W3C validator