Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgnfn Structured version   Visualization version   GIF version

Theorem psgnfn 18621
 Description: Functionality and domain of the permutation sign function. (Contributed by Stefan O'Rear, 28-Aug-2015.)
Hypotheses
Ref Expression
psgnfn.g 𝐺 = (SymGrp‘𝐷)
psgnfn.b 𝐵 = (Base‘𝐺)
psgnfn.f 𝐹 = {𝑝𝐵 ∣ dom (𝑝 ∖ I ) ∈ Fin}
psgnfn.n 𝑁 = (pmSgn‘𝐷)
Assertion
Ref Expression
psgnfn 𝑁 Fn 𝐹
Distinct variable group:   𝐵,𝑝
Allowed substitution hints:   𝐷(𝑝)   𝐹(𝑝)   𝐺(𝑝)   𝑁(𝑝)

Proof of Theorem psgnfn
Dummy variables 𝑠 𝑤 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iotaex 6328 . 2 (℩𝑠𝑤 ∈ Word ran (pmTrsp‘𝐷)(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))) ∈ V
2 psgnfn.g . . 3 𝐺 = (SymGrp‘𝐷)
3 psgnfn.b . . 3 𝐵 = (Base‘𝐺)
4 psgnfn.f . . 3 𝐹 = {𝑝𝐵 ∣ dom (𝑝 ∖ I ) ∈ Fin}
5 eqid 2819 . . 3 ran (pmTrsp‘𝐷) = ran (pmTrsp‘𝐷)
6 psgnfn.n . . 3 𝑁 = (pmSgn‘𝐷)
72, 3, 4, 5, 6psgnfval 18620 . 2 𝑁 = (𝑥𝐹 ↦ (℩𝑠𝑤 ∈ Word ran (pmTrsp‘𝐷)(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))))
81, 7fnmpti 6484 1 𝑁 Fn 𝐹
 Colors of variables: wff setvar class Syntax hints:   ∧ wa 398   = wceq 1531   ∈ wcel 2108  ∃wrex 3137  {crab 3140   ∖ cdif 3931   I cid 5452  dom cdm 5548  ran crn 5549  ℩cio 6305   Fn wfn 6343  ‘cfv 6348  (class class class)co 7148  Fincfn 8501  1c1 10530  -cneg 10863  ↑cexp 13421  ♯chash 13682  Word cword 13853  Basecbs 16475   Σg cgsu 16706  SymGrpcsymg 18487  pmTrspcpmtr 18561  pmSgncpsgn 18609 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12885  df-fzo 13026  df-hash 13683  df-word 13854  df-slot 16479  df-base 16481  df-psgn 18611 This theorem is referenced by:  psgndmsubg  18622  psgneldm  18623  psgneldm2  18624  psgnval  18627  psgnghm  20716  psgnghm2  20717  cofipsgn  20729  m1detdiag  21198  psgndmfi  30733
 Copyright terms: Public domain W3C validator