| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eliccd | Structured version Visualization version GIF version | ||
| Description: Membership in a closed real interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| eliccd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| eliccd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| eliccd.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| eliccd.4 | ⊢ (𝜑 → 𝐴 ≤ 𝐶) |
| eliccd.5 | ⊢ (𝜑 → 𝐶 ≤ 𝐵) |
| Ref | Expression |
|---|---|
| eliccd | ⊢ (𝜑 → 𝐶 ∈ (𝐴[,]𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eliccd.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
| 2 | eliccd.4 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐶) | |
| 3 | eliccd.5 | . 2 ⊢ (𝜑 → 𝐶 ≤ 𝐵) | |
| 4 | eliccd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 5 | eliccd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 6 | elicc2 13428 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) | |
| 7 | 4, 5, 6 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) |
| 8 | 1, 2, 3, 7 | mpbir3and 1343 | 1 ⊢ (𝜑 → 𝐶 ∈ (𝐴[,]𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 ∈ wcel 2108 class class class wbr 5119 (class class class)co 7405 ℝcr 11128 ≤ cle 11270 [,]cicc 13365 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-pre-lttri 11203 ax-pre-lttrn 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-icc 13369 |
| This theorem is referenced by: iccshift 45547 iooiinicc 45571 sqrlearg 45582 limciccioolb 45650 cncfiooicclem1 45922 iblspltprt 46002 itgspltprt 46008 itgiccshift 46009 itgperiod 46010 itgsbtaddcnst 46011 fourierdlem15 46151 fourierdlem17 46153 fourierdlem40 46176 fourierdlem50 46185 fourierdlem51 46186 fourierdlem62 46197 fourierdlem63 46198 fourierdlem64 46199 fourierdlem65 46200 fourierdlem73 46208 fourierdlem74 46209 fourierdlem75 46210 fourierdlem76 46211 fourierdlem78 46213 fourierdlem81 46216 fourierdlem82 46217 fourierdlem92 46227 fourierdlem93 46228 fourierdlem101 46236 fourierdlem103 46238 fourierdlem104 46239 fourierdlem107 46242 fourierdlem111 46246 rrxsnicc 46329 salgencntex 46372 hoidmv1lelem2 46621 hoidmvlelem1 46624 hoidmvlelem2 46625 iinhoiicclem 46702 smfmullem1 46820 |
| Copyright terms: Public domain | W3C validator |