| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eliccd | Structured version Visualization version GIF version | ||
| Description: Membership in a closed real interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| eliccd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| eliccd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| eliccd.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| eliccd.4 | ⊢ (𝜑 → 𝐴 ≤ 𝐶) |
| eliccd.5 | ⊢ (𝜑 → 𝐶 ≤ 𝐵) |
| Ref | Expression |
|---|---|
| eliccd | ⊢ (𝜑 → 𝐶 ∈ (𝐴[,]𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eliccd.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
| 2 | eliccd.4 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐶) | |
| 3 | eliccd.5 | . 2 ⊢ (𝜑 → 𝐶 ≤ 𝐵) | |
| 4 | eliccd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 5 | eliccd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 6 | elicc2 13311 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) | |
| 7 | 4, 5, 6 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) |
| 8 | 1, 2, 3, 7 | mpbir3and 1343 | 1 ⊢ (𝜑 → 𝐶 ∈ (𝐴[,]𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 ∈ wcel 2111 class class class wbr 5089 (class class class)co 7346 ℝcr 11005 ≤ cle 11147 [,]cicc 13248 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-pre-lttri 11080 ax-pre-lttrn 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-icc 13252 |
| This theorem is referenced by: iccshift 45628 iooiinicc 45652 sqrlearg 45663 limciccioolb 45731 cncfiooicclem1 46001 iblspltprt 46081 itgspltprt 46087 itgiccshift 46088 itgperiod 46089 itgsbtaddcnst 46090 fourierdlem15 46230 fourierdlem17 46232 fourierdlem40 46255 fourierdlem50 46264 fourierdlem51 46265 fourierdlem62 46276 fourierdlem63 46277 fourierdlem64 46278 fourierdlem65 46279 fourierdlem73 46287 fourierdlem74 46288 fourierdlem75 46289 fourierdlem76 46290 fourierdlem78 46292 fourierdlem81 46295 fourierdlem82 46296 fourierdlem92 46306 fourierdlem93 46307 fourierdlem101 46315 fourierdlem103 46317 fourierdlem104 46318 fourierdlem107 46321 fourierdlem111 46325 rrxsnicc 46408 salgencntex 46451 hoidmv1lelem2 46700 hoidmvlelem1 46703 hoidmvlelem2 46704 iinhoiicclem 46781 smfmullem1 46899 |
| Copyright terms: Public domain | W3C validator |