Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > eliccd | Structured version Visualization version GIF version |
Description: Membership in a closed real interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
eliccd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
eliccd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
eliccd.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
eliccd.4 | ⊢ (𝜑 → 𝐴 ≤ 𝐶) |
eliccd.5 | ⊢ (𝜑 → 𝐶 ≤ 𝐵) |
Ref | Expression |
---|---|
eliccd | ⊢ (𝜑 → 𝐶 ∈ (𝐴[,]𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eliccd.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
2 | eliccd.4 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐶) | |
3 | eliccd.5 | . 2 ⊢ (𝜑 → 𝐶 ≤ 𝐵) | |
4 | eliccd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
5 | eliccd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
6 | elicc2 13144 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) | |
7 | 4, 5, 6 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) |
8 | 1, 2, 3, 7 | mpbir3and 1341 | 1 ⊢ (𝜑 → 𝐶 ∈ (𝐴[,]𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1086 ∈ wcel 2106 class class class wbr 5074 (class class class)co 7275 ℝcr 10870 ≤ cle 11010 [,]cicc 13082 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-pre-lttri 10945 ax-pre-lttrn 10946 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-icc 13086 |
This theorem is referenced by: iccshift 43056 iooiinicc 43080 sqrlearg 43091 limciccioolb 43162 cncfiooicclem1 43434 iblspltprt 43514 itgspltprt 43520 itgiccshift 43521 itgperiod 43522 itgsbtaddcnst 43523 fourierdlem15 43663 fourierdlem17 43665 fourierdlem40 43688 fourierdlem50 43697 fourierdlem51 43698 fourierdlem62 43709 fourierdlem63 43710 fourierdlem64 43711 fourierdlem65 43712 fourierdlem73 43720 fourierdlem74 43721 fourierdlem75 43722 fourierdlem76 43723 fourierdlem78 43725 fourierdlem81 43728 fourierdlem82 43729 fourierdlem92 43739 fourierdlem93 43740 fourierdlem101 43748 fourierdlem103 43750 fourierdlem104 43751 fourierdlem107 43754 fourierdlem111 43758 rrxsnicc 43841 salgencntex 43882 hoidmv1lelem2 44130 hoidmvlelem1 44133 hoidmvlelem2 44134 iinhoiicclem 44211 smfmullem1 44325 |
Copyright terms: Public domain | W3C validator |