Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > eliccd | Structured version Visualization version GIF version |
Description: Membership in a closed real interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
eliccd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
eliccd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
eliccd.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
eliccd.4 | ⊢ (𝜑 → 𝐴 ≤ 𝐶) |
eliccd.5 | ⊢ (𝜑 → 𝐶 ≤ 𝐵) |
Ref | Expression |
---|---|
eliccd | ⊢ (𝜑 → 𝐶 ∈ (𝐴[,]𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eliccd.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
2 | eliccd.4 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐶) | |
3 | eliccd.5 | . 2 ⊢ (𝜑 → 𝐶 ≤ 𝐵) | |
4 | eliccd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
5 | eliccd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
6 | elicc2 13073 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) | |
7 | 4, 5, 6 | syl2anc 583 | . 2 ⊢ (𝜑 → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) |
8 | 1, 2, 3, 7 | mpbir3and 1340 | 1 ⊢ (𝜑 → 𝐶 ∈ (𝐴[,]𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1085 ∈ wcel 2108 class class class wbr 5070 (class class class)co 7255 ℝcr 10801 ≤ cle 10941 [,]cicc 13011 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-pre-lttri 10876 ax-pre-lttrn 10877 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-icc 13015 |
This theorem is referenced by: iccshift 42946 iooiinicc 42970 sqrlearg 42981 limciccioolb 43052 cncfiooicclem1 43324 iblspltprt 43404 itgspltprt 43410 itgiccshift 43411 itgperiod 43412 itgsbtaddcnst 43413 fourierdlem15 43553 fourierdlem17 43555 fourierdlem40 43578 fourierdlem50 43587 fourierdlem51 43588 fourierdlem62 43599 fourierdlem63 43600 fourierdlem64 43601 fourierdlem65 43602 fourierdlem73 43610 fourierdlem74 43611 fourierdlem75 43612 fourierdlem76 43613 fourierdlem78 43615 fourierdlem81 43618 fourierdlem82 43619 fourierdlem92 43629 fourierdlem93 43630 fourierdlem101 43638 fourierdlem103 43640 fourierdlem104 43641 fourierdlem107 43644 fourierdlem111 43648 rrxsnicc 43731 salgencntex 43772 hoidmv1lelem2 44020 hoidmvlelem1 44023 hoidmvlelem2 44024 iinhoiicclem 44101 smfmullem1 44212 |
Copyright terms: Public domain | W3C validator |