MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noinfdm Structured version   Visualization version   GIF version

Theorem noinfdm 27149
Description: Next, we calculate the domain of 𝑇. This is mostly to change bound variables. (Contributed by Scott Fenton, 8-Aug-2024.)
Hypothesis
Ref Expression
noinfdm.1 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
Assertion
Ref Expression
noinfdm (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → dom 𝑇 = {𝑧 ∣ ∃𝑝𝐵 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))})
Distinct variable groups:   𝐵,𝑔   𝐵,𝑝,𝑞,𝑢,𝑣,𝑦,𝑧   𝑢,𝑔,𝑣,𝑦
Allowed substitution hints:   𝐵(𝑥)   𝑇(𝑥,𝑦,𝑧,𝑣,𝑢,𝑔,𝑞,𝑝)

Proof of Theorem noinfdm
StepHypRef Expression
1 noinfdm.1 . . . 4 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
2 iffalse 4531 . . . 4 (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)))) = (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
31, 2eqtrid 2783 . . 3 (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥𝑇 = (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
43dmeqd 5897 . 2 (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → dom 𝑇 = dom (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
5 iotaex 6505 . . . 4 (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)) ∈ V
6 eqid 2731 . . . 4 (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))) = (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)))
75, 6dmmpti 6681 . . 3 dom (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))) = {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}
8 eleq1w 2815 . . . . . . 7 (𝑦 = 𝑧 → (𝑦 ∈ dom 𝑢𝑧 ∈ dom 𝑢))
9 suceq 6419 . . . . . . . . . . 11 (𝑦 = 𝑧 → suc 𝑦 = suc 𝑧)
109reseq2d 5973 . . . . . . . . . 10 (𝑦 = 𝑧 → (𝑢 ↾ suc 𝑦) = (𝑢 ↾ suc 𝑧))
119reseq2d 5973 . . . . . . . . . 10 (𝑦 = 𝑧 → (𝑣 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑧))
1210, 11eqeq12d 2747 . . . . . . . . 9 (𝑦 = 𝑧 → ((𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦) ↔ (𝑢 ↾ suc 𝑧) = (𝑣 ↾ suc 𝑧)))
1312imbi2d 340 . . . . . . . 8 (𝑦 = 𝑧 → ((¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)) ↔ (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑧) = (𝑣 ↾ suc 𝑧))))
1413ralbidv 3176 . . . . . . 7 (𝑦 = 𝑧 → (∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)) ↔ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑧) = (𝑣 ↾ suc 𝑧))))
158, 14anbi12d 631 . . . . . 6 (𝑦 = 𝑧 → ((𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) ↔ (𝑧 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑧) = (𝑣 ↾ suc 𝑧)))))
1615rexbidv 3177 . . . . 5 (𝑦 = 𝑧 → (∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) ↔ ∃𝑢𝐵 (𝑧 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑧) = (𝑣 ↾ suc 𝑧)))))
17 dmeq 5895 . . . . . . . 8 (𝑢 = 𝑝 → dom 𝑢 = dom 𝑝)
1817eleq2d 2818 . . . . . . 7 (𝑢 = 𝑝 → (𝑧 ∈ dom 𝑢𝑧 ∈ dom 𝑝))
19 breq1 5144 . . . . . . . . . . 11 (𝑢 = 𝑝 → (𝑢 <s 𝑣𝑝 <s 𝑣))
2019notbid 317 . . . . . . . . . 10 (𝑢 = 𝑝 → (¬ 𝑢 <s 𝑣 ↔ ¬ 𝑝 <s 𝑣))
21 reseq1 5967 . . . . . . . . . . 11 (𝑢 = 𝑝 → (𝑢 ↾ suc 𝑧) = (𝑝 ↾ suc 𝑧))
2221eqeq1d 2733 . . . . . . . . . 10 (𝑢 = 𝑝 → ((𝑢 ↾ suc 𝑧) = (𝑣 ↾ suc 𝑧) ↔ (𝑝 ↾ suc 𝑧) = (𝑣 ↾ suc 𝑧)))
2320, 22imbi12d 344 . . . . . . . . 9 (𝑢 = 𝑝 → ((¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑧) = (𝑣 ↾ suc 𝑧)) ↔ (¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc 𝑧) = (𝑣 ↾ suc 𝑧))))
2423ralbidv 3176 . . . . . . . 8 (𝑢 = 𝑝 → (∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑧) = (𝑣 ↾ suc 𝑧)) ↔ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc 𝑧) = (𝑣 ↾ suc 𝑧))))
25 breq2 5145 . . . . . . . . . . 11 (𝑣 = 𝑞 → (𝑝 <s 𝑣𝑝 <s 𝑞))
2625notbid 317 . . . . . . . . . 10 (𝑣 = 𝑞 → (¬ 𝑝 <s 𝑣 ↔ ¬ 𝑝 <s 𝑞))
27 reseq1 5967 . . . . . . . . . . 11 (𝑣 = 𝑞 → (𝑣 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧))
2827eqeq2d 2742 . . . . . . . . . 10 (𝑣 = 𝑞 → ((𝑝 ↾ suc 𝑧) = (𝑣 ↾ suc 𝑧) ↔ (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))
2926, 28imbi12d 344 . . . . . . . . 9 (𝑣 = 𝑞 → ((¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc 𝑧) = (𝑣 ↾ suc 𝑧)) ↔ (¬ 𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧))))
3029cbvralvw 3233 . . . . . . . 8 (∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc 𝑧) = (𝑣 ↾ suc 𝑧)) ↔ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))
3124, 30bitrdi 286 . . . . . . 7 (𝑢 = 𝑝 → (∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑧) = (𝑣 ↾ suc 𝑧)) ↔ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧))))
3218, 31anbi12d 631 . . . . . 6 (𝑢 = 𝑝 → ((𝑧 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑧) = (𝑣 ↾ suc 𝑧))) ↔ (𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))))
3332cbvrexvw 3234 . . . . 5 (∃𝑢𝐵 (𝑧 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑧) = (𝑣 ↾ suc 𝑧))) ↔ ∃𝑝𝐵 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧))))
3416, 33bitrdi 286 . . . 4 (𝑦 = 𝑧 → (∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) ↔ ∃𝑝𝐵 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))))
3534cbvabv 2804 . . 3 {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} = {𝑧 ∣ ∃𝑝𝐵 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))}
367, 35eqtri 2759 . 2 dom (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))) = {𝑧 ∣ ∃𝑝𝐵 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))}
374, 36eqtrdi 2787 1 (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → dom 𝑇 = {𝑧 ∣ ∃𝑝𝐵 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  {cab 2708  wral 3060  wrex 3069  cun 3942  ifcif 4522  {csn 4622  cop 4628   class class class wbr 5141  cmpt 5224  dom cdm 5669  cres 5671  suc csuc 6355  cio 6482  cfv 6532  crio 7348  1oc1o 8441   <s cslt 27071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4523  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-res 5681  df-suc 6359  df-iota 6484  df-fun 6534  df-fn 6535
This theorem is referenced by:  noinfbday  27150  noinfres  27152  noinfbnd1lem1  27153  noinfbnd1lem3  27155  noinfbnd1lem5  27157  noinfbnd2  27161
  Copyright terms: Public domain W3C validator