Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eliccd Structured version   Visualization version   GIF version

Theorem eliccd 44265
Description: Membership in a closed real interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
eliccd.1 (𝜑𝐴 ∈ ℝ)
eliccd.2 (𝜑𝐵 ∈ ℝ)
eliccd.3 (𝜑𝐶 ∈ ℝ)
eliccd.4 (𝜑𝐴𝐶)
eliccd.5 (𝜑𝐶𝐵)
Assertion
Ref Expression
eliccd (𝜑𝐶 ∈ (𝐴[,]𝐵))

Proof of Theorem eliccd
StepHypRef Expression
1 eliccd.3 . 2 (𝜑𝐶 ∈ ℝ)
2 eliccd.4 . 2 (𝜑𝐴𝐶)
3 eliccd.5 . 2 (𝜑𝐶𝐵)
4 eliccd.1 . . 3 (𝜑𝐴 ∈ ℝ)
5 eliccd.2 . . 3 (𝜑𝐵 ∈ ℝ)
6 elicc2 13389 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵)))
74, 5, 6syl2anc 585 . 2 (𝜑 → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵)))
81, 2, 3, 7mpbir3and 1343 1 (𝜑𝐶 ∈ (𝐴[,]𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1088  wcel 2107   class class class wbr 5149  (class class class)co 7409  cr 11109  cle 11249  [,]cicc 13327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-pre-lttri 11184  ax-pre-lttrn 11185
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-po 5589  df-so 5590  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-icc 13331
This theorem is referenced by:  iccshift  44279  iooiinicc  44303  sqrlearg  44314  limciccioolb  44385  cncfiooicclem1  44657  iblspltprt  44737  itgspltprt  44743  itgiccshift  44744  itgperiod  44745  itgsbtaddcnst  44746  fourierdlem15  44886  fourierdlem17  44888  fourierdlem40  44911  fourierdlem50  44920  fourierdlem51  44921  fourierdlem62  44932  fourierdlem63  44933  fourierdlem64  44934  fourierdlem65  44935  fourierdlem73  44943  fourierdlem74  44944  fourierdlem75  44945  fourierdlem76  44946  fourierdlem78  44948  fourierdlem81  44951  fourierdlem82  44952  fourierdlem92  44962  fourierdlem93  44963  fourierdlem101  44971  fourierdlem103  44973  fourierdlem104  44974  fourierdlem107  44977  fourierdlem111  44981  rrxsnicc  45064  salgencntex  45107  hoidmv1lelem2  45356  hoidmvlelem1  45359  hoidmvlelem2  45360  iinhoiicclem  45437  smfmullem1  45555
  Copyright terms: Public domain W3C validator