Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  noinfdm Structured version   Visualization version   GIF version

Theorem noinfdm 33849
Description: Next, we calculate the domain of 𝑇. This is mostly to change bound variables. (Contributed by Scott Fenton, 8-Aug-2024.)
Hypothesis
Ref Expression
noinfdm.1 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
Assertion
Ref Expression
noinfdm (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → dom 𝑇 = {𝑧 ∣ ∃𝑝𝐵 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))})
Distinct variable groups:   𝐵,𝑔   𝐵,𝑝,𝑞,𝑢,𝑣,𝑦,𝑧   𝑢,𝑔,𝑣,𝑦
Allowed substitution hints:   𝐵(𝑥)   𝑇(𝑥,𝑦,𝑧,𝑣,𝑢,𝑔,𝑞,𝑝)

Proof of Theorem noinfdm
StepHypRef Expression
1 noinfdm.1 . . . 4 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
2 iffalse 4465 . . . 4 (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)))) = (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
31, 2syl5eq 2791 . . 3 (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥𝑇 = (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
43dmeqd 5803 . 2 (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → dom 𝑇 = dom (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
5 iotaex 6398 . . . 4 (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)) ∈ V
6 eqid 2738 . . . 4 (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))) = (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)))
75, 6dmmpti 6561 . . 3 dom (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))) = {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}
8 eleq1w 2821 . . . . . . 7 (𝑦 = 𝑧 → (𝑦 ∈ dom 𝑢𝑧 ∈ dom 𝑢))
9 suceq 6316 . . . . . . . . . . 11 (𝑦 = 𝑧 → suc 𝑦 = suc 𝑧)
109reseq2d 5880 . . . . . . . . . 10 (𝑦 = 𝑧 → (𝑢 ↾ suc 𝑦) = (𝑢 ↾ suc 𝑧))
119reseq2d 5880 . . . . . . . . . 10 (𝑦 = 𝑧 → (𝑣 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑧))
1210, 11eqeq12d 2754 . . . . . . . . 9 (𝑦 = 𝑧 → ((𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦) ↔ (𝑢 ↾ suc 𝑧) = (𝑣 ↾ suc 𝑧)))
1312imbi2d 340 . . . . . . . 8 (𝑦 = 𝑧 → ((¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)) ↔ (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑧) = (𝑣 ↾ suc 𝑧))))
1413ralbidv 3120 . . . . . . 7 (𝑦 = 𝑧 → (∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)) ↔ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑧) = (𝑣 ↾ suc 𝑧))))
158, 14anbi12d 630 . . . . . 6 (𝑦 = 𝑧 → ((𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) ↔ (𝑧 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑧) = (𝑣 ↾ suc 𝑧)))))
1615rexbidv 3225 . . . . 5 (𝑦 = 𝑧 → (∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) ↔ ∃𝑢𝐵 (𝑧 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑧) = (𝑣 ↾ suc 𝑧)))))
17 dmeq 5801 . . . . . . . 8 (𝑢 = 𝑝 → dom 𝑢 = dom 𝑝)
1817eleq2d 2824 . . . . . . 7 (𝑢 = 𝑝 → (𝑧 ∈ dom 𝑢𝑧 ∈ dom 𝑝))
19 breq1 5073 . . . . . . . . . . 11 (𝑢 = 𝑝 → (𝑢 <s 𝑣𝑝 <s 𝑣))
2019notbid 317 . . . . . . . . . 10 (𝑢 = 𝑝 → (¬ 𝑢 <s 𝑣 ↔ ¬ 𝑝 <s 𝑣))
21 reseq1 5874 . . . . . . . . . . 11 (𝑢 = 𝑝 → (𝑢 ↾ suc 𝑧) = (𝑝 ↾ suc 𝑧))
2221eqeq1d 2740 . . . . . . . . . 10 (𝑢 = 𝑝 → ((𝑢 ↾ suc 𝑧) = (𝑣 ↾ suc 𝑧) ↔ (𝑝 ↾ suc 𝑧) = (𝑣 ↾ suc 𝑧)))
2320, 22imbi12d 344 . . . . . . . . 9 (𝑢 = 𝑝 → ((¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑧) = (𝑣 ↾ suc 𝑧)) ↔ (¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc 𝑧) = (𝑣 ↾ suc 𝑧))))
2423ralbidv 3120 . . . . . . . 8 (𝑢 = 𝑝 → (∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑧) = (𝑣 ↾ suc 𝑧)) ↔ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc 𝑧) = (𝑣 ↾ suc 𝑧))))
25 breq2 5074 . . . . . . . . . . 11 (𝑣 = 𝑞 → (𝑝 <s 𝑣𝑝 <s 𝑞))
2625notbid 317 . . . . . . . . . 10 (𝑣 = 𝑞 → (¬ 𝑝 <s 𝑣 ↔ ¬ 𝑝 <s 𝑞))
27 reseq1 5874 . . . . . . . . . . 11 (𝑣 = 𝑞 → (𝑣 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧))
2827eqeq2d 2749 . . . . . . . . . 10 (𝑣 = 𝑞 → ((𝑝 ↾ suc 𝑧) = (𝑣 ↾ suc 𝑧) ↔ (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))
2926, 28imbi12d 344 . . . . . . . . 9 (𝑣 = 𝑞 → ((¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc 𝑧) = (𝑣 ↾ suc 𝑧)) ↔ (¬ 𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧))))
3029cbvralvw 3372 . . . . . . . 8 (∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc 𝑧) = (𝑣 ↾ suc 𝑧)) ↔ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))
3124, 30bitrdi 286 . . . . . . 7 (𝑢 = 𝑝 → (∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑧) = (𝑣 ↾ suc 𝑧)) ↔ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧))))
3218, 31anbi12d 630 . . . . . 6 (𝑢 = 𝑝 → ((𝑧 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑧) = (𝑣 ↾ suc 𝑧))) ↔ (𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))))
3332cbvrexvw 3373 . . . . 5 (∃𝑢𝐵 (𝑧 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑧) = (𝑣 ↾ suc 𝑧))) ↔ ∃𝑝𝐵 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧))))
3416, 33bitrdi 286 . . . 4 (𝑦 = 𝑧 → (∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) ↔ ∃𝑝𝐵 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))))
3534cbvabv 2812 . . 3 {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} = {𝑧 ∣ ∃𝑝𝐵 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))}
367, 35eqtri 2766 . 2 dom (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))) = {𝑧 ∣ ∃𝑝𝐵 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))}
374, 36eqtrdi 2795 1 (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → dom 𝑇 = {𝑧 ∣ ∃𝑝𝐵 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  {cab 2715  wral 3063  wrex 3064  cun 3881  ifcif 4456  {csn 4558  cop 4564   class class class wbr 5070  cmpt 5153  dom cdm 5580  cres 5582  suc csuc 6253  cio 6374  cfv 6418  crio 7211  1oc1o 8260   <s cslt 33771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-res 5592  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421
This theorem is referenced by:  noinfbday  33850  noinfres  33852  noinfbnd1lem1  33853  noinfbnd1lem3  33855  noinfbnd1lem5  33857  noinfbnd2  33861
  Copyright terms: Public domain W3C validator