Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eliccd Structured version   Visualization version   GIF version

Theorem eliccd 43042
Description: Membership in a closed real interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
eliccd.1 (𝜑𝐴 ∈ ℝ)
eliccd.2 (𝜑𝐵 ∈ ℝ)
eliccd.3 (𝜑𝐶 ∈ ℝ)
eliccd.4 (𝜑𝐴𝐶)
eliccd.5 (𝜑𝐶𝐵)
Assertion
Ref Expression
eliccd (𝜑𝐶 ∈ (𝐴[,]𝐵))

Proof of Theorem eliccd
StepHypRef Expression
1 eliccd.3 . 2 (𝜑𝐶 ∈ ℝ)
2 eliccd.4 . 2 (𝜑𝐴𝐶)
3 eliccd.5 . 2 (𝜑𝐶𝐵)
4 eliccd.1 . . 3 (𝜑𝐴 ∈ ℝ)
5 eliccd.2 . . 3 (𝜑𝐵 ∈ ℝ)
6 elicc2 13144 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵)))
74, 5, 6syl2anc 584 . 2 (𝜑 → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵)))
81, 2, 3, 7mpbir3and 1341 1 (𝜑𝐶 ∈ (𝐴[,]𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1086  wcel 2106   class class class wbr 5074  (class class class)co 7275  cr 10870  cle 11010  [,]cicc 13082
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-pre-lttri 10945  ax-pre-lttrn 10946
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-icc 13086
This theorem is referenced by:  iccshift  43056  iooiinicc  43080  sqrlearg  43091  limciccioolb  43162  cncfiooicclem1  43434  iblspltprt  43514  itgspltprt  43520  itgiccshift  43521  itgperiod  43522  itgsbtaddcnst  43523  fourierdlem15  43663  fourierdlem17  43665  fourierdlem40  43688  fourierdlem50  43697  fourierdlem51  43698  fourierdlem62  43709  fourierdlem63  43710  fourierdlem64  43711  fourierdlem65  43712  fourierdlem73  43720  fourierdlem74  43721  fourierdlem75  43722  fourierdlem76  43723  fourierdlem78  43725  fourierdlem81  43728  fourierdlem82  43729  fourierdlem92  43739  fourierdlem93  43740  fourierdlem101  43748  fourierdlem103  43750  fourierdlem104  43751  fourierdlem107  43754  fourierdlem111  43758  rrxsnicc  43841  salgencntex  43882  hoidmv1lelem2  44130  hoidmvlelem1  44133  hoidmvlelem2  44134  iinhoiicclem  44211  smfmullem1  44325
  Copyright terms: Public domain W3C validator