Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > psgnfn | Structured version Visualization version GIF version |
Description: Functionality and domain of the permutation sign function. (Contributed by Stefan O'Rear, 28-Aug-2015.) |
Ref | Expression |
---|---|
psgnfn.g | ⊢ 𝐺 = (SymGrp‘𝐷) |
psgnfn.b | ⊢ 𝐵 = (Base‘𝐺) |
psgnfn.f | ⊢ 𝐹 = {𝑝 ∈ 𝐵 ∣ dom (𝑝 ∖ I ) ∈ Fin} |
psgnfn.n | ⊢ 𝑁 = (pmSgn‘𝐷) |
Ref | Expression |
---|---|
psgnfn | ⊢ 𝑁 Fn 𝐹 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iotaex 6452 | . 2 ⊢ (℩𝑠∃𝑤 ∈ Word ran (pmTrsp‘𝐷)(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))) ∈ V | |
2 | psgnfn.g | . . 3 ⊢ 𝐺 = (SymGrp‘𝐷) | |
3 | psgnfn.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
4 | psgnfn.f | . . 3 ⊢ 𝐹 = {𝑝 ∈ 𝐵 ∣ dom (𝑝 ∖ I ) ∈ Fin} | |
5 | eqid 2736 | . . 3 ⊢ ran (pmTrsp‘𝐷) = ran (pmTrsp‘𝐷) | |
6 | psgnfn.n | . . 3 ⊢ 𝑁 = (pmSgn‘𝐷) | |
7 | 2, 3, 4, 5, 6 | psgnfval 19204 | . 2 ⊢ 𝑁 = (𝑥 ∈ 𝐹 ↦ (℩𝑠∃𝑤 ∈ Word ran (pmTrsp‘𝐷)(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))) |
8 | 1, 7 | fnmpti 6627 | 1 ⊢ 𝑁 Fn 𝐹 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∃wrex 3070 {crab 3403 ∖ cdif 3895 I cid 5517 dom cdm 5620 ran crn 5621 ℩cio 6429 Fn wfn 6474 ‘cfv 6479 (class class class)co 7337 Fincfn 8804 1c1 10973 -cneg 11307 ↑cexp 13883 ♯chash 14145 Word cword 14317 Basecbs 17009 Σg cgsu 17248 SymGrpcsymg 19070 pmTrspcpmtr 19145 pmSgncpsgn 19193 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-int 4895 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-om 7781 df-1st 7899 df-2nd 7900 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-1o 8367 df-er 8569 df-en 8805 df-dom 8806 df-sdom 8807 df-fin 8808 df-card 9796 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-nn 12075 df-n0 12335 df-z 12421 df-uz 12684 df-fz 13341 df-fzo 13484 df-hash 14146 df-word 14318 df-slot 16980 df-ndx 16992 df-base 17010 df-psgn 19195 |
This theorem is referenced by: psgndmsubg 19206 psgneldm 19207 psgneldm2 19208 psgnval 19211 psgnghm 20891 psgnghm2 20892 cofipsgn 20904 m1detdiag 21852 psgndmfi 31652 |
Copyright terms: Public domain | W3C validator |